
Turkish Journal of Analysis and Number Theory, 2013, Vol. 1, No. 1, 63-68 
Available online at http://pubs.sciepub.com/tjant/1/1/13 
© Science and Education Publishing 
DOI:10.12691/tjant-1-1-13 

Using Differentiation Term by Term Theorem to Study 
the Partial Differential Problems 

Chii-Huei Yu* 

Department of Management and Information, Nan Jeon University of Science and Technology, Tainan City, Taiwan 
*Corresponding author: chiihuei@nju.edu.tw 

Abstract  This article takes the mathematical software Maple as the auxiliary tool to study the partial differential 
problem of two types of multivariable functions. We can obtain the infinite series forms of any order partial 
derivatives of these two types of functions by using differentiation term by term theorem, and hence greatly reduce 
the difficulty of calculating their higher order partial derivative values. On the other hand, we propose two examples 
to do calculation practically. The research methods adopted in this study involved finding solutions through manual 
calculations and verifying our answers by using Maple. 

Keywords: partial derivatives, infinite series forms, differentiation term by term theorem, Maple 

Cite This Article: Chii-Huei Yu, “Using Differentiation Term by Term Theorem to Study the Partial 
Differential Problems.” Turkish Journal of Analysis and Number Theory 1, no. 1 (2013): 63-68. doi: 
10.12691/tjant-1-1-13. 

1. Introduction 
The computer algebra system (CAS) has been widely 

employed in mathematical and scientific studies. The 
rapid computations and the visually appealing graphical 
interface of the program render creative research possible. 
Maple possesses significance among mathematical 
calculation systems and can be considered a leading tool 
in the CAS field. The superiority of Maple lies in its 
simple instructions and ease of use, which enable 
beginners to learn the operating techniques in a short 
period. In addition, through the numerical and symbolic 
computations performed by Maple, the logic of thinking 
can be converted into a series of instructions. The 
computation results of Maple can be used to modify our 
previous thinking directions, thereby forming direct and 
constructive feedback that can aid in improving 
understanding of problems and cultivating research 
interests. 

In calculus and engineering mathematics curricula, the 
evaluation and numerical calculation of the partial 
derivatives of multivariable functions are important. For 
example, Laplace equation, wave equation, as well as 
other important physical equations are involved the partial 
derivatives. On the other hand, evaluating the m-th order 
partial derivative value of a multivariable function at some 
point, in general, needs to go through two procedures: 
firstly determining the m-th order partial derivative of this 
function, and then taking the point into the m-th order 
partial derivative. These two procedures will make us face 
with increasingly complex calculations when calculating 
higher order partial derivative values ( i.e. m is large), and 
hence to obtain the answers by manual calculations is not 
easy. In this paper, we study the partial differential 

problem of the following two types of n-variables 
functions 
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where α > 0, n is a positive integer, and λp are real 
numbers for all p = 1, …, n. We can obtain the infinite 
series forms of any order partial derivatives of these two 
types of multivariable functions using differentiation term 
by term theorem; these are the major results of this study 
(i.e., Theorem 1 and Theorem 2), and hence greatly reduce 
the difficulty of calculating their higher order partial 
derivative values. As for the study of related partial 
differential problems can refer to [1-13]. On the other 
hand, we provide two examples to do calculation 
practically. The research methods adopted in this study 
involved finding solutions through manual calculations 
and verifying these solutions by using Maple. This type of 
research method not only allows the discovery of 
calculation errors, but also helps modify the original 
directions of thinking from manual and Maple calculations. 
Therefore, Maple provides insights and guidance 
regarding problem-solving methods. 

2. Main Results 
Firstly, we introduce some notations and formulas used 

in this study. 
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2.1. Notations 
2.1.1. Suppose n is a positive integer, are λp real numbers 
for all p = 1, …, n. Define 
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1

n
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λ λ λ λ

=
∏ = × × × , 

and 

 ( )! 1 1n n n= × − × × . 

2.1.2. Suppose r is any real number, m is any positive 
integer. Define 

 ( ) ( ) ( )1 1mr r r r m= − − + , and ( )0 1r = . 

2.1.3. Suppose n is a positive integer, jp are non-negative 
integers for all p = 1, …, n. For the n-variables function f 
(x1, x2, …, xn), its jp-times partial derivative with respect to 
xp for all p = 1, …, n, forms a j1 + j2 + … + jn-th order partial 
derivative, and denoted by 
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2.2. Formulas 
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Next, we introduce an important theorem used in this 
paper. 

2.3. Differentiation Term by Term Theorem 
([14]) 

For all non-negative integers k, if the functions gk (a, b) 
→ R satisfy the following three conditions： (i) there 

exists a point 0 ( , )x a b∈  such that 0
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Before deriving the first major result in this study, we 
need a lemma. 

2.4. Lemma 1 
Suppose y is a real number with y > -1. Then the 

logarithm function 
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Proof If -1 < y < 1, because the derivative of ln (1 + y), 
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By Formula 2.2.1, we obtain 
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for all -1 < y ≤ 1. 
If y ≥ 1, then 

 

1

1

ln(1 )

1ln + ln 1

( 1)ln
k

k

k

y

y
y

y y
k

−∞
−

=

+

 
= + 

 

−
= + ∑

 

for all y ≥ 1. 
Next, we determine the infinite series forms of any 

order partial derivatives of the n-variables function (1). 

2.5. Theorem 1 
Suppose n is a positive integer, α > 0, and λp are real 

numbers, jp are non-negative integers for all p = 1, …, n. If 
the n-variables function 
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Case(1) If 
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− < <∑ , then the j1 + j2 + … + jn-th 

order partial derivative of f (x1, …, xn), 
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Case(2) If 
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Proof Case(1) If 
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(By Eq. (3)) 
By differentiation term by term theorem, differentiating 

jp-times with respect to xp for all p = 1, …, n on both sides 
of Eq. (8), we obtain 

 

1 2
1 22 12 1
1( 1) ( )

11

1 1 1

( , , , )
j j jn

nj j jnn
k ak n n

ak jp pnn j ppp
p p p

p k p

f x x x
x x x

j

x
k

λ λ

+ + +

−−

−
∞ ==

= = =

∂

∂ ∂ ∂

∑ 
 = ∏ ⋅
 
 

∑
∑ ∑







 

Case(2) If 
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>∑ , by Eq. (4),  
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Also, by differentiation term by term theorem, 
differentiating jp-times with respect to xp for all p = 1, …, n 
on both sides of Eq. (9), we obtain 
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Before deriving the second major result in this paper, 
we also need a lemma. 

2.6. Lemma 2 
Suppose y is a real number. Then the inverse tangent 
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Proof The derivative of tan-1 y, 
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By Formula 2.2.2, we have 
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for all y ≤ -1. 
Finally, we find the infinite series forms of any order 

partial derivatives of the n-variables function (2). 

2.7. Theorem 2 
If the assumptions are the same as Theorem 1. Assume 

the n-variables function 
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Case(2) If 
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Proof 

Case(1) If 
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Using differentiation term by term theorem, 
differentiating jp-times with respect to xp for all p = 1, …, n 
on both sides of Eq. (17), we have 
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Case(2) If 
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differentiation term by term theorem, we obtain 
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3. Examples 

In the following, for the partial differential problem of 
the two types of multivariable functions in this study, we 
provide two examples and use Theorems 1, 2 to determine 
the infinite series forms of any order partial derivatives 
and some higher order partial derivative values of these 
functions. In addition, we employ Maple to calculate the 
approximations of these higher order partial derivative 
values and their solutions for verifying our answers. 

3.1. Example 1 
Suppose the two-variables function 

 ( )71 2 1 2( , ) ln 1 3 5f x x x x = + −  
 (18) 

satisfies 1 23 5 1x x− > −  and 1 23 5 0,1x x− ≠ .  
Case (1) If 1 21 3 5 1x x− < − < , then by Eq. (6), we obtain 
any j1 + j2-th order partial derivative of f (x1, x2), 
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Next, we use Maple to verify the correctness of Eq. (20). 
>f:=(x1,x2)->ln(1+(3*x1-5*x2)^7); 
>evalf(D[1$7,2$5](f)(1/3,2/15),18); 

 148.27389308748771063 10⋅  
>evalf(3^7*(-5)^5*sum((-1)^(k-1)*product(7*k-j,j=0.. 

11)/k*(1/3)^(7*k-12),k=1..infinity),18); 

 148.27389308748771063 10⋅  

Case (2) If 1 23 5 1x x− > , using Eq. (7), we obtain  
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Hence, we obtain the 14-th order partial derivative 
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  （22） 
>evalf(D[1$6,2$8](f)(2,4/5),18); 

 171.79917344558268008 10− ⋅  
>evalf(-7*13!*3^6*(-5)^8/2^14+3^6*(-5)^8*sum((-1)^(k-
1)*product(-7*k-j,j=0..13)/k*2^(-7*k-14),k=1..infinity), 
18);  

 171.79917344558268008 10− ⋅  

3.2. Example 2 
Assume the three-variables function 

 ( )4 51
1 2 3 1 2 3( , , ) tan 4 9 3g x x x x x x−  = + −  

 （23） 

satisfies 1 2 34 9 3 0,1, 1x x x+ − ≠ − . 
Case (1) If 1 2 34 9 3 1x x x+ − < , using Eq. (15), we obtain 
any j1 + j2 + j3-th order partial derivative of g (x1, x2, x3), 
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Thus, we can evaluate the 15-th order partial derivative 
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We also use Maple to verify the correctness of Eq. (25). 
>g:=(x1,x2,x3)->arctan((4*x1+9*x2-3*x3)^(4/5)); 
>evalf(D[1$4,2$6,3$5](g)(1/4,2/9,5/6),18); 

 241.12713048346191676 10− ⋅  
>evalf(4^4*9^6*(-3)^5*sum((-1)^(k-1)*product((8*k-
4)/5-j,j=0..14)/(2*k-1)*(1/2)^((8*k-79)/5),k=1.. 
infinity),18); 

 241.12713048346191675 10− ⋅  

Case (2) If 1 2 34 9 3 1x x x+ − > , by Eq. (16), we have 
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Thus, we obtain the 17-th order partial derivative value 
of g (x1, x2, x3) at (3, 1, 6), 
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>evalf(D[1$7,2$4,3$6](g)(3,1,6),18); 

 143.69898643086488 10− ⋅  
>evalf(-4^7*9^4*(-3)^6*sum((-1)^(k-1)*product((-8*k+4 
)/5-j,j=0..16)/(2*k-1)*3^((-8*k-81)/5),k=1..infinity),18); 

 143.69898643086484 10− ⋅  
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4. Conclusion 
In this paper, we provide a new technique to evaluate 

any order partial derivatives of two types of multivariable 
functions. We hope this technique can be applied to solve 
another partial differential problems. On the other hand, 
the differentiation term by term theorem plays a 
significant role in the theoretical inferences of this study. 
In fact, the applications of this theorem are extensive, and 
can be used to easily solve many difficult problems; we 
endeavor to conduct further studies on related applications. 
In addition, Maple also plays a vital assistive role in 
problem-solving. In the future, we will extend the research 
topic to other calculus and engineering mathematics 
problems and solve these problems by using Maple. These 
results will be used as teaching materials for Maple on 
education and research to enhance the connotations of 
calculus and engineering mathematics. 
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