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1. Introduction 
Legendre polynomials, which are special cases of 

Legendre functions, are introduced in 1784 by the French 
mathematician A. M. Legendre (1752-1833). Legendre 
functions are a vital and important in problems including 
spherical coordinates. Due to their orthogonality 
properties they are also useful in numerical analysis (see 
[9]). Besides, the Legendre polynomials, ( )nP x , are 
described via the following generating function: 

 
2 0

1 ( ) .
1 2

n
n

n
P x t

xt t

∞

=
=

− +
∑  (1) 

Legendre polynomials are the everywhere regular 
solutions of Legendre’s differential equation that we can 
write as follows: 
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where ( )1m n n= +  and 0,1,2,n =  . Taking 1x =  in (1) 
and by using geometric series, we see that (1) 1,nP =  so 
that the Legendre polynomials are normalized. 

Legendre polynomials can be generated using 
Rodrigue’s formula as follows: 
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Note that the right hand side of (2) is a polynomial (see 
[3,9]). 

The Bernoulli polynomials are defined by means of the 
following generating function: 
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By (3), we know that 
( ) ( )1 .n

n
dB x

nB x
dx −=  Taking 

0x =  in (3), we have ( )0 :n nB B=  that stands for n th−  
Bernoulli number. 

The Euler polynomials are known to be defined as: 
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The Euler polynomials can also be expressed by 
explicit formulas, e.g. 
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where kE  means the Euler numbers. These numbers are 
expressed with the Euler polynomials through 

( )2 1 2 .k
k kE E=  
Now also, we give the definition of Hermite 

polynomials as follows: 
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Let [ ]( )0,1C  be the space of continuous functions on 

[ ]0,1 .  For [ ]( )0,1 ,f C∈  Bernstein operator for f  is 
defined by 
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where { }, * : 0n k ∈ = ∪   and   is the set of natural 

numbers. Here ( ),k nB x  is called Bernstein polynomials, 
which are defined by 
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 (cf. [1,6].) (6) 

In [9], [3], the orthogonality of Legendre polynomials is 
known as 
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where ,m nδ  is Kronecker’s delta. 
In [7], by using orthogonality property of Legendre, 

Kim et al. effected interesting identities for them. We also 
obtain some interesting properties of the Legendre 
polynomials arising from Bernoulli, Euler, Hermite and 
Bernstein polynomials. 

2. Identities on the Legendre Polynomials 
Arising from Bernoulli, Euler, Hermite 
and Bernstein Polynomials 

Let [ ] ( ){ }( ) deg .n q x x p x n= ∈ ≤  Then we define 

an inner product on n  as follows: 
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Note that ( ) ( ) ( )0 1, , , nP x P x P x  are the orthogonal 

basis for .n  Let us now consider ( ) ;nq x ∈  then we see 
that 
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where the coefficients kC  are defined over the field of 
real numbers. 

From the above, we readily see that 
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By (9) and (10), we have the following proposition. 
Proposition 2.1. Let ( ) nq x ∈  and 

( ) ( )0 ,n
k kkq x C P x== ∑  then 
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∫  (see [7]). 

If we take ( ) nq x x=  in Proposition (2.1), the 
coefficients kC  can be found as 
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Let ( ) ( ).nq x B x=  Then by using Proposition 2.1 and 
(11), we have 
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where ( )nB x  are the aforementioned Bernoulli 
polynomials that can be expressed through Bernoulli 
numbers nB  as follows: 
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From this, we have 
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Therefore we have the following theorem. 

Theorem 2.2. Let ( ) ( )0 .n
n k k nkB x C P x== ∈∑   Then we 

have 
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Let ( ) .n nH x ∈  By Proposition 2.1 and (11), we have 
the following theorem. 

Theorem 2.3. Let ( ) ( )0 .n
n k k nkH x C P x== ∈∑   Then 

we have 
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Let the Bernstein polynomials ( ), .j n nB x ∈ By 
Proposition 2.1 and (11), we have following theorem. 

Theorem 2.4. Let ( ) ( ), 0 .n
j n k k nkB x C P x== ∈∑   We 

have 
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The following equality is defined by Kim et al. in [7]: 
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Let ( ) ( )0 .n
k n k nk B x B x−= ∈∑   By Proposition 2.1 and 

(11), we get the following theorem. 

Theorem 2.5. Let ( ) ( )0 .n
k n k nk B x B x−= ∈∑   Then we 

have 
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Let ( ) ( ) ( )0 .n
k n k nkq x E x E x−== ∈∑   In [8], Kim et al. 

derived convolution formula for the Euler polynomials as 
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By Proposition 2.1 and (11), we get the following 
theorem. 
Theorem 2.6. The following equality holds true: 
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Remark 2.7. By using Theorem 2.1, we can find many 
interesting identities for the special polynomials in 
connection with Legendre polynomials. 
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