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1. Introduction 

For a given real vector nq R∈ and a given matrix 
n nM R ×∈  the linear complementarity problem 

abbreviated as ( , )LCP M q , consists in finding vectors 
nz R∈  such that 

 
,

0, 0,

0.T

w Mz q
z w

z w

 = +


≥ ≥

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 (1.1) 

Where, Tz denotes the transpose of the vector z . Many 
problems in operations research, management science, 
various scientific computing and engineering areas can 
lead to the solution of an LCP of the form (1.1). For more 
details (see, [1,2,3] and the references therein).  

The early motivation for studying the LCP (M, q) was 
because the KKT optimality conditions for linear and 
quadratic programs constitute an LCP of the form (1.1). 
However, the study of LCP really came into prominence 
since the 1960s and in several decades, many methods for 
solving the LCP (M, q) have been introduced. Most of 
these methods originate from those for the system of the 
linear equations where these methods may be classified 
into two principal kinds, direct and iterative methods (see, 
[1,2,3]). Recently, various authors have suggested 
different model in the frame of the iterative methods for 
the above mentioned problem. For example, Yuan and 
Song in [4], based on the models in [5], proposed a class 
of modified accelerated over-relaxation (MAOR) methods 
to solve ( , )LCP M q . Furthermore, when the system 
matrix M is an H-matrix they proposed some sufficient 

conditions for convergence of the MAOR and modified 
successive over-relaxation (MSOR) methods. Under 
certain conditions, Li and Dai [6], Saberi Najafi and 
Edalatpanah [7] and Dehghan and Hajarian [8] also 
studied generalized accelerated over-relaxation (GAOR) 
and symmetric successive over-relaxation (SSOR) 
methods for solving ( , )LCP M q , respectively. The case 
that M is Non-Hermitian, Saberi Najafi and Edalatpanah 
[8,9], proposed some new iterative methods for solving 
this class of LCP (to see that other iterative methods for 

( , )LCP M q see [11-17] and the references therein). 
In this paper, we will propose a modification of SSOR 

method for ( , )LCP M q . To accomplish of this purpose, 
SSOR method is coupled with the preconditioning 
strategy. We also show that our method for solving LCP is 
superior to the basic SSOR method. Numerical 
experiments show that the new method is feasible and 
efficient for solving large sparse linear complementarity 
problems. 

2. Prerequisite 
We begin with some basic notation and preliminary 

results which we refer to later. 
Definition 2.1 [18,19]. 

(a) The matrix A = ( )ij n na ×  is nonnegative (positive) if 

,i j∀  aij ≥ 0 (aij > 0). In this case we write A ≥ 
0(A>0).Similarly, for n-dimensional vectors x, by 
identifying them with n×1matrices, we can also define x ≥ 
0 (x>0). 

(b) The matrix A = ( )ij n na ×  is called a Z-matrix if for 

any , 0.iji j a≠ ≤  
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(c) The square matrix A = ( )ij n na ×  is called M-matrix if 

A I Bα= −  ;  0B ≥  and ( )Bα ρ> ; ( we denote the 
spectral radius of B by ρ (B)). 

(d) Z-matrix is M-matrix, if A is nonsingular, and if 
1 0A− ≥ . 

(e) For any matrix A = ( )ij n na ×  the comparison matrix 

( ) n n
ijA m R ×〈 〉 = ∈  is defined by: 

 , , , 1 , .ii ii ij ijm a m a i j i j n= = − ≠ ≤ ≤  

(f) The Matrix A = ( )ij n na ×  is an H-matrix if and only if 

A〈 〉  is an M-matrix. 

Definition 2.2 [5]. For nx R∈ , vector x+ is defined such 
that (x+)j = max{0,xj}, j = 1,2,...,n. Then, for any , nx y R∈ , 
the following facts hold: 

1. (x + y)+ ≤ x+ + y+, 
2. x+ - y+ ≤ (x - y)+, 
3. x  = x+ + (-x)+, 
4. x ≤ y implies x+ ≤ y+. 
Definition 2.3 [18,19]. Let A be a real matrix. The 

splitting A=M- N is called 
(a) Convergent if ρ ( 1M N− ) <1. 
(b) Regular if 1 0M − ≥  and 0.N ≥   
(c) Weak regular if 1 0M − ≥  and 1M N−  ≥0. 
(d) M-splitting if M is M-matrix and 0.N ≥  

Clearly, an M-splitting is regular and a regular splitting is 
weak regular. 
Lemma 2. 1 [18]. Let A be a Z-matrix. Then A is M-
matrix if and only if there is a positive vector x such that 
Ax >0. 
Lemma 2.2 [18]. Let A =M − N be an M-splitting of A. 
Then ρ( 1M N− ) < 1 if and only if A is M-matrix. 
Lemma 2.3 [20]. Let A, B be Z-matrices and A is an M-
matrix, if A≤ B then B is an M-matrix too.  
Lemma2.4 [19]. If A ≥ 0, then 

(1) A has a nonnegative real eigenvalue equal to its 
spectral radius, 

(2) To ( )Aρ > 0, there corresponds an eigenvector x ≥ 0, 
(3) ( )Aρ  does not decrease when any entry of A is 

increased. 
Lemma2.5 [18]. Let T ≥ 0. If there exist x > 0 and a scalar 
α  > 0 such that 

i) Tx xα≤ , then ( )Tρ α≤ . Moreover, if Tx xα< , 
then ( )Tρ α< . 

ii) Tx xα≥ , then ( )Tρ α≥ . Moreover, if Tx xα> , 
then ( )Tρ α> . 
Lemma 2.6 [5]. ( , )LCP M q can be equivalently 
transformed to a fixed-point system of equations 

 ( ( )) ,z z E Mz qα += − +  (2.1) 

where α  is some positive constant and E is a diagonal 
matrix with positive diagonal elements. 
Lemma 2.7 [5]. Let n nM R ×∈ be an H-matrix with 
positive diagonal elements. Then the ( , )LCP M q has a 

unique solution * nz R∈ . 

Let the matrix M be split as;  

 ,M D L U= − −  (2.2) 

where D is diagonal, -L and -U are strictly lower and 
upper triangular matrices of M, respectively. Then by 
choosing of 1E Dα −= and in view of Lemma 2.6 we have, 

 1( ( )) .z z D Mz q−
+= − +  (2.3) 

So, in order to solve ( , )LCP M q ,SSOR iterative 
method is defined in [8] as follows; 
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Also they proposed following model; 
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where 0 < w < 2. 
However, because of similarity we ignore this case. 

The operator : n nf R R→ , is defined such 
that ( )f z ξ= , where ξ  is the fixed point of the system; 

 1 ( (2 ) )
( ) .

(2 )
wL w w M wL z

z D
w w q

ξ
ξ −

+
− + − − 

= −  + − 
 (2.6) 

Let 

 1 1, ( (2 ) ) .Q I wD L R I D w w M wL− −= − = − − − (2.7) 

Then in next lemma we have the convergence theorem, 
proposed in [8] for the SSOR method. 
Lemma 2.8 [8]. Let n nM R ×∈ be an H-matrix with 
positive diagonal elements and 0 < w <2. Then, for any 
initial vector 0 nz R∈ , the iterative sequence { kz } 
generated by the SSOR method converges to the unique 
solution z* of the LCP (M, q) and 1( ) 1Q Rρ − <  

3. Preconditioning SSOR for LCP 
The development of efficient and authentic 

preconditioned iterative methods is the key for the 
successful application of scientific computation to the 
solution of many large scale Problems. Since, the 
convergence rate of iterative methods depends on spectral 
properties of the coefficient matrix, in preconditioning 
schemes attempt to transform the original system into 
another one that has the same solution but more desirable 
properties for iterative solution. In this section, SSOR 
method for LCP and the effect of preconditioning for this 
method is coupled. In literature, various authors have 
suggested different models of (I+S)-type preconditioner 
for linear systems A=I-L-U; where I is the identity matrix 
and L,U are strictly lower and strictly upper triangular 
matrices of A, respectively; (see, [21-28] and the 
references therein). These preconditioners have reasonable 
effectiveness and low construction cost. For example, 
Milaszewicz [21] presented the preconditioner of (I+ S)-
type, where the elements of the first column below the 
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diagonal of A eliminate.  Usui et al.[22] considered the 
alternative preconditioner, with the following form  

 .P I L= +


 
In the present section, we will propose preconditioning 

methods for solving linear complementarity problem. 
Generally, we rewrite M to (I+S)M. So, let M in (2.2) be 
nonsingular. Then preconditioning in M is; 

 
( )

.
M I S M D L U SD SL SU

D L U
= + = − − + − −

= − −
 (3.1) 

Where , ,D L U are diagonal, strictly lower and strictly 
upper triangular parts of M , respectively. And, 

 ( ) .q I S q= +  (3.2) 

We consider Usui et al’s preconditioner [22] as (I+S). 
Therefore we have,  
 0 0( ) ( ).P I K I S= + = +  (3.3) 

Where, 
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Note. We can also consider other (I+S)-type 
preconditioners but here, we use Usui et al’s 
preconditioner, since convergence rate via using this 
preconditioner slightly is better than others; see, [24]. 

Now, we propose new preconditioners for M. Our 
preconditioners for LCP are; 

 }{1 1( ) ( ) 2 ( ) ,P I K I S I M I S= + = + − +  (3.4)
 

 
}{

2 2( )

( ) 3 ( ) (3 ( )) .

P I K

I S I M I S I M I S

= +

= + − + − +
 (3.5) 

And for i = 0, 1, 2, we have, 

 ( ) ,
( ) .

i

i

M I K M
q I K q
 = +


= +
 

Thus the preconditioned SSOR method for LCP is:  
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Lemma 3.1. Let M be an H-matrix. Then the 
preconditioned ( )iM I K M= +  also is H-matrix.  
Proof. Let M be an H-matrix. Then <M> is M-matrix and 
by Lemma 2.1, 

 0 . 0.x S T M x∃ > < > >  
Since ( ) ,iM I K M< >= + < >  

Then, 

 ( ) 0iM x I K M x< > = + < > > . 

Therefore M< >  is M-matrix and the proof is 
completed. 
Theorem 3.2. Let n nM R ×∈  with positive diagonal 
elements be an H-matrix and ( )iM I K M= +  is 
preconditioned form of M with preconditioners (3.3)-(3.5). 

Then if 1 1& ( (2 ) )Q I wD L R I D w w M wL− −= − = − − −  

we have, 

 1 1( ) ( ) 1.Q R Q Rρ ρ− −≤ <  

Proof. By Lemma 3.1 M  is an H-matrix. 
Hence M Q R< >= −  is M-matrix and by Lemma 2.2 

1( ) 1Q Rρ − < . Since ( ) ,M Q< > <  by Lemma 2.3 Q  is 
M-matrix. As same demonstration Q is M-matrix too. 
Thus, 
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Then by Lemma 2.4 (Perron-Frobenius Theorem), there 
exist a positive vector x such that, 

 1 1( ) ( )Q R x Q R xρ− −= . 

Therefore,
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Furthermore, for any Pi (i=0, 1, 2) we have;  
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 Thus, Q Q≤ and in view of the fact that both ,Q Q  are 

M-matrices, we have; 

 1 1 1( ) .iQ I K Q Q− − −+ ≥ ≥  
Therefore, 

 

1 1

1 1

1 1 1 1
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And by Lemma 2.5 we have;  
 1 1( ) ( ).Q R Q Rρ ρ− −≤  

Therefore by Lemma 2.8, the proof is completed. 
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Now, we show that in LCP, the convergence rate of 
preconditioned SSOR methods is faster than of the SSOR 
method. 
Theorem 3.3. Let n nM R ×∈  with positive diagonal 
elements be an H-matrix, 0 <w < 2. Also M PM=  is 
preconditioned form of M with preconditioners (3.3)-
(3.5).Then convergence rate of preconditioned SSOR 
methods is faster than of the SSOR method. 
Proof. Let, iterative sequence {zi} i=0,1,…, generated by 
(3.6). From the assumption that M is an H-matrix, it 
follows, by Lemma 3.1 M  is an H-matrix and therefore 
by Lemma 2.7, the vector sequence{zi} is uniquely 
defined and the LCP(M, q) has a unique solution nz R• ∈ . 

Similar to (2.6),we define the operator : n nv R R→ , 
such that ( )v z ξ= , where ξ  is the fixed point of the 
following system, 

 1 ( (2 ) )
( ) .

(2 )
wL w w M wL z

z D
w w q

ξ
ξ −

+
 − + − −

= −  + − 
 (3.7) 

Let 
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+
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+ −
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By subtracting (3.7) & (3.8), we get; 
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Therefore, by above relations we have; 

 1( ) ( ) .Q R z xξ ψ ξ ψ ψ ξ −
+ +− = − + − ≤ −  (3.9) 

Thus from the definition of the preconditioned SSOR 
method and (3.9) we can write 

 1 * * 1 *( ) ( ) .k k kz z f z f z Q R z z+ −− = − ≤ −  

Hence, the iterative sequence {zk }, k=0,1,…, 
converges to *z  if 1( ) 1Q Rρ − ≤  and since by Theorem 

3.2, 1 1( ) ( )Q R Q Rρ ρ− −≤ we conclude that for solving 
LCP, the preconditioned SSOR iterative methods is better 

than of the SSOR method from point of view of the 
convergence speed and the proof is completed. 

4. Numerical Results 
In this section, we give examples to illustrate the results 

obtained in previous Sections. These examples computed 
with MATLAB7 on a personal computer Pentium 4. 
Example 4.1. Consider LCP (M, q) with following system 

N NM R ×∈  and Nq R∈  

 3

,

( 1,1, , ( 1) ) ,

N N

n T N

M G I I I F I I I F R

q R

×= ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ ∈

= − − ∈

 

where N NI R ×∈  and ⊗ denotes the Kronecker product. 
Also G and F are n n× tridiagonal 

Matrices given by; 

 

3

2 2 2 2[ ( ),1, ( )],
12 12

2 2[ ( ),0, ( )],
12 12

& 1/ ; .

h hG tridiagonal

h hF tridiagonal

h n N n
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Evidently, M is an H-matrix with positive diagonal 
elements. Then LCP (M, q) has a unique solution. Then, 
we solved the n3 × n3 H-matrix yielded by the iterative 
methods, and Preconditioned forms. 

In this experiment, we choose Usui et al.’s model and 
our models (P1,P2) as preconditioners. The initial 
approximation of z is 0 (1,1, ,1)T Nz R= ∈  and as a 
stopping criterion we choose; 
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In Table 1, with several values we report the CPU time 
(CPU) and number of iterations (Iter) for the 
corresponding SSOR and preconditioned SSOR methods 
(when N=1000). Here, the preconditioned SSOR method 
with Usui et al.’s preconditioner is denoted by 
PREC(USUI), while PREC(P1), PREC(P2) corresponds to 
our preconditioners (Pi); i=1,2. 

Table 1. The results of example 4.2 for SSOR 
Method SSOR PREC(USUI) PREC(P1) PREC(P2) 

w Iter CPU Iter CPU Iter CPU Iter CPU 

0.02 615 110.788 485 82.967 421 62.750 384 53.101 

0.1 142 24.391 112 17.904 97 14.429 88 12.210 

0.2 74 12.523 58 9.352 50 6.990 46 6.327 

0.4 37 6.112 29 4.983 25 4.023 23 2.945 

0.7 20 3.390 16 2.711 14 1.953 12 1.530 

0.9 15 2.607 11 1.703 10 1.490 9 1.164 

1.2 13 1.863 10 1.729 9 1.242 8 0.996 

From the table, we can see that the preconditioned 
iterative methods are superior to the basic iterative 

methods and our preconditioners are better than Usui et 
al.’s preconditioner. 
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Example 4.2. Consider LCP (M, q) Where 
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It is easy to see that, M is an H-matrix with positive 
diagonal elements. The spectral radius of the 
corresponding iterative matrix with different parameters w 
and above preconditioners(P0,P1,P2) for N=500 in semi-
logarithmic scale is given in the Figure 1. From the 
following figures, we can see that the preconditioned 
SSOR methods are superior to the classic SSOR. 

 

Figure 1. Spectral radius of iterative methods of example4.2 with some values of ‘ w’, n=500 

Furthermore, In Table 2, we report the CPU time of 
iterative methods for different values of n(when w=1). 

Table 2. CPU time 
n SSOR Usui et al.’s model (I+K1) (I+K2) 

1000 0.8540 0.7906 0.5938 0.4173 

1500 2.7935 2.5753 1.6991 1.4325 

2000 5.9475 5.7435 4.4345 3.1512 

5. Conclusion 
In this paper, we have proposed the preconditioned 

SSOR method for linear complementarity problem and 
analyzed the convergence for these methods under certain 
conditions. We have also studied how the iterative method 
for LCP is affected if the system is preconditioned by our 
models. 
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