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1. Preliminaries 
The works of generalized Bernoulli, Euler and 

Genocchi numbers and polynomials and their 
combinatorial relations have received much attention [1,8-
32,36,37,38]. Generalized Bernoulli polynomials, 
generalized Euler polynomials and generalized Genocchi 
numbers and polynomials are the signs of very strong 
relationship between elementary number theory, complex 
analytic number theory, Homotopy theory (stable 
Homotopy groups of spheres), differential topol- ogy 
(differential structures on spheres), theory of modular 
forms (Eisenstein series), p-adic analytic numbers theory 
(p-adic L-functions), quantum physics(quantum Groups). 

p-adic numbers also were invented by German 
Mathematician Kurt Hensel around the end of the 
nineteenth century. In spite of their being already one 
hundred years old, these numbers are still today enveloped 
in an aura of mystery within the scientific community. The 
p-adic integral was used in mathematical physics, for 
instance, the functional equation of the q-zeta function, q-
stirling numbers and q- Mahler theory of integration with 
respect to the ring P together with Iwasawa's P-adic L 
functions. 

Also the p-adic interpolation functions of the Bernoulli 
and Euler polynomials have been treated by Tsumura [39]. 
Kim [11-34] also studied on p-adic inter- polation 
functions of these numbers and polynomials which are 
studied by many authors (see [3-43]). In the last decade, a 
surprising number of papers appeared proposing new 
generalizations of the Bernoulli, Euler and Genocchi 
polynomials to real and complex variables. 

In [11-34], Kim studied some families of multiple 
Bernoulli, Euler and Genocchi numbers and polynomials. 
By using the fermionic p-adic invariant integral on P, he 
constructed p-adic Bernoulli, p-adic Euler and p-adic 
Genocchi numbers and polynomials of higher order. 

While many of the properties of Genocchi polynomials 
bear a close resemblance to the corresponding properties 
of Bernoulli and Euler polynomials, some properties are 
rather different. Obviously, Genocchi polynomials are 
worthy of an investigation perse. 

In this paper, by using Kim's method in [28], we derive 
several properties for the multiple generalized Genocchi 
numbers attached to χ . 

In the complex plane, Genocchi numbers are defined in 
the complex plane by the generating function: 
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It follows from the description that 0 0G = , 1 1G = , 

2 1G = − , 3 0G = , 4 1G = , 5 0,G =  , and 2 1 0kG + =  for 
1, 2,3,k =  . (see [2,3,4,7,12,13,16]). 

The Genocchi polynomials are also given by the rule: 
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with the usual convention of replacing 
( ) ( ):n

nG x G x=  (see [2,3,4,7,12,13,16]). 
Let w∈ . Then the multiple Genocchi polynomials of 

order w  are given by [13] 
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Taking 0.2x =  in (1.2), then we have ( ) ( )(0) :w w
n nG G=  

are called the multiple Genocchi numbers of order w . 
For f ∈  with f ≡ 1 (mod 2), we assume that χ  is a 

primitive Dirichlet’s charachter with conductor f. It is 
known in [13] that the Genocchi numbers associated with 
χ , ,nG χ , was introduced by the following expression 

 
( ) ( )( )

1

,
0

1
2

1

,
!

tf

ft

n

n
n

e
C t t

e

tG t
n f

ξ ξ

χ
ξ

χ

χ ξ

π

=

∞

=

−
=

+

= <

∑

∑
 (1.3) 

In this paper, we contemplate the definition of the 
generating function of the multiple generalized Genocchi 
numbers attached to χ  in the complex plane. From this 
definition, we introduce an analytic interpolating function 
for the multiple generalized Genocchi numbers attached to 
χ . Finally, we investigate behaviour of analytic 
interpolating function at s = 0. 

2. On an Analytic Function in Connection 
with the Multiple Generalized Genocchi 
Numbers 

In this part, we introduce the multiple generalized 
Genocci numbers attached to χ  defined by 
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 (2.1) 
On account of (1.2) and (2.1), we easily derive the 

following 
( )

( ) ( ) ( )

,

11
1

, , 11

1 ( )

w
n

fn
a a w ww

w nw
a aw

C

a af a a G
ff

χ

χ+ +

=

+ +
= − + +∑ 







 (2.2) 
For s∈ , we have 
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where ( )sΓ  is Euler-Gamma function, which is de.ned 
by the rule 
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Thanks to (2.3), we give the multiple Genocchi-zeta 
function as follows: for s∈  and 0, 1, 2,x ≠ − −  , 
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By (1.2) and (2.3), we see that 
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for n∈ . 
By utilizing from complex integral and (2.1), we obtain 

the following equation: for s∈ . 
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where χ  is the primitive Dirichlet’s character with 
conductor 

 ( )1 mod 2f and f∈ ≡  

Because of (2.5), we give the de.nition Dirichlet’s type 
of multiple Genocchi L-function in complex plane as 
follows: 
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Via the (2.1) and (2.6), we derive the following theorem: 
Theorem 1. For any n∈ , then we have 
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Let s be a complex variable, and let a and b be integer 
with 0 a F< <  and ( )1 mod 2F ≡  

Thus， we can consider the partial zeta function ( )wS  
( )1; , , ws a a F as follows: 
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Theorem 2. The following identity holds: 
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Then Dirichlet’s type of multiple L-function can be 
expressed as the sum: for s∈  
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Substituting s w n= −  into (2.8), we readily derive the 
following: for ,w n∈  
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By (1.2), it is simple to indicate the following 
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Thanks to (2.8), (2.10) and (2.11), we develop the 
following theorem: 
Theorem 3. The following identity 
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is true. 
From (2.9), (2.10) and (2.12), we have the following 

corollary: 
Corollary 1. The following holds true: 
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The values of ( ) ( )wL s χ  at negative integers are 
algebraic, hence may be regarded as lying in an extension 
of  p . We therefore look for a p-adic function which 

agrees with ( ) ( )wL s χ at the negative integers in the next 
section. 

3. Conclusion 

In this final section, we consider p-adic interpolation 
function of the multiple generalized Genocchi L-function, 
which interpolate Dirichlet.s type of multiple Genocchi 
numbers at negative integers. Firstly, Washington 
constructed p-adic l-function which interpolates 
generalized classical Bernoulli numbers. 

Here, we use some the following notations, which will 
be useful in remainder of paper. 

Let ω  denote the Teichmüller character by the 
conductor f pω =  For an arbitrary character χ , we set 

n
nχ χω−= , n∈ , in the sense of product of characters. 
Let 
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Where F  is multiple of p  and f  and kB  is the k -th 
Bernoulli numbers, is analytic on T  (for more 
information, see [41]). 

We assume that χ  is a primitive Dirichlet’s character 
with conductor f ∈  with ( )1 mod 2f ≡ . Then we 
contemplate the multiple Genocchi p-adic L-function, 
( ) ( )w
pL s χ≡ , which interpolates the multiple generalized 

Genocchi numbers attached to χ  at negative integers. 
For f ∈  with ( )1 mod 2f ≡ , let us assume that F  is 

a positive integral multiple of p and f fχ= . We now 
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give the definition of mutiple Genocchi p-adic L-function 
as follows: 
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Due to (3.1), we want to note that ( ) ( )w
pL s w χ+  is an 

analytic function on .s T∈  
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By (3.3), we de.ne the different multiple generalized 

Genocchi numbers attached to χ  as follows: 
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On accounct of (3.2), (3.3) and (3.4), we attain the 
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By the definition of the multiple Genocchi polynomials 
of order w , we write the following 
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By (3.5) and (3.6), we have 
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By (3.1) and (3.7), we readily see that 
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Consequently, we arrive at the following theorem. 
Theorem 4. The following nice identity holds true: 
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Thus ( ) ( )w
pL s w χ+  is an analytic function on T . 

Additionally, for each n∈ , we procure the following: 



 Turkish Journal of Analysis and Number Theory 21 

 

 
( ) ( )

( ) ( ) ( )*
, ,

! w
p

w wn w
nn nn n

n
w L w n

w

G p p Gχ χ

χ

χ−

 
− 

 

= −

 

Using Taylor expansion at s = 0, we have 
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Differentiating on both sides in (3.1), with respect to s 
at s = 0, we obtain the following corollary. 
Theorem 5. Let F be a positive integral multiple of p and 
f. Then we have 
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where log p x is the p-adic logarithm. 
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