q-Analogue of p-Adic log Γ Type Functions Associated with Modified q-Extension of Genocchi Numbers with Weight α and β

Erdoğan Şen ${ }^{1}$, Mehmet Acikgoz ${ }^{2}$, Serkan Araci ${ }^{3, *}$
${ }^{1}$ Department of Mathematics, Faculty of Science and Letters, Namik Kemal University, Tekirdağ, Turkey
${ }^{2}$ Department of Mathematics, Faculty of Science and Arts, University of Gaziantep, Gaziantep, Turkey
${ }^{3}$ Atatürk Street, 31290 Hatay, TURKEY
*Corresponding author: mtsrkn@hotmail.com

Abstract

The p-adic log gamma functions associated with q-extensions of Genocchi and Euler polynomials with weight α were recently studied [6]. By the same motivation, we aim in this paper to describe q-analogue of p-adic \log gamma functions with weight alpha and beta. Moreover, we give relationship between p -adic q -log gamma functions with weight (α, β) and q-extension of Genocchi numbers with weight alpha and beta and modified q-Euler numbers with weight α.

Keywords: modified q-Genocchi numbers with weight alpha and beta, modified q-Euler numbers with weight alpha and beta, p-adic log gamma functions

Cite This Article: Erdoğan Şen, Mehmet Acikgoz, and Serkan Araci, "q-Analogue of p-Adic log Γ Type Functions Associated with Modified q-Extension of Genocchi Numbers with Weight α and β." Turkish Journal of Analysis and Number Theory 1, no. 1 (2013): 9-12. doi: 10.12691/tjant-1-1-3.

1. Introduction

Assume that p is a fixed odd prime number. Throughout this paper $\mathrm{Z}, \mathrm{Z}_{p}, \mathrm{Q}_{p}$ and C_{p} will denote by the ring of integers, the field of p -adic rational numbers and the completion of the algebraic closure of Q_{p}, respectively.
Also we denote $\mathrm{N}^{*}=\mathrm{N} \cup\{0\}$ and $\exp (x)=e^{x}$. Let $v_{p}: \mathrm{C}_{p} \rightarrow \mathrm{Q} \cup\{\infty\} \quad$ (Q is the field of rational numbers) denote the p -adic valuation of C_{p} normalized so that $v_{p}(p)=1$. The absolute value on C_{p} will be denoted as $\mid \|_{p}$, and $|x|_{p}=p^{-v_{p}(x)}$ for $x \in \mathrm{C}_{p}$. When one talks of q extensions, q is considered in many ways, e.g. as an indeterminate, a complex number $q \in \mathrm{C}$, or a p-adic number $q \in \mathrm{C}_{p}$. If $q \in \mathrm{C}$, we assume that $|q|<1$. If $q \in \mathrm{C}_{p}$, we assume $|1-q|_{p}<p^{-\frac{1}{p-1}}$, so that $q^{x}=\exp (x \log q)$ for $|x|_{p} \leq 1$. We use the following notation.

$$
\begin{equation*}
[x]_{q}=\frac{1-q^{x}}{1-q}, \quad[x]_{-q}=\frac{1-(-q)^{x}}{1+q} \tag{1.1}
\end{equation*}
$$

where $\lim _{q \rightarrow 1}[x]_{q}=x$; cf. [1-23].
For a fixed positive integer d with $(d, f)=1$, we set

$$
\begin{aligned}
X & =X_{d}=\underset{\bar{N}}{\lim } \mathrm{Z} / d p^{N} \mathrm{Z}, \\
X^{*} & =\underset{\substack{0<a<d p \\
\left(a _n\right)=1}}{\cup} a+d p \mathrm{Z}_{p}
\end{aligned}
$$

and

$$
a+d p^{N} \mathrm{Z}_{p}=\left\{x \in X \mid x \equiv a\left(\bmod d p^{N}\right)\right\},
$$

where $a \in \mathrm{Z}$ satisfies the condition $0 \leq a<d p^{N}$.
It is known that

$$
\mu_{q}\left(x+p^{N} \mathrm{Z}_{p}\right)=\frac{q^{x}}{\left[p^{N}\right]_{q}}
$$

is a distribution on X for $q \in \mathrm{C}_{p}$ with $|1-q|_{p} \leq 1$.
Let $U D\left(\mathrm{Z}_{p}\right)$ be the set of uniformly differentiable function on Z_{p}. We say that f is a uniformly differentiable function at a point $a \in \mathrm{Z}_{p}$, if the difference quotient

$$
F_{f}(x, y)=\frac{f(x)-f(y)}{x-y}
$$

has a limit $f^{\prime \prime}(a)$ as $(x, y) \rightarrow(a, a)$ and denote this by $f \in U D\left(\mathrm{Z}_{p}\right)$. The p-adic q-integral of the function $f \in U D\left(\mathrm{Z}_{p}\right)$ is defined by

$$
\begin{align*}
& I_{q}(f) \\
= & \int_{\mathrm{Z}_{p}} f(x) d \mu_{q}(x) \tag{1.2}\\
= & \lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]_{q}} \sum_{x=0}^{p^{N}-1} f(x) q^{x} .
\end{align*}
$$

The bosonic integral is considered by Kim as the bosonic limit $g_{n, q}^{(\alpha, \beta)}(0):=g_{n, q}^{(\alpha, \beta)} \quad I_{1}(f)=\lim _{q \rightarrow 1} I_{q}(f)$. Similarly, the p-adic fermionic integration on Z_{p} defined by Kim as follows:

$$
I_{-q}(f)=\lim _{q \rightarrow-q} I_{q}(f)=\int_{\mathrm{Z}_{p}} f(x) d \mu_{-q}(x)
$$

Let $q \rightarrow 1$, then we have p-adic fermionic integral on Z_{p} as follows:

$$
I_{-1}(f)=\lim _{q \rightarrow-1} I_{q}(f)=\lim _{N \rightarrow \infty} \sum_{x=0}^{p^{N}-1} f(x)(-1)^{x}
$$

Stirling asymptotic series are known as

$$
\begin{align*}
& \log \left(\frac{\Gamma(x+1)}{\sqrt{2 \pi}}\right) \tag{1.3}\\
= & \left(x-\frac{1}{2}\right) \log x+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)} \frac{B_{n+1}}{x^{n}}-x
\end{align*}
$$

where B_{n} are familiar n-th Bernoulli numbers cf. [6,8,9,23].

Recently, Araci et al. defined modified q-Genocchi numbers and polynomials with weight α and β in $[4,5]$ by the means of generating function:

$$
\begin{equation*}
\sum_{n=0}^{\infty} g_{n, q}^{(\alpha, \beta)}(x) \frac{t^{n}}{n!}=t \int_{\mathrm{Z}_{p}} q^{-\beta \xi} e^{[x+\xi]_{q}^{\alpha t}} d \mu_{-q}^{\beta}(\xi) \tag{1.4}
\end{equation*}
$$

So from the above, we easily get Witt's formula of modified q-Genocchi numbers and polynomials with weight α and β as follows:

$$
\begin{equation*}
\frac{g_{n+1, q}^{(\alpha, \beta)}(x)}{n+1}=\int_{\mathrm{Z}_{p}} q^{-\beta \xi}[x+\xi]_{q^{\alpha}}^{n} d \mu_{-q} \beta(\xi) \tag{1.5}
\end{equation*}
$$

where $g_{n, q}^{(\alpha, \beta)}(0):=g_{n, q}^{(\alpha, \beta)}$ are modified q-extension of Genocchi numbers with weight α and β cf. [4,5].

In [21], Rim and Jeong are defined modified q-Euler numbers with weight α as follows:

$$
\begin{equation*}
\widehat{\xi}_{n, q}^{(\alpha)}=\int_{\mathrm{Z}_{p}} q^{-t}[t]_{q} \alpha d \mu_{-q}(t) \tag{1.6}
\end{equation*}
$$

From expressions of (1.5) and (1.6), we get the following Proposition 1.

Proposition 1. The following

$$
\widehat{\xi}_{n, q}^{(\alpha)}=\frac{g_{n+1, q}^{(\alpha, 1)}}{n+1}
$$

is true.
In previous paper [6], Araci, Acikgoz and Park introduced weighted q -analogue of p -adic log gamma type functions and derived some interesting identities. They were motivated from paper of T. Kim by "On a qanalogue of the p-adic log gamma functions and related integrals, J. Number Theory, 76 (1999), no. 2, 320-329." By the same motivation, we introduce q -analogue of p adic log gamma type function with weight α and β. We derive in this paper some interesting identities including this type of functions.

2. On P-Adic $\log \Gamma$ Function with Weight α and β

In this part, from (1.2), we start at the following nice identity:

$$
\begin{align*}
& I_{-q}^{(\beta)}\left(q^{-\beta x} f_{n}\right)+(-1)^{n-1} I_{-q}^{(\beta)}\left(q^{-\beta x} f\right) \\
= & {[2]_{q} \beta \sum_{l=0}^{n-1}(-1)^{n-1-l} f(l) } \tag{2.1}
\end{align*}
$$

where $f_{n}(x)=f(x+n)$ and $n \in \mathrm{~N}$ (see [4]).
In particular for $n=1$ into (2.1), we easily see that

$$
\begin{equation*}
I_{-q}^{(\beta)}\left(q^{-\beta x} f_{1}\right)+I_{-q}^{(\beta)}\left(q^{-\beta x} f\right)=[2]_{q} \beta f(0) \tag{2.2}
\end{equation*}
$$

By simple an application, it is easy to indicate as follows:

$$
\begin{align*}
& ((1+x) \log (1+x))^{\prime} \\
= & 1+\log (1+x) \tag{2.3}\\
= & 1+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)} x^{n}
\end{align*}
$$

where $((1+x) \log (1+x))=\frac{d}{d x}((1+x) \log (1+x))$.
By expression of (2.3), we can derive

$$
\begin{equation*}
(1+x) \log (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)} x^{n+1}+x+c \tag{2.4}
\end{equation*}
$$

where c is constant.
If we take $x=0$, so we get $c=0$. By expression of (2.3) and (2.4), we easily see that,

$$
\begin{equation*}
(1+x) \log (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)} x^{n+1}+x \tag{2.5}
\end{equation*}
$$

It is considered by T . Kim for q -analogue of p -adic locally analytic function on $\mathrm{C}_{p} \backslash \mathrm{Z}_{p}$ as follows:

$$
\begin{equation*}
G_{p, q}(x)=\int_{\mathrm{Z}_{p}}[x+\xi]_{q}\left(\log [x+\xi]_{q}-1\right) d \mu_{-q}(\xi) \tag{2.6}
\end{equation*}
$$

(for detail, see [5,6]).

By the same motivation of (2.6), in previous paper [6], q -analogue of p -adic locally analytic function on $\mathrm{C}_{p} \backslash \mathrm{Z}_{p}$ with weight α is considered

$$
\begin{align*}
& G_{p, q}^{(\alpha)}(x) \\
= & \int_{\mathrm{Z}_{p}}[x+\xi]_{q^{\alpha}}\left(\log [x+\xi]_{q} \alpha-1\right) d \mu_{-q}(\xi) \tag{2.7}
\end{align*}
$$

In particular $\alpha=1$ in (2.7), we easily see that, $G_{p, q}^{(1)}(x)=G_{p, q}(x)$.

With the same manner, we introduce q -analogue of p adic locally analytic function on p with weight α and β as follows:

$$
\begin{align*}
& G_{p, q}^{(\alpha, \beta)}(x) \\
= & \int_{\mathrm{Z}_{p}} q^{-\beta \xi}[x+\xi]_{q^{\alpha}}\left(\log [x+\xi]_{q^{\alpha}}-1\right) d \mu_{-q} \beta \tag{2.8}
\end{align*}
$$

From expressions of (2.2) and (2.8), we state the following Theorem:
Theorem 1. The following identity holds:
$G_{p, q}^{(\alpha, \beta)}(x+1)+G_{p, q}^{(\alpha, \beta)}(x)=[2]_{q} \beta[x]_{q} \alpha\left(\log [x]_{q} \alpha-1\right)$.
It is easy to show that,

$$
\begin{aligned}
{[x+\xi]_{q} \alpha } & =\frac{1-q^{\alpha(x+\xi)}}{1-q^{\alpha}} \\
& =\frac{1-q^{\alpha x}+q^{\alpha x}-q^{\alpha(x+\xi)}}{1-q^{\alpha}} \\
& =\left(\frac{1-q^{\alpha x}}{1-q^{\alpha}}\right)+q^{\alpha x}\left(\frac{1-q^{\alpha \xi}}{1-q^{\alpha}}\right) \\
& =[x]_{q^{\alpha}}+q^{\alpha x}[\xi]_{q^{\alpha}} \\
\text { Substituting } x & \rightarrow \frac{q^{\alpha x}[\xi]_{q^{\alpha}}}{[x]_{q} \alpha} \text { into (2.5) and by using }
\end{aligned}
$$ (2.9), we get interesting formula:

$$
\begin{gather*}
{[x+\xi]_{q} \alpha\left(\log [x+\xi]_{q^{\alpha}}-1\right)} \\
=\left([x]_{q} \alpha+q^{\alpha x}[\xi]_{q} \alpha\right) \log [x]_{q} \alpha \tag{2.10}\\
\\
+\sum_{n=1}^{\infty} \frac{\left(-q^{\alpha x}\right)^{n+1}}{n(n+1)} \frac{[\xi]_{q^{\alpha}}^{n+1}}{[x]_{q}^{n}}-[x]_{q^{\alpha}}
\end{gather*}
$$

If we substitute $\alpha=1$ into (2.10), we get Kim's qanalogue of p-adic log gamma function (for detail, see [8]). From expression of (1.2) and (2.10), we obtain the following worthwhile and interesting theorems.
Theorem 2. For $x \in \mathrm{C}_{p} \backslash \mathrm{Z}_{p}$ the following

$$
\begin{aligned}
& G_{p, q}^{(\alpha, \beta)}(x) \\
= & \left(\frac{[2]_{q} \beta}{2}[x]_{q} \alpha+q^{\alpha x} \frac{g_{2, q}^{(\alpha, \beta)}}{2}\right) \log [x]_{q} \alpha \\
& +\sum_{n=1}^{\infty} \frac{\left(-q^{\alpha x}\right)^{n+1}}{n(n+1)(n+2)} \frac{g_{n+1, q}^{(\alpha, \beta)}}{[x]_{q}^{n}}-[x]_{q} \alpha \frac{[2]_{q} \beta}{2}
\end{aligned}
$$

is true.

Corollary 1. Taking $q \rightarrow 1$ in Theorem 2, we get nice identity:

$$
\begin{aligned}
& G_{p, 1}^{(\alpha, \beta)}(x) \\
= & \left(x+\frac{G_{2}}{2}\right) \log x \\
& +\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)(n+2)} \frac{G_{n+1}}{x}-x
\end{aligned}
$$

where G_{n} are called famous Genocchi numbers.
Theorem 3. The following nice identity

$$
\begin{aligned}
& G_{p, q}^{(\alpha, 1)}(x) \\
= & \left(\frac{[2]_{q}}{2}[x]_{q} \alpha+q^{\alpha x} \bar{\xi}_{1, q}^{(\alpha)}\right) \log [x]_{q}^{\alpha} \\
& +\sum_{n=1}^{\infty} \frac{\left(-q^{\alpha x}\right)^{n+1}}{n(n+1)} \frac{\xi_{n, q}^{(\alpha)}}{[x]_{q}^{n}}-\frac{[2]_{q}}{2}[x]_{q}^{\alpha}
\end{aligned}
$$

is true.
Corollary 2. Putting $q \rightarrow 1$ into Theorem 3, we have the following identity:

$$
G_{p, 1}^{(\alpha, \beta)}(x)=\left(x+E_{1}\right) \log x+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)} \frac{E_{n}}{x^{n}}-x
$$

where E_{n} are familiar Euler numbers.

References

[1] S. Araci, M. Acikgoz and J. J. Seo, A note on the weighted qGenocchi numbers and polynomials with their interpolation function, Honam Mathematical J. 34 (2012), No. 1, pp. 11-18.
[2] S. Araci, D. Erdal and J. J. Seo, A study on the fermionic p adic qintegral representation on Z_{p} associated with weighted q-Bernstein and q-Genocchi polynomials, Abstract and Applied Analysis, Volume 2011, Article ID 649248, 10 pages.
[3] S. Araci, J. J. Seo and D. Erdal, New construction weighted (h, q)Genocchi numbers and polynomials related to Zeta type function, Discrete Dynamics in Nature and Society, Volume 2011, Article ID 487490, 7 pages.
[4] S. Araci, M. Acikgoz, F. Qi and H. Jolany, A note on the modified q-Genocchi numbers and polynomials with weight (α, β) and their interpolation function at negative integers, accepted for publication in Journal of Fasc. Math.
[5] S. Araci and M. Acikgoz, A note on the values of the weighted qBernstein polynomials and modified q-Genocchi numbers with weight α and β via the p-adic q-integral on Z_{p}, submitted.
[6] S. Araci, M. Acikgoz and K. H. Park, A note on the q-analogue of Kim's p-adic log gamma functions associated with q-extension of Genocchi and Euler polynomials with weight α, Bull. Korean Math. Soc. 50 (2013), No. 2, pp. 583-588.
[7] S. Araci, M. Acikgoz and E. Șen, On the extended Kim's p-adic qdeformed fermionic integrals in the p-adic integer ring, Journal of Number Theory 133 (2013) 3348-3361.
[8] T. Kim, A note on the q -analogue of p -adic \log gamma function, arXiv:0710.4981v1 [math.NT].
[9] T. Kim, On a q-analogue of the p-adic log gamma functions and related integrals, J. Number Theory, 76 (1999), no. 2, 320-329.
[10] T. Kim, On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl. 326 (2007) 1458-1465.
[11] T. Kim, On the multiple q-Genocchi and Euler numbers, Russian J. Math. Phys. 15 (4) (2008) 481-486.
[12] T. Kim, On the weighted q-Bernoulli numbers and polynomials, Adv. Stud. Contemp. Math. 21(2011), no.2, p. 207-215.
[13] T. Kim, q-Volkenborn integration, Russ. J. Math. phys. 9 (2002), 288-299.
[14] T. Kim, An invariant p-adic q-integrals on Z_{p}, Applied Mathematics Letters, vol. 21, pp. 105-108,2008.
[15] T. Kim, q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys., 14 (2007), no. 1, 15-27.
[16] T. Kim, New approach to q-Euler polynomials of higher order, Russ. J. Math. Phys. 17 (2010), no. 2, 218-225.
[17] T. Kim, Some identities on the q-Euler polynomials of higher order and q -Stirling numbers by the fermionic p -adic integral on Z_{p}, Russ. J. Math. Phys. 16 (2009), no.4, 484-491.
[18] T. Kim and S.-H. Rim, On the twisted q-Euler numbers and polynomials associated with basic q-l-functions, Journal of Mathematical Analysis and Applications, vol. 336, no. 1, pp. 738744, 2007.
[19] T. Kim, On p-adic q-l-functions and sums of powers, J. Math. Anal. Appl. (2006), doi:10.1016/j.jmaa.2006.07.071.
[20] C. S. Ryoo, A note on the weighted q-Euler numbers and polynomials, Advan. Stud. Contemp. Math. 21(2011), 47-54.
[21] S.-H. Rim and J. Jeong, A note on the modified q-Euler numbers and polynomials with weight α, International Mathematical Forum, Vol. 6, 2011, no. 65, 3245-3250.
[22] Y. Simsek, Theorems on twisted L-function and twisted Bernoulli numbers, Advan. Stud. Contemp. Math., 11(2005), 205-218.
[23] D. Zill and M. R. Cullen, Advanced Engineering Mathematics, Jones and Bartlett, 2005.

