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Abstract

In this paper, some new integral inequalities related to the bounded functions, involving Saigo’s

fractional integral operators, are eshtablished. Special cases of the main results are also pointed out.
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1. Introduction and Preliminaries

Under various assumptions (Chebyshev inequality,
Griss inequality, Minkowski inequality, Hermite- Hadamard
inequality, Ostrowski inequality etc.), inequalities are playing
a very significant role in all fields of mathematics, particularly
in the theory of approximations (see [2,6,7,13,14,17,23]).
Therefore, in the literature we found several extensions
and generalizations of these integral inequalities for the

functions of bounded variation, synchronous, Lipschitzian,

monotonic, absolutely continuous and n-times differentiable
mappings etc. ([10,11,12,15,16,19,20,21,22,26,27,28]). In
the past recent years, one more dimension have been
added to this study, by introducing number of integral
inequalities involving various fractional calculus and g-
calculus operators. For detailed account, one may refer
[1,3,4,5,8,9,18,24,25,29-35] and the references cited therein.

Recently, Tariboon et al. [33] investigated certain new
integral inequalities for the integrable functions, whose
bounds are also integrable functions, involving the
Riemann-Liouville fractional integral operators. Our aim
in this paper, is to obtain a general extensions of the
results due to Tariboon et al. [33]. Main results
investigated here provide certain new integral inequalities
associated with the integrable functions, whose bounds are
also integrable functions, involving the Saigo’s fractional
integral operators. We also give some consequent results
and special cases of the main results.

Firstly, we mention below the basic definitions and
notations of some well-known operators of fractional
calculus, which shall be used in the sequel.

Let ¢ >0,8,n7 R, then the Saigo fractional integral

Igft'ﬂ'” of order « for a real-valued continuous function
f (t) is defined by ([36], see also [[37], p. 19]):

I U o)

SPE (1) = . 7, (1.1)
! ft)- r(o:)j (aJrﬂ - l-— jf(r)d

where, the function 2F1(—) appearing as a kernel for the

operator (1.1) is the Gaussian hypergeometric function
defined by

zFlabct:Z (1.2)

and (a), is the Pochhammer symbol

(a), =a(a+1)...(a+n-1), (a)O =1.

The operator Ig‘t'ﬁ'” includes both the Riemann-

Liouville and the Erdélyi-Kober fractional integral
operators given by the following relationships:
19 F (1) = 15701 (1)
1 t a-1 (1.3)
:mjo (t-2)* " f(r)dr (a>0)
and
1“7 (1) = 1527 £ (t)
t_a_n t a-1 n (14)
:1"(0()".0 (t-7) f(z)dzr(a>0,neR).
Following [36], for f (t)=t“ in (1.1), we get
B _ C(u+1)T(p+1-p+n) -
t C(u+1-p)T(u+1l+a+n) (1.5)

(a0 >0,min(p, u—p+n)>-1t>0).
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2. Main Results

In this section, we obtain certain integral inequalities,
related to the integrable functions, whose bounds are also
integrable  functions, involving Saigo’s fractional
hypergeometric operators. The results are given in the
form of the following theorems:

Theorem 1. Let f,¢, and ¢, are integrable functions

defined on [0,), such that

e (t)< f(t)<p,(t), for all te[0,).
Then, for t >0, we have
150 o (16771 (1) 4150, (157 £ (1)
> Igft'ﬁ'”goz (t)lgy‘t‘mqal(t)+ Igfgﬂ'” f(t) |&,t5,§ f(t),

2.1

where > max{0,-A}, <1 B-1<n <0,y >max{0,-5},
o<l and 6-1<¢ <0.

Proof. By the hypothesis of inequality (2.1), for any
7,p >0, we have

(22(7)= ()T (p)-1(0)) 20,

which follows that
22(7) t(p)+au(p) f(7)

(P @)
Consider

—a-p _r a-1 Z'
F(t,r):t F((ta) ) 2R [a+ﬂ,—ry;a;1—;)

(r e(O,t);t > O)
L (o) (atp)(n) (t-2)"

F(a) ta+ﬂ F(a+1) ta+ﬂ+l
+

4 (a ,B)(Ol +,3+l)(—77)(_77 +1) (t_z_)aﬂ .
2F(a+2) ta+ﬂ+2

(2.4)

which remains positive, for all 7 e(0,t)(t>0), under the
conditions stated with Theorem 1. Multiplying both sides
of (2.3) by F(t,7) (where F(t,7) is given by (2.4)) and
integrating the resulting identity with respect to = from 0
to t, and using (1.1), we get

F(P)16" 02 (1) + 1 () 1577 £ (1)
> g1 ()15 "2 (1) + £ (0) 1577 £ ().
Next, on multiplying both sides of (2.5) by

(e

(pe(0t); t>0),

which also remains positive, for all pe(0,t)(t>0).

Upon integrating the resulting inequality so obtained with
respectto p from O to t, and using the operator (1.1), we

easily arrive at the desired result (2.1).

(2.5)

2F1(7+51_4/;7;1_p) (2.6)

It may be noted that, for y=«, 6=, {=n, the
Theorem 1 immediately reduces to the following result:
Corollary 1. Let ¢ and ¢, are integrable functions

defined on [O,oo) and satisfying inequality (2.1). Then, for
t >0, we have

16" o0 () 157" £ () + 1557 Tz (1) 15 € (t)(2 2
> 1570, ()16 () + (1677 £ (1)),

where o >max{0,-8},8<1 and B-1<n<0.
Theorem 2. Let f and g be two integrable functions
on [0,) and ¢,¢,,y; and w, are four integrable

functions on [0,), such that

e ()< () <@y (1), va(t)<g(t)<w,(t),

for all t € [0,c0). @8)

Then, for t>0, a>max{0,-B},8<1 f-1<n<0,
y>max{0,-6}, §<land §-1<¢ <0, the following
inequalities holds true:

BP0 15870, (104 0 1)

2150, (157 v () + 1577 £ (1)15< 9 (1),

Iy(sg o (D)1 aﬁng(t)+ | @By, (t)|g,t6,§f(t)

2|gftﬁ ()l”f t)+|“/”
)

|7,54 () 1 &Py,

()

218770, (1)1 7“9(t)+'“ﬂ”f(t)'ét‘“w(t):
pa () + 15771 (0157 9(1)

> 18 (137 £ (0)+ 1577 (0157w (1),

|7’5§ aﬁ’?
2 ()15 (2.12)

Proof. Let f and g are two integrable functions and
satisfying inequality (2.8), then to prove (2.9), we can
write

(22(2)=f(0))(g(p)-va(p)) 20,

which follows that
2(7)9(p)+va(p) 1 (7)
2y1(p)e2(7)+ F(7)9(p).
On multiplying both sides of (2.13) by F(t,z) (where
F(t,7) is given by (2.4)) and integrating with respect to
7 fromOto t, then by making use of (1.1), we get
9(P) 1602 1)+ (0) 1577 (1)
21 () 1602 (1) + 9 (£) 1577 £ (1),

Next, multiplying both sides of (2.13) by
H(t,p)(pe(0t),t>0), where H(t p) is given by

(2.6), and integrating with respect to p from 0 to t, we
easily arrive at the desired result (2.9).

(2.13)

(2.14)
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Following the similar procedure, one can easily
establish the remaining inequalities (2.10) to (2.12) by
using the following inequalities, respectively

(v2()-9())(f (p)-a1(r)) 20,

(22(7)-f(2))(9(p)-w2(p))=0
and

(@ (7)-1(2))(a(p)-va(p))20.

Therefore, we omit the further details of the proof of
these results.

3. Consequent Results and Special Cases

The Saigo’s fractional integral operator defined by (1.1),

possess the advantage that the Erdélyi-Kober and the
Riemann-Liouville type fractional integral operators
happen to be the particular cases of this operator.
Therefore, by suitably specializing the parameters, we
now briefly consider some special cases of the result
derived in the preceding section. To this end, let us set
£ =0 and & =0, and make use of the relation (1.4), then
Theorems 1 & 2 vyields the following inequalities
involving the Erdélyi-Kober type fractional integral
operators:

Corollary 2. Let f, o and ¢, are integrable functions

defined on [O,oo) and satisfying inequality (2.1), then for
t >0, we have

1€ (D) 1471 (1) + 197, (1) 17 (1)
> 1%, (1) 175 @y (1) + 127 F (1) 17 (1),

where a >0,-1<7<0,y>0 and -1<¢ <0.
Corollary 3. Let f and g be two integrable functions

(3.1)

on [0,0) and ¢,¢,,y; and y, are four integrable
functions on [O,oo), and satisfying inequality (2.8). Then,
for t>0,¢>0,-1<n7<0, y>0 and -1<¢ <0, the
following inequalities holds true:

1€y (D147 (1) + 197, (1) 174 g (1)

(3.2)
> 1%, () 17y (1) + 197§ (1) 174 g (1),
a1 (0 1 OV )
> 19y, (17 () +19Tg ()17 F (1),
7€ (1 (01771 (170 (1)
2|“~”¢2()|7’4g()+|“’7f(t)|741//2(t),
17€ @y (U) 1%y (1) + 197 £ (1) 17 g (t) 5.5

> 1% ()17 F (1) + 197 £ (D) 17y (1).
Next, if we replace g by —«,5 by —y and make use

of the relation (1.3), then Theorems 1 & 2 corresponds to
the known integral inequalities involving Riemann-
Liouville type fractional integral operators, due to
Tariboon et al [33].

Further, if we put ¢ (t)=m, ¢, (t)=M, y; (t)=p and

v, (t)=P, where m,M,p,PeR,Vte[0,0) and make

use of formula (1.5), then the Theorems 1 & 2 leads to the
following particluar results:
Corollary 4. Let f be an integrable function defined on

[0,o0), such that

m<f(t)sM, mMeR for all te[0,»). (3.6)
Then, for t >0, we have
r(1-s+4)t° 0 (1)
r(1-6)r (1+7/+§)
r(l—ﬂ+’7)t_ﬂ y&éjf()
r(1-p)F(1+a+n) o (3.7)

C(1-B+n)T(1-8+)F°
FA-p)r(l+a+n)T(1-6)T(1+y+¢)
G (150 (1),

where o >max{0,-B},B <1 B-1<n <0,y >max{0,-5},
sd<land §-1<¢ <0.
Corollary 5. Let f and g be two integrable functions

on [0,), such that

m<f(t)<M, p<g(t)<P

(3.8
m,p,M,PeR for all te[0,).

Then, for t>0,a <max{0,-B},4<1, p-1<u<0,
y>max{0,-6}, §<1 and §-1<¢ <0, the following
inequalities holds true:

r(l-6+¢)t”
r(-s)r (1+7/+§)

r(1-pg+n)t™? s,
r(1£,3)ﬂr(1’1)a+n) 69 ()

C(1-B+n)L(1-5+)tF°
F(1-B)r(l+a+n)r(1-86)I(1+7+¢)
HE (0157 9().

571 (1)

(3.9

> pM

-5+t b
T1-0)r (17 +2) ® 9 ()
r(l—ﬁ+77)t7 I;/,&,;f (t)

C(1-B)L(1+a+n) (3.10)
r(1-g+n)C(1-5+)tF7°
r(1-g)r(l+a+n)F(1-6)T(1+y+¢)

HEPTG 1T (1),

C(1-B+n)T(1-8+)0FP°
FrA-p)r(l+a+n)r(1-6)r(1+y+¢)

Hg ()15 (1)

MP
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r(1-g+n)t?’
r(1-p)r(1+a+n)
r(1-s+o)t”°
r(1-8)r(l+y+¢)
r(1-g+n)r(1-6+)t7°
r(1-)r(l+a+n)(1-8)I(1+y+¢)
HGTE ()18 (1)
r(-pg+n)t?’
r(1-p)r(l+a+n)
r(1-s+¢)t°
r(1-8)r(l+y+¢)
Again, if we set ¢ (t)=t and @, (t)=t+1 and make

use of formula (1.5), then the Theorem 1 and Corollary 1,
further leads to the following integral inequalities:
Corollary 6. Let f be an integrable function defined on

[0,00), such that
t<f(t)<t+1 forall te[0,)
Then, for t>0,a>max{0,-B},4<1 B-1<n<0,
y >max{0,6},6 <1 and §-1<¢ <0 we have

75¢g(t)

(3.11)

57 0)

mp

(3.12)

Mgg(t)

571 (1),

r(2-s+o)t?°
r(2-6)r(2+y+¢)
r(2-pg+n)t’
r(2-p)r(2+a+n)
r(1-g+n)t?”
r(1-p)r(l+a+n)
r(2-p+nt”’
r(2-p)r(2+a+n)
r(i-g+q)t”’ (
r(1-p)T(1+a+n)
HGLTE ()10 1 (1),
Corollary 7. Let f be an integrable function defined
on [0,0), such that

571()

+

1504 £ (1)

(3.13)

r(2-5+0)t° j

r(2-6)r(2+y+¢)

t< f(t)<t+1 for allte[0,)
Then, for t>0,a >max{0,-8},f<1 and f-1<n <0,
we have
or(2-p+n)t”
F(Zfﬂ)l"(2+a+77)
r(1-g+n)t”’
F(l—ﬂ)F(l+a+7])
> (15271 ()
l"(2—ﬂ+77)t17ﬂ
r(2-p)r(2+a+7) [
+ X
r(1-g+n)t”’
r(1-p)r(l+a+n)

507 (1)

(3.14)

r(2-pg+n)t”’ ]
r(2-p)r(2+a+n) )

In this paper, we have introduced certain general
integral inequalities, related to the integrable and bounded
functions f and g, involving Saigo’s fractional integral

operators. Therefore, we conclude with the remark that, by
suitably specializing the arbitrary function ¢ (t), @, (t),

w1 (t) and w, (t), one can further easily obtain additional

integral inequalities involving the Riemann-Liouville,
Erd’elyi-Kober and Saigo type fractional integral
operators from our main results.
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