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1. Introduction, Definitions and 
Preliminaries 

We begin by recalling the familiar general Hurwitz-
Lerch Zeta function ( ), ,s aΦ z , which is defined by (see, 
for example, [2]; see also [18,19,20,21,22]). 
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( 0\ ;a s−∈ ∈   , when 1<z ; ( ) 1s >  when 1=z ). 
Special cases of the Hurwitz-Lerch Zeta function 
( ), ,s aΦ z  include (for example) the Riemann Zeta 

function ( )sζ  and the Hurwitz (or generalized) Zeta 

function ( ),s aζ defined by (see, for details, [2, Chapter I] 
and [21, Chapter 2]) 
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respectively. Just as its aforementioned special cases 
( )sζ  and ( ),s aζ , the Hurwitz-Lerch Zeta function 

( ), ,s aΦ z  defined by (1.4) can be continued 
meromorphically to the whole complex s-plane, except for 
a simple pole at s = 1 with its residue 1. It is also known 
that [[2], Equation 1.11 (3)] 
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( ( ) ( )0; 0a s> >  , when ( )1 1≤ ≠z z ; ( ) 1s >  
when 1=z ). 

Recently, the following modified (and slightly 
generalized) version of the integral in (1.4) was introduced 
and studied by Raina and Chhajed [[16], Equation (1.6)]: 
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( ) ( ){ } ( )( )min , 0; 0; 0;a s b λ µ> ≥ ≥ ∈    

where we have assumed further that 

 ( ) ( )0 when 0 and 1 1s b> = ≤ ≠z z  

or 

 ( ) 0 when 0 and 1,s bµ− > = z =  

provided, of course, that the integral in (1.5) exists. As a 
matter of fact, the aforementioned investigation by Raina 
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and Chhajed [16] was motivated by the following special 
case of the function ( ), , ;s a bλ

µΘ z  defined by (1.5): 
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( ( ) ( )0; 0a s> >  , when ( )1 1≤ ≠z z ; 

( ) 0s µ− >  when 1z = ). 

where the function ( )* , ,s aµΦ z  defined by 
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was studied by Goyal and Laddha [[4], Equation (1.5)]. 
Here, and in what follows, ( ) ( ),νλ λ ν ∈  denotes the 
Pochhammer symbol (or the shifted factorial) which is 
defined, in terms of the familiar Gamma function, by 

 
( ) ( )

( )
{ }( )

( ) ( ) ( )

:

1 0; \ 0

1 1 ; ,

v

n n

λ ν
λ

λ

ν λ

λ λ λ ν λ

Γ +
=

Γ

 = ∈= 
+ + + = ∈ ∈



  

 

where it is understood conventionally that ( )00 : 1=  and 

assumed tacitly that the G-quotient exists,  being the set 
of positive integers. 
It may be of interest to observe in passing that, in terms of 
the Riemann-Liouville fractional derivative operator 

µ
zD  defined by (see, for example, [3,7,17]) 
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the series definitions in (1.1) and (1.7) readily yield 
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which (as already remarked by Lin and Srivastava [8]) 
exhibits the interesting (and useful) fact that the function 

( )* , ,s aµΦ z  is essentially a Riemann-Liouville fractional 
derivative of the classical Hurwitz-Lerch function 
( ), ,s aΦ z . 

One other special case of the function ( ), , ;s a bλ
µΘ z  

defined by (1.5) occurs when we set 1λ µ= =  and 1=z  
in the definition (1.5). We thus obtain 
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where ( ),b s aζ  is the extended Hurwitz zeta function 
defined in [1]. In fact, just as it is already pointed out in 
[10], the series representation (see [[16], Equation (2.1)]) 
given for the function ( ), , ;s a bλ

µΘ z  in (1.5) is incorrect. 
Obvious further specializations in (1.6) and (1.9) would 
immediately relate these functions with the Riemann zeta 
function ( )sζ  and the Hurwitz (or generalized) zeta 

function ( ),s aζ  defined by (1.2) and (1.3), respectively. 
By using the series expansion of the binomial 

( )1 te
µ−−− z  occurring in the integrand of (1.5) and 

evaluating the resulting integral by means of the corrected 
version of a known integral formula [[13], Equation (1.53)] 
in terms of Fox’s H-function defined by (1.12) below, the 
following series and Mellin-Barnes type contour integral 
representations of the function ( ), , ;s a bλ

µΘ z  defined by 
(1.5) were obtained in [10]: 
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and 

 

( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( )
1

2,0
0,2

i
-i

1
, , ;

2 i

1
,1 , 0, 0

( )

,b

ss a b
s

H a s d

a
λ
µ

λ

π λ µ

λ
λ

µ

−

∞

∞
Θ =

Γ Γ

⋅ + − >

Γ Γ −

−

 
  

     

∫z

z s

s s

s

s s

 (1.11) 

it being assumed that each member of the assertions (1.10) 
and (1.11) exists. 
Remark 1. The H-functions involved on the right-hand 
sides of (1.10) and (1.11) are particular cases of the 
celebrated Fox’s H-function which is defined as follows. 
Definition 1. The well-known Fox’s H-function is defined 
here by (see, for details, [[13], Defintion 1.1]; see also 
[[6,11,23,24]) 
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where  
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Here  

 { } ( )\ 0 with arg π∈ <z z  

an empty product is interpreted as 1, m, n, p and q are 
integers such that 1 m q≤ ≤  and 0 n p≤ ≤ , 
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and L  is a suitable Mellin-Barnes type contour separating 
the poles of the gamma functions 
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In our present investigation, we consider certain 
statistical applications of the generalized Hurwitz-Lerch 
zeta function ( ), , ;s a bλ

µΘ z  defined by (1.5). We first 
derive a partial differential equation satisfied by the 
function in (1.11). We then obtain another series 
representation and related results for this generalized 
Hurwitz-Lerch zeta function. The results derived here are 
also applied in our investigations concerning the 
generalized Hurwitz-Lerch zeta measure and its related 
statistical concepts. 

2. Differential Equation of the 
Generalized Hurwitz-Lerch Zeta 
Function ( ), , ;s a bλ

µΘ z  

In this section, we will show that the generalized 
Hurwitz-Lerch zeta function ( ), , ,a bλ

µ αΘ z  satisfies a 
partial differential equation when the parameter λ  is 
given by 
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We first prove the following lemma which will be used 
in the proof of our main theorem. 
Lemma (Derivative Property). The following derivative 
formulas hold true: 
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Proof. The proofs of the derivative formulas (2.1) and (2.2) 
are direct. For example, by applying the series 
representation (1.10), one easily finds that 
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which is precisely the first result (2.1) asserted by the 
Lemma. The second assertion (2.2) follows immediately 
from (2.1) upon setting 

 ( ) ( )
1

1 .mm and b b m
m

λ = ∈ → ∈    

Our first main result is contained in the following 
theorem. 
Theorem 1. The generalized Hurwitz-Lerch zeta function 
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differential equation: 
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where the differential operators bD  and θz  are given by 
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Proof. We first rewrite the H-function occurring in the 
Mellin-Barnes type contour integral representation (1.11) 
as follows: 
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where L  is a suitable Mellin-Barnes type contour integral 
in the complex w-plane. By setting 
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in the above equation (2.5) and then applying the well-
known (Gauss-Legendre) multiplication formula: 
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we find that 
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We know that the function W  defined by 
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satisfies the following differential equation of order 
max( , )p q  (see, for example, [[2], Equation 5.4(1)]): 
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Hence, clearly, the function given by (2.7) satisfies the 
following differential equation: 
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where, as already stated in Theorem 1, 
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Applying the differential operator bD  to the function 
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where the first integral 1I  is actually the generalized 
Hurwitz-Lerch zeta function given by 
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The evaluation of the second integral 2I  given by 
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the Residue Theorem implies that 
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Applying (2.2) in (2.15), we get 
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Now, upon substituting from (2.12) and (2.16) into 
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which, after a little simplification, becomes 
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(2.18) 

Finally, by setting 

 ( ) andmb b m→ ∈ → − z z  

in the last equation (2.18), we arrive at the desired result 
(2.3) asserted by Theorem 1.     

It is interesting to consider a special case of Theorem 1 
when m = 1. Thus, if we write 

 ( ) ( )1 , , ; : , , ; ,s a b s a bµ µΘ = Θz z  (2.19) 

then we have the following corollary. 
Corollary 1. The generalized Hurwitz-Lerch zeta function 

( ), , ;s a bµΘ z  satisfies the following partial differential 
equation: 

( ) ( )1 1 , , ; 0b b s b a b s a b
b b b µ

 ∂ ∂ ∂ ∂  − − − + Θ =   ∂ ∂ ∂ ∂   
z z

z
 (2.20) 

Furthermore; the function ( )1, , ;s a bµΘ , considered as an 
analytic function of the variable b satisfies the following 
relation: 

 
( )

( ) ( )1

1 1, , ;

1 1, , 1;

b b s b s a b
b b b

a b s a b

µ

µµ +

∂ ∂ ∂  − − Θ  ∂ ∂ ∂  
= + Θ +

 (2.21) 

3 Further Series Representations and 
Related Results 

In this section, we first give a new series representation 
of the generalized Hurwitz-Lerch zeta function 

( ), , ;s a bλ
µΘ z  involving the familiar Laguerre 

polynomials of order (index) α and degree n  in x , which 
are generated by 

( ) ( ) ( )1

0
(1 ) exp 1; .

1
n

n
n

xtt L x t t
t

αα α
∞

− −

=

 − − = < ∈ − 
∑ 

 (3.1) 

Indeed, upon setting 

 1 andt t x bλ→ − =  

in (3.1), we get 

 ( ) ( ) ( )( )1

0
exp 1 .

nb
n

n

b t e L b t
t

λ α α λ
λ

∞
+ −

=

 
− = − 
 

∑  (3.2) 

We now make use of (3.2) and the series expansions of 
the binomials 

 ( ) ( )1 1
n tt and e

µλ −−− − z  
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occurring in the integrand of (1.5). By evaluating the 
resulting Eulerian integral, we thus arrive at the series 
representations given by Theorem 2 below. 

Theorem 2. Each of the following series 
representations holds true for the generalized Hurwitz-
Lerch zeta function ( ), , ;s a bλ

µΘ z : 

 

( )
( )

( )

( ) ( ) ( )( )
( ) ( )

( ) ( )( )

, 0 0

1

1
, , ; 1

1

0;

b n
j

n j

n s j
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s a b

js

s j L b
a

a s

λ
µ

α
λ α

µ

λ α

λα λ

− ∞

= =

+ + +

+ −
Θ = −

Γ

Γ + + +
+

> + > −
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z

z

 

l

l

l

l

l
 (3.3) 

and 

( ) ( ) ( ) ( )

( ) ( ) ( )( )
( ) ( )( )

0 0

*

, , ; 1 ( 1)

, 1 ,

0; ,

b n
j

n j

n

nes a b s j
js

L b s j a

a s

λ
µ

α
µ

λ α

λ α

λα λ

− ∞

= =

 
Θ = − Γ + + + Γ  

Φ + + +

> + > −

∑ ∑



z

z

 

(3.4) 

provided that each member of the assertions (3.3) and (3.4) 
exists, ( )* , ,s aµΦ z  being given by (1.7). 

Proof. As already outlined above, our demonstration of 
the first assertion (3.3) of Theorem 2 is based essentially 
upon the representation (3.2) and the following well-
known Eulerian integral: 

 ( ) ( ) ( ){ }( )1
0

min , 0 .tt e dtρ σ
ρ
ρ

ρ σ
σ

∞ − − Γ
= >∫   (3.5) 

The second assertion (3.4) follows from the first 
assertion (3.3) when we interpret the l -series in (3.4) by 
means of the definition (1.7). 

In our derivation of each of the summation formulas 
(3.3) and (3.4), it is assumed that the required inversions 
of the order of summation and integration are justified by 
absolute and uniform convergence of the series and 
integrals involved. The final results (3.3) and (3.4) would 
thus hold true whenever each member of the assertions 
(3.3) and (3.4) of Theorem 2 exists.     
Remark 2. For the extended Hurwitz zeta function 

( ),b s aζ  defined by (1.9), it is easily deduced from the 
assertion (3.4) of Theorem 2 when 1λ µ= =  and 1=z  
that  
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( ) ( ) ( )
( ) ( )( )
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, 1 1
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j

b
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a s
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ζ α

α

− ∞

= =

 
= − Γ + + + Γ  

+ + +

> + > −

∑ ∑



 

(3.6) 

provided that each member of (3.6) exists, ( ),b s aζ  being 
the Hurwitz (or generalized) zeta function given by (1.3). 
The obvious further special case of (3.6) when 1a =  and 

0α =  would yield the corrected version of a known 
result (see [[1], Equation (7.78)]). 

We now give a pair of summation formulas involving the 
generalized Hurwitz-Lerch zeta function ( ), , ; .s a bλ

µΘ z  

Theorem 3. Each of the following summation formulas 
holds true for the generalized Hurwitz-Lerch zeta function 

( ), , ;s a bλ
µΘ z : 
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∞
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∑

z z

z z
 (3.7) 

and 
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∑

z z

z z
 (3.8) 

provided that each member of the assertions (3.7) and (3.8) 
exists. 
Proof. Making use of the integral representation in (1.5) 
for the function ( ), , ;s a bλ

µΘ z , we get 

( ) ( )

( )
( ) ( )
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2 20

1 11
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t
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t
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Θ − + Θ
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z z

z
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 (3.9) 

Since 

 ( ) ( ) ( )
( )

2 22

0
1 1 2

2 !
,t t n ntn

n
e e e

n

µ µ µ∞
− − −

=

−
− + + = ∑z z z  (3.10) 

by substituting from (3.10) into (3.9) and interchanging 
the order of summation and integration, we find that 
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( ) ( )

( )
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2 1 22
0

0

1 2 22

0

, , ; , , ;

2 exp 2 (1 )
2 !

2 2exp (1 )
2 ! 2

2 , , ;2 ,
2 ! 2

n s tn

n
s

n s tn

n

s nn

n

s a b s a b

bt a n t e dt
s n t

a bn e d
s n

as n b
n

λ λ
µ µ

µ
λ

µ
λ

λ λ
µ

µ
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=
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=
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−  = Θ + 
 

∑ ∫

∑ ∫

∑

z z

z z

z z

z z

 (3.11) 
which obviously proves the assertion (3.7) of Theorem 3. 

The assertion (3.8) of Theorem 3 can be proven in a 
manner analogous to that detailed above.    
Remark 3. If we set 1µ =  in (3.7) and (3.8), the series 
occurring on their right-hand sides would terminate. Upon 
setting → −z z  and 2a a→ , we thus obtain 

 
( ) ( )

( )
1

1 1

2
1

2 , , 2 ; , , 2 ;

, , ;2

s s a b s a b

s a b

λ λ

λ λ

−  Θ +Θ − 

= Θ

z z

z
 (3.12) 

and 

 
( ) ( )1

1 1

2
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2 , , 2 ; , , 2 ;

1, , ;2 .
2

s s a b s a b

s a b

λ λ

λ λ

−  Θ −Θ − 
 = Θ + 
 

z z

z z
 (3.13) 
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In particular, if we set 1=z  in these last two 
summation formulas (3.12) and (3.13), we get 

 
( )

( ) ( )
1
1

1 1

1, , 2 ;

2 1, , ;2 1, , 2 ;s

s a b

s a b s a b

λ

λ λ λ−

Θ −

= Θ −Θ
 (3.14) 

and 
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1
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1 1

1, , 2 ;

11, , 2 ; 2 1, , ;2 ,
2

s

s a b

s a b s a b

λ

λ λ λ−

Θ −

 = Θ − Θ + 
 

 (3.15) 

respectively. In its further special case when 1λ = , the 
summation formula (3.14)can be shown to correspond to 
known results (see, for example, [[1], Theorem 7.9]; see 
also [1]). 

4. A Generalization of the Hurwitz 
Measure 

Suppose that ( )A nχ  denote the characteristic function 
of the subset A  of the set   of positive integers (or, in 
the language of probability theory, the indicator function 
of the event A ⊆  ). Then it is well known that the 
following arithmetic density of number theory: 

 ( ) ( )
1

1lim
k

A
k n

dens A n
k

χ
→∞ =

= ∑  (4.1) 

does not define a measure on the set   of positive 
integers. In order to remedy this deficiency, Golomb [5] 
defined a probability on the sample space   as follows: 

 ( ) ( )
( )

1

1 ,A
s s

n

n
Q A

s n

χ
ζ

∞

=
= ∑  (4.2) 

where ( )sζ  denotes the Riemann zeta function defined 
by (1.2) and the characteristic (or indicator) function 

( )Aχ ω  is given by 

 ( ) ( )
( )

1
.

0A
A

n
A

ω
χ

ω
 ∈=  ∈

 (4.3) 

Furthermore, Golomb [5] showed that, if the subset A of 
  has an arithmetic density, then 

 ( ) ( )
1

lim ,s
s

Q A dens A
→

=  (4.4) 

thereby allowing number-theoretic facts regarding 
densities of sets of positive integers to be proven by 
probabilistic means and then showing that such properties 
are preserved in the limit. 

In an interesting sequel to Golomb’s investigation [5], 
Lippert [9] gave an analogous definition of the 
probabilities sP  when the set   is replaced by the set of 
all real numbers greater than 1. Thus, for a Borel set 

( )1,A ⊆ ∞ , Lippert’s Hurwitz measure of the set A  is 
defined by (see, for details, [[9], Definition 1] 

 ( ) ( ) ( ) ( )
1

1,s A
sP A a s x dx
s

χ ζ
ζ

∞
= +∫  (4.5) 

or, equivalently, by 

 ( ) ( )( ) ( )
1,

, ,s Ax
P A x d x sχ µ

∈ ∞
= ∫   (4.6) 

where, in terms of the Hurwitz (or generalized) zeta 
function ( ),s aζ  defined by (1.3), 
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+
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 (4.7) 

In this section, we propose to introduce a new 
continuous analogue of Lippert’s Hurwitz measure in (4.5) 
by using a special case of the generalized Hurwitz-Lerch 
zeta function ( ), , ;s a bλ

µΘ z  defined by (1.5). 

Definition 2. For a Borel set ( )1,A ⊆ ∞ , the generalized 
Hurwitz measure of the set A  is defined by 

 ( )
( )

( ) ( )11
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1, 1, ;
1, ,1;

s A
sP A a s a b da
s b

λ
λ χ

∞
= Θ +
Θ ∫ (4.8) 

or, equivalently, by 
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where 
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and 
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 (4.11) 

since it is easily seen from the definition (1.5) that 

 ( ) ( ), , ; , 1, ; .d s a b s s a b
da

λ λ
µ µΘ = − Θ +z z  (4.12) 

In view of the following relationship: 
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the generalized Hurwitz measure ( )sP A  in (4.8) or (4.9) 

also defines a probability measure on ( )1,∞ . 
Remark 4. For 1λ =  and by letting 0,b →  we have 

 ( ) ( ) ( )2,0
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lim ,1 , 0,1 ,
b

H ab s s
→

  = Γ
 

 (4.13) 

which implies that 
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Thus, clearly, ( ),x sµ  can be continuously approximated 

by ( ), ; ,1a s bµ . 

Proposition. The measure ( ), ; ,a s bµ λ  satisfies the 
following difference equation: 

 

( ) ( )

( )

( ) ( )
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1
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 (4.15) 

Proof. From the series representation (1.10) of 
( ), , 1;s a bλ

µΘ +z  (with 1µ =  and 1=z ), we have 
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 (4.16) 

The difference equation (4.15) now follows on combining 
(4.10) and (4.16).       
Remark 5. For 1λ =  and by letting 0b → , the difference 
equation (4.15) reduces to the following form: 

 ( ) ( )
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11, , ,sa s a s
a s

µ µ
ζ

+ − =   (4.17) 

where ( ),x sµ  is given by (4.7). 
For open events, the generalized Hurwitz measure 
( )sP A  in (4.8) or (4.9) can be evaluated by using (4.9) 

and the above Proposition. The results are being stated as 
Theorem 4 below. 
Theorem 4. If ( ), 1 ,A a a= +  then 
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More generally; the generalized Hurwitz measure of an 
open set ( )1,A ⊆ ∞  is given by 
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where 
 ( ) [ )( ), , 1, ; .i i i i

i I
A a b a b i I

∈
= ∈ ∞ ∈  

The following theorem shows that the generalized 
Hurwitz measure ( )sP A  in (4.8) or (4.9) basically inherits 
all properties of Lippert’s Hurwitz measure given by (4.5) 
or (4.6). 
Theorem 5. Corresponding to the generalized Hurwitz 
measure given by (4.19), let 
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A i iε ε ε
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Proof. From (4.19), we have 
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By expanding the function ( )1 1, , ,s i bλ εΘ +  by means of 
Taylor’s series and using the derivative formula (4.12), we get 

( )
( )

( )

( ) ( )

1
1

2
1

1
1

1, 1, ;
1

.
1, ,1;

1 1, 2, ;
2

i
s

i

s s i b

P A
s b

s s s i b

λ

λ
λ

ε

ε

∞

=

∞

=

Θ +

=
Θ

− + Θ + +

 
 
 
 
 
 
 

∑

∑ 

(4.23) 

We now consider each sum in (4.23) separately. We 
thus find that 
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 (4.24) 

Since the number of non-negative integer solutions of the 
Diophantine equation +j n N=  is 

 
1

1,
1

N
N

+ 
= + 

 
 

the double summation in (4.24) can be replaced by a 
single summation, that is, 
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We thus obtain 
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We note that, when 1s → , the series for ( )1 1, ,1;s bλΘ  is 

divergent and the series for ( )1 1, 1,1;s bλΘ +  is convergent. 
Therefore, all other terms vanish in (4.26) except the 
leading term. Consequently, we get 
 ( )

1
lim ,s
s

P A ε
→

=  (4.27) 

which completes the proof of Theorem 5.    
As in the theory of probability, we introduce the 

following definition. 
Definition 3. A random variable ξ  is said to be 
generalized Hurwitz distributed if its probability density 
function (p.d.f.) is given by 
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Theorem 6. Let ξ  be a continuous random variable ξ  with 
its p.d.f defined by (4.28). Then the moment generating 
function ( )M z  of the random variable ξ  is given by 
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with the moment n
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   of order n given by 
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Proof. The assertion in (4.29) follows easily by using the 
exponential series for e ξz . If we use integration by parts, 
we find from the definition that 
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where we have also used the derivative property (4.12) 
and the following limit formula: 
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Consequently, we have the following reduction formula 

for n
s ξ 
  : 
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 (4.33) 
By iterating the recurrence (4.33), we arrive at the 

desired result (4.30) asserted by Theorem 6.    
Remark 6. The assertion (4.30) of Theorem 6 provides a 
generalization of a known result [[9], Proposition 3]. 
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