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1. Introduction 
The concept of p-adic numbers was originally invented 

by Kurt Hensel who is German mathematician, around the 
end of the nineteenth century [12]. In spite of their being 
already one hundred years old, these numbers are still 
today enveloped in an aura of mystery within the scientific 
community and also play a vital and important role in 
mathematics. 

The fermionic p-adic q-integral in the p-adic integer 
ring was originally constructed by Kim [2,6] who 
introduced Lebesgue-Radon-Nikodym Theorem with 
respect to fermionic p-adic q-integral on Z p . The 

fermionic p-adic q-integral on Z p  is used in mathematical 
physics for example the functional equation of the q-zeta 
function, the q-stirling numbers and q-mahler theory of 
integration with respect to the ring Z p  together with 
Iwasawa's p-adic q-L function. 

In [11], Jang defined q-extension of Hardy-Littlewood-
type maximal operator by means of q-Volkenborn integral 
on Z p . Afterwards, in [1], Araci and Acikgoz added a 
weight into Jang's q-Hardy-Littlewood-type maximal 
operator and derived some interesting properties by means 
of Kim's p-adic q-integral on Z p . Now also, we shall 
consider weighted q-Hardy-Littlewood-type maximal 
operator on the fermionic p-adic q-integral on Z p . 
Moreover, we shall analyse q-Hardy-Littlewood-type 
maximal operator via the fermionic p-adic q-integral on 
Z p . 

Assume that p be an odd prime number. Let Q p  be the 

field of p-adic rational numbers and let C p  be the 

completion of algebraic closure of Q p . 
Thus, 

 Q : 0 .n
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n k
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∞

=−
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or 

 { }Z Q : 1 .p p px x= ∈ ≤  

In this paper, we assume that C pq∈  with 1 1pq− <  

as an indeterminate. 
The p-adic absolute value . p , is normally defined by 

 1 ,p rx
p

=  

where r s
tx p=  with ( ) ( ) ( ), , , 1p s p t s t= = =  and Qr∈ . 

A p -adic Banach space B  is a Qp-vector space with a 

lattice 0B  (Zp-module) separated and complete for p-adic 
topology, ie.,  
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For all x B∈ , there exists Zn∈ , such that 0nx p B∈ . 
Define 
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It satisfies the following properties: 
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Then, ( )v xB
Bx p−=  defines a norm on ,B  such that 

B  is complete for . B  and 0B  is the unit ball. 

A measure on Z p  with values in a p-adic Banach space 
B  is a continuous linear map 

 ( ) ( ) ( )
Z p

f f x f x xµ µ=∫ ∫  

from ( )0 Z ,Cp pC , (continuous function on Z p  ) to B . 

We know that the set of locally constant functions from 
Z p  to Q p  is dense in ( )0 Z ,Cp pC  so. 

Explicitly, for all ( )0 Z ,Cp pf C∈ , the locally 

constant functions 
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Then 
Z p

f µ∫  is given by the following Riemann sums 
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T. Kim defined qµ−  as follows: 
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and this can be extended to a distribution on Z p . This 

distribution yields an integral in the case 1d = . 
So, q-Volkenborn integral was defined by T. Kim as 

follows: 
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 (1.1) 

where [ ]qx  is a q-extension of x  which is defined by 
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x

q
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Note that [ ]1limq qx x→ =  cf. [1,2,4,5,6,7,11]. 

Let d  be a fixed positive integer with ( ), 1p d = . We 
now set 

 

( )

( ){ }

1

0
, 1

lim Z / Z,

Z ,

Z ,

Z | mod ,

n
d

n

p

p
a dp

a p

n n
p

X X dp

X

X a dp

a dp x X x a p

∗

< <
=

= =

=

= ∪ +

+ = ∈ ≡



 

where Za∈  satisfies the condition 0 na dp≤ < . For 

( )Z ,Cp pf UD∈ , 

 ( ) ( ) ( ) ( )
Z q qXp

f x d x f x d xµ µ− −=∫ ∫  see [10] 

By means of q-Volkenborn integral, we consider below 
strongly p-adic q-invariant distribution qµ−  on Z p  in the 
form 
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where 0nδ →  as n →∞  and nδ  is independent of a . 

Let ( )Z ,Cp pf UD∈ , for any Z pa∈ , we assume that 

the weight function ( )xω  is defined by ( ) xxω ω=  where 

C pω∈  with 1 1pω− < . We define the weighted 

measure on Z p  as follows: 

 ( ) ( ) ( ) ( ), Z
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+ = ∫  (1.2) 

where the integral is the fermionic p-adic q-integral on 

Z p . From (1.2), we note that ( )
,f q
ωµ −  is a strongly 

weighted measure on Z p . Namely, 
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Thus, we get the following proposition. 
Proposition 1. For ( ), Z ,Cp pf g UD∈ , then, we have 
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where ,α β  are positive constants. Also, we have 
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where C  is positive constant. 

Let ( ) [ ]Cq p qx x ∈
 

P  be an arbitrary q-polynomial. 

Now also, we indicate that ( )
, q
ωµ −P  is a strongly weighted 

fermionic p-adic q-invariant measure on Z p . Without a 
loss of generality, it is sufficient to evidence the statement 

for ( ) [ ]kqx x=P . 
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By (1.5), we have 
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By (1.3), (1.4), (1.5) and (1.6), we have the following 
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Then, we procure the following 
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where C  is positive constant and 0n >> . 
Let ( )Z ,Cp pUD  be the space of uniformly 

differentiable functions on Z p  with sup-norm 
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The difference quotient 1 f∆  of f is the function of 
two variables given by  
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A function : Z Cp pf →  is said to be a Lipschitz 
function if there exists a constant 0M >  
( )the Lipschitz constant  of f  such that 

 ( ) { }1 ,  for all Z \ 0  and Z .p pf m x M m x∆ ≤ ∈ ∈  

The C p  linear space consisting of all Lipschitz function is 

denoted by ( )Z ,Cp pLip . This space is a Banach space 

with the respect to the norm 11f f f∞ ∞= ∆∨  (for 
more information, see [3-9]). The objective of this paper is 
to introduce weighted q-Hardy Littlewood-type maximal 
operator on the fermionic p-adic q-integral on Z p . Also, 
we show that the boundedness of the weighted q-Hardy-
littlewood-type maximal operator in the p-adic integer 
ring. 

2. The Weighted q-Hardy-Littlewood-
Type Maximal Operator 

In view of (1.2) and the definition of fermionic p-adic q-
integral on Z p , we now consider the following theorem. 
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Proof. (1) By using (1.1) and (1.2), we see the following 
applications: 
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(2) By the same method of (1), then, we easily derive the 
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Since lim 1
mp

m
q

→∞
=  for 1 1,pq− <  our assertion 

follows. 
We are now ready to introduce the definition of the 

weighted q-Hardy-littlewood-type maximal operator 
related to fermionic p-adic q-integral on Z p  with a strong 

fermionic p-adic q-invariant distribution qµ−  in the p-adic 
integer ring. 

Definition 1. Let ( )
q
ωµ−  be a strongly fermionic p-adic q-

invariant distribution on Z p and ( )Z ,Cp pf UD∈ . Then, 

q-Hardy-littlewood-type maximal operator with weight 
related to fermionic p-adic q-integral on Zn

pa p+  is 
defined as 
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for all Z pa∈ . 
We recall that famous Hardy-littlewood maximal 

operator µM , which is defined by 
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where : R Rk kf →  is a locally bounded Lebesgue 
measurable function, µ  is a Lebesgue measure on 

( ),−∞ ∞  and the supremum is taken over all cubes Q  
which are parallel to the coordinate axes. Note that the 
boundedness of the Hardy-Littlewood maximal operator 
serves as one of the most important tools used in the 
investigation of the properties of variable exponent spaces 
(see [11]). The essential aim of Theorem 1 is to deal 
mainly with the weighted q-extension of the classical 
Hardy-Littlewood maximal operator in the space of p-adic 
Lipschitz functions on Z p  and to find the boundedness of 
them. By means of Definition 1, then, we state the 
following theorem. 
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Proof. (1) Because of Theorem 1 and Definition 1, we see 
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Thus, we complete the proof of theorem. 
We note that Theorem 2 (2) shows the supnorm-

inequality for the q-Hardy-Littlewood-type maximal 
operator with weight on Z p , on the other hand, Theorem 
2 (2) shows the following inequality 
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(2.2), we get the following Corollary, which is the 
boundedness for weighted q-Hardy-Littlewood-type 
maximal operator with weight on Z p . 

Corollary 1. ( )
,p q
ωM  is a bounded operator from 

( )Z ,Cp pUD  into ( )Z ,Cp pL∞ , where ( )Z ,Cp pL∞  is 
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