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Modern robust statistical methods can provide substantially
higher power and a deeper understanding of data
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Abstract

During the last fifty years, there have been many advances and insights relevant to the most basic
statistical methods, designed to compare groups and study associations. Classic, routinely used
methods assume sampling is from a normal distribution. Numerous papers make it clear that
violating this assumption can result in missing true differences among groups and true associations
among variables. Many new methods have been derived that are designed to perform well when
dealing non-normal distributions and outliers that can make a substantial difference when analyzing
data. Broadly, modern technology offers the opportunity to get a deeper and more accurate
understanding of data. The paper reviews the basic reasons why standard methods can be highly
unsatisfactory and provides an overview of some of the more modern methods that have been
derived. Comments on SPSS and the software R are included.
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1.  Introduction

Robust statistical methods capable of dealing with large complex
data sets, are required more than ever before in almost all branches
of science. Robust statistical methods offer the opportunity to
substantially improve the reliability and accuracy of statistical
modeling and data analysis. It is ideal for researchers, practitioners
and graduate students of statistics, electrical, chemical and
biochemical engineering, and computer vision. There is also much
to benefit researchers from other sciences, such as biotechnology
and life sciences. Outliers often indicate the most interesting data
point, like polluted areas for environmental data, or irregularities in
online monitoring of patients. Among many such applications are:
monitoring and tracking the condition of patients in intensive care
via several measurements such as pulse rate, blood pressure, lung
water etc. Without robust analysis methods, it is easy to miss
significant outliers in such multivariate data.In some cases, the
outliers only show up clearly when considering all the variables
together, and yet may indicate something significant that could
easily be missed, such as a sudden deterioration in a critical patient’s
condition.

In pharmaceutical manufacturing processes, time oriented quality
characteristics, such as the degradation of a drug, are often of interest.
Robust methods can be applied to pharmaceutical production
research and development by proposing experimental and
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optimization models, which should be able to handle the time-
oriented characteristics. In the pharmaceutical industry, the
development of a new drug is a lengthy process, involving laboratory
experiments. When a new drug is discovered, it is important to
design an appropriate pharmaceutical dosage or formulation for the
drug so that it can be delivered efficiently to the site of action in the
body for the optimal therapeutic effect on the intended patient
population. Hence, the quality of the pharmaceutical product is
influenced by such design when they are applied in the early stages
of drug development. Modern robust statistical methods can play
vital role toward this goal (Cho and Shin, 2012).

It was once thought that routinely used statistical methods for
comparing groups and studying associations perform reasonably
well when dealing with non-normal distributions. But modern
insights have revealed that under general conditions, classic methods
can miss important differences among groups and important
associations among two or more variables. In more technical terms,
standard techniques can have relatively poor power compared to
more modern methods. Moreover, standard techniques can miss
features of the data that have considerable practical importance
(e.g., Heritier et al., 2007; Huber and Ronchetti, 2009;Marrona
et al., 2006; Rousseeuw and  Leroy, 1987; Staudte and Sheather,
1990; Wilcox, 2012a,b). A positive feature of routinely used methods
is that they are robust to violations of assumptions when comparing
groups that do not differ in any manner (they have identical
distributions). When studying associations, conventional methods
perform well when there is no association.More precisely, they
control the probability of a Type I error reasonably well. If groups
differ or there is an association, of course classic techniques might
continue to perform well, but under general conditions this is not
the case, even when the sample sizes are large.More broadly,
complete reliance on routinely used methods can result in a relatively
superficial and misleading understanding of data. This has serious
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implications regarding the choice of software: SPSS is commonly
used but it is poorly equipped to take advantage of modern
technology. Easily the best software for taking advantage of modern
methods is the software R.

A detailed description of the many improved statistical techniques
that have practical value is impossible in a single paper. The goal in
this review is to describe some aspects of modern methods in the
hope of increasing awareness of these advances and improving
future studies.

1.1 Limitations of classical statistical methods

Appreciating the practical importance of modern robust methods
requires in part some understanding of when and why more
conventional methods,based on means and least squares regression,
can be unsatisfactory. There are a variety of concerns associated
with standard methods, many of which center around three major
insights.

2.  Detecting outliers

Before describing the three major insights just mentioned,it helps
to first comment briefly on methods aimed at detecting outliers. A
common approach is to declare a value an outlier if it is more than
two or three standard deviations from the mean. But this method is
well known to be unsatisfactory, roughly because outliers can inflate
the standard deviation, which results in outliers being masked (e.g.,
Rousseeuw and Leroy, 1987; Wilcox, 2012a). The general strategy
for dealing with this problem is to replace the mean and standard
deviation with measures of location (measures of central tendency)
and scale (measures of variation) that are relatively insensitive to
outliers. Two such methods are the boxplot and the so-called MAD-
median rule. From basic principles, the boxplot is based on the
interquartile range, meaning that more than 25% of the values would
need to be outliers for it to break down.

As for the MAD-median rule, consider n observations: X1, . . . , Xn,
let M be the usual sample median and let MAD indicate the median
absolute deviation statistic, which is the median based on

|X1 – M |, . . . , |Xn – M |. Then the MAD median rule declares Xiand
outlier if

where MADN is MAD/.6745. (Under normality, MADN estimates
the standard deviation.) The MAD-median rule can accommodate
more outliers than the boxplot without breaking down. The relative
merits of these two outlier detection methods are discussed in more
detail in (Wilcox, 2012b).

It is noted that when dealing with multivariate data, a seemingly
natural strategy is to simply use the MAD-median rule on the each
of the variables. A concern, however, is that this does not take into
account the overall structure of the data. For example, it is not
unusual for someone to be young, it is not unusual for someone to
have heart disease, but it is unusual to be both young and have
heart disease. Methods for dealing with multivariate data have been
derived (e.g., Wilcox, 2012b), but the details go beyond the scope
of this review.

3.  Three major insights

The first major insight has to do with how large of a sample is
needed in order to assume normality. Consider the one-sample
Student’s t test. At one time, it was thought that with a sample size
of about 30, normality can be assumed. This was a natural
conclusion based on early studies indicating that with a relatively
small sample size, the sample mean has, to a good approximation,
a normal distribution under fairly weak conditions. But more recent
studies clearly indicate that even when the sample mean has a
roughly normal distribution, Student’s t can perform poorly in
terms of controlling the Type I error probability (rejecting a true
hypothesis).

As an illustration, consider a skewed distribution for which the
proportion of points declaredan outlier will be relatively small
based on a boxplot or the MAD-median rule.  Suppose that a nominal
.05 Type I error probability is judged to be reasonably accurate if
the actual Type I probability is between .025 and .075. Then
approximately 200 observations are required when using Student’s t.
When dealing with a skewed distribution where outliers are relatively
common, now 300 observations can be required (e.g., Wilcox, 2012b).

This has implications regarding the two-sample t test. If the two
distributions under study have different amounts of skewness,
Student’s t might yield relatively inaccurate confidence as illustrated
in Wilcox (2012a). In fact, Cressie and Whitford (1986) describe
general conditions where the two-sample t test is inaccurate
regardless of how large the sample sizes might be.

The second insight has to do with the extreme sensitivity of the
population variance to the tails of a distribution, which has serious
negative implications about power, the probability of rejecting the
null hypothesis when it is false. Even arbitrarily small changes in a
distribution, in a sense made precise, for example, in Staudte and
Sheather (1990) and Wilcox (2012b), can substantially impact the
population variance, which in turn can result in relatively low power
when testing hypotheses based on the sample mean.

A classic example is shown in Figure 1. The left panel shows two
normal distributions, both of which have variances equal to one.
With both sample sizes equal to 25, power is .96 when testing at
the .05 level with Student’s t. Now look at the right panel, which
shows two distributions that have thicker tails than the normal
distribution. Now power is only .28 despite the apparent similarity
with the normal distributions in the left panel. The reason is that
these distributions are not normal, they are mixed normals that
have variance 10.9. (The mixed normal used here means that with
probability .9, an observation is randomly sampled from a standard
normal distribution, otherwise an observation is sampled from a
normal distribution having mean zero and standard deviation
10.)This illustrates the general principle that inferential methods
based on means are highly sensitive to the tails of the distributions,
roughly because even small changes in the tails of a distribution can
have an inordinate influence on the variance.

The third insight has to do with heteroscedasticity, meaning that
the (population) variances differ among the groups being compared.
Heteroscedasticity can negatively impact power as well as control
over the Type I error probability when using standard methods
that assume there is homoscedasticity.
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Figure 1: In the left panel, power is .96 based on Student’s t,  = .05
and sample sizes n

1
= n

2
= 25. But in the right panel, the

distributions are not normal and power is only .28

4. Regression and Pearson’s Correlation

Pearson’s correlation and conventional (least squares) regression
techniques suffer from the same problems associated with methods
based on means and new concerns arise. Even a single outlier has
the potential of distorting the nature of the association among the
bulk of the participants. When there is heteroscedasticity (the
variance of the dependent variable depends on the value of the
independent variable), conventional confidence intervals use the
wrong standard error, which in turn can mean inaccurate confidence
intervals regardless of how large the sample size might be. Another
concern is that relationships between variables can be more complex
and poorly modeled by the more obvious parametric models such
as a straight line or a quadratic fit.

5.  Some unsatisfactory strategies for dealing with non-
     normality and outliers

Simple transformations are sometimes suggested for salvaging
methods based on means, such as taking logs.But by modern
standards this approach is unsatisfactory: typically distributions
remained skewed and the deleterious impact of outliers remains
(e.g., Rasmussen, 1989; Doksum and Wong, 1983; Wilcox and
Keselman, 2003).

A seemingly natural way of dealing with outliers is to remove them
and apply some method for means to the remaining data. This is
reasonable provided a compelling argumentcan be made that the
outliers are invalid. But otherwise, this can result in highly inaccurate

conclusions regardless of the sample sizes (Bakker and Wicherts,
in press; Wilcox, 2012a,b). There are technically sound methods
for dealing with outliers, some of which are illustrated here, but
they are not remotely obvious based on standard training.

Another way of trying to salvage classic methods is to test the
assumptions of normality and homoscedasticity. For example, test
for equality of variances, if the result is not significant, use the
pooled variance Student’s t-test and if the result is significant, use
Welch’s test.  However, all indications are that this strategy
performs poorly (e.g., Hayes and Cai, 2007; Markowski and
Markowski, 1990; Moser, Stevens and Watts, 1989; Wilcox, Charlin
and Thompson, 1986; Zimmerman, 2004). A similar result was
reported by Ng and Wilcox (2011) when dealing with least squares
regression.The basic problem is that unless the sample size is
sufficiently large, assumption tests frequently fail to detect
violations of assumptions that are a practical concern.Presumably
with a sufficiently large sample size, testing assumptions is
satisfactory, but it remains unclear when this is the case.

Figure 2: Plots of means and medians when sampling from a normal,
heavy-tailed and skewed distributions

To provide perspective on the accuracy of the mean, suppose data
are generated from a normal distribution, the mean and median are
computed, and this process is repeated 10,000 times. Boxplots of
the resulting means and medians are shown in the left portion of
Figure 2. In this particular case, the sample mean is a more accurate
estimate of the population mean. The standard deviation of the
sample means (typically called the standard error of the mean) is
smaller than the standard error of the median. But when data are
sampled from a population distribution that is not normal, the
sample mean can be substantially less accurate compared to other
estimates of central tendency. To illustrate this fact, suppose
observations are sampled from a distribution that is bell-shaped
like a normal distribution, but with thicker tails, which can result in
more outliers compared to a normal distribution. Boxplots of the
10,000 sample means and medians are shown in the middle portion
of Figure 1. Now there is considerably more variability among the
sample means than the sample medians. The standard deviation of
the sample means (.60) is more than double that of the sample
medians (.25). The simulation illustrates the general result that
when scores are sampled from a distribution where outliers are
likely to be encountered, the population median might be estimated
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with greater accuracy than the population mean. This has practical
importance because Tukey (1960) predicted that we should expect
outliers in practice and modern outlier detection methods confirm
that outliers are routinely encountered.

Next, consider a skewed (lognormal) distribution. The right portion
of Figure 2 shows boxplots of the resulting means and medians.This
illustrates that even when a skewed distribution has relatively light
tails (meaning that the expected proportion of values that are outliers
is relatively small), it can be difficult getting an accurate estimate of
the population mean compared to other measures of central
tendency.

6.  Nonparametric (rank-based) tests

Switching to classical nonparametric statistical tests for detecting
group differences, such as the Wilcoxon-Mann-Whitney (WMW)
U test or the Friedman test, is another approach to dealing with
non-normal data. Rank based methods provide information that
differs from methods based on measures of central tendency, as
they are sensitive to different features of the distributions under
study. The WMW test, for example, is sometimes suggested as a
method for comparing medians, but generally it does not address
this goal (e.g., Hettmansperger, 1984; Fung, 1980). Let p be the
probability that a randomly sampled observation from the first
group is less than a randomly sampled observation from the second.
The WMW test is based on an estimate of p, but it does not
provide a satisfactory test of p=.5 or an accurate confidence interval
for p, roughly because it uses the wrong standard error when
distributions differ (cf. Zimmerman, 1998, 2000). That is, the
derivation of the standard error assumes that the two groups have
identical distributions. So in effect, when significant results are
found using the WMW, it is reasonable to conclude that the
distributions differ, but the details regarding how they differ and
by how much are unclear (To get accurate confidence intervals for
p, see Cliff, 1996; Brunner and Munzel, 2000; Wilcox, 2012a, b.)

7.  Modern robust methods

There is a vast literature aimed at dealing with the limitations of
classical statistical methods (e.g., Hampel, et al. 1986;  Heritier et al.,
2009; Huber and Ronchetti, 2009; Marrona et al., 2006; Rousseeuw
and Leroy, 1987; Staudte and Sheather, 1990; Wilcox, 2012a, b). The
problem is not finding a method that deals with skewed distributions,
outliers and heteroscedasticity in a relatively effective manner. Many
such methods are available. Moreover, these new techniques provide
different perspectives that help deepen our understanding of data.
This is particularly true when dealing with regression and correlation
(e.g., Wilcox, 2012b, ch. 10-11). The details of the many improved
methods for comparing groups and studying associations cannot be
described in a single paper. Instead, their more basic features are
briefly described and illustrated.

7.1  Comparing means

It is possible to improve the accuracy of hypothesis tests and
confidence intervals for means by using a computer intensive method
called bootstrapping. These newer techniques have considerable
practical value (Wilcox, 2012a, b), but when using means, inaccurate
confidence intervals can still result with a sample size of 100 when
distributions are skewed and outliers are common (Hayes and Cai,
2007; Wilcox, 2012a, p. 273).  Moreover, even for symmetric

distributions, methods based on means can result in relatively poor
power.In order to fully deal with these problems, it is necessary to
switch to some measure of central tendency other than the mean.

7.2 Comparing medians

A seemingly obvious way of dealing with skewness and outliers is
to use the median. However, most hypothesis testing methods for
comparing medians can be very inaccurate when there are tied
(duplicated) values, or when there is heteroscedasticity (e.g., Wilcox,
2012a, b). A solution is to use a slight generalization of another
basic bootstrap method, called a percentile bootstrap method, which
is able to effectively deal with both of these problems, even for
small sample sizes, such as 10 per group (Wilcox, 2006). A positive
feature of comparing groups using medians is that, in terms of
hypothesis testing, power can be high relative to other methods
that might be used when outliers are common.

7.3 Comparing trimmed means

Trimmed means contain the mean and median as special cases. The
mean reflects no trimming and the median is based on the maximum
amount of trimming. A trimmed mean is computed by removing a
certain percentage of the highest and lowest values and then averaging
the remaining scores. For example, to compute a 20% trimmed
mean, the scores are ordered from smallest to largest, the lowest
and highest 20% are removed,and the mean of the remaining scores
is calculated. Trimming can be an effective strategy for handling
skewed and heavy tailed distributions because it eliminates outliers
and it results in more accurate confidence intervals compared to
conventional methods based on the mean.

It is stressed that simply trimming the extreme values and then
using classical methods for means, such as a t-test in SPSS, is
technically unsound and yields highly inaccurate results even when
the sample size is large (Briefly, the standard error is not being
estimated correctly). Technically sound methods are available as
well as appropriate software (Wilcox,2012a, b) but no details are
given here.

An important consideration when comparing groups using trimmed
means is how much to trim, as different amounts of trimming can
yield different conclusions. Trimming too little can result in
inaccurate confidence intervals, but trimming too much can result
in unnecessarily wide confidence intervals and low power when
testing hypotheses. As a general guideline, using 20% trimming is a
good compromise for general use. But is suggested that in
exploratory studies, multiple perspectives can be very useful.

8.  Correlation and Regression

As for regression, there is a vast list of robust methods that might
be used (e.g., Wilcox, 2012b, chapters 10-11). The choice of method
can make a substantial difference in our overall sense about the
association between two variables as is well known in the statistics
literature.  A judicious choice of methods can play a vital role in
narrowing in on a more accurate estimate of a regression line and a
deeper understanding of the association. Each of the more modern
regression estimators that are now available gives rise to new methods
for measuring the strength of an association. And there are
alternatives to Pearson’s correlation that are not tied to any particular
regression estimator. Some of these measures can have a distinct
advantage over Spearman’s rho and Kendall’s tau.
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Skipped correlations make up a class of correlation coefficients
that are of particular interest as they can deal with outliers that can
negatively impact other coefficients. Roughly, they eliminate outliers
using a multivariate outlier detection technique that takes into
account the overall structure of the data and then they apply
Pearson’s correlation, or even Spearman’s rho or Kendall’s tau, to
the remaining data. One version that seems to perform relatively
well is the so-called OP (outlier projection) correlation; see, for
example Wilcox (2012b, section 15.5.5).

9.  Software

SPSS is popular among academics, but it is poorly equipped to
take advantage of modern statistical methods and it has become
increasingly expensive. The result is that the number of academics
using SPSS has declined substantially in recent years. Easily the
best software for applying modern methods is the free software
R(R Development Core Team, 2013), which can be downloaded
from www.r-project.org/. Numerous books now describe how to
use R and it now dominates how most statisticians analyze data.
Users familiar with SAS and SPSS might find the book by Muenchen
(2011) useful.

10.  Illustrations

This section illustrates the extent to which the choice of method
can make a practical difference. All of the analyses were performed
with the R functions described in Wilcox (2012a, b).

The first example is based on data in Khan and Khanum (2012, p.
248). The goal was to fit a regression line that predicts number of
seeds per plant for a variety of lentil based on the number of
flowers.

Figure 3 shows a plot of the data. Note the three points in the
lower right corner indicated by an asterisk. These points are flagged
as outliers using the R function out. The solid line is the least
squares regression line using all of the data. The hypothesis of a
zero slope is rejected (p=.015) using the conventional t test,
suggesting a negative association. The dashed line is the regression
line ignoring the three outliers, which now indicates a positive
association, the point being that even a few outliers can have an
inordinate impact on the least squares regression line. A possibility
is that the nature of the association depends on whether the number
of flowers is relatively large or small, but the sample size is too
small to address this issue in an adequate manner.

The next example illustrates that the measure of central tendency
that is used can make a practical difference. The data are from a
study dealing with the effects of consuming alcohol on hangover
symptoms. Group 1 was a control group and measures reflect
hangover symptoms after consuming a specific amount of alcohol
in a laboratory setting. Group 2 consisted of sons of alcoholic
fathers. The sample size for both groups is 20. Comparing means,
the estimated difference is 4.5, p=.14. Boxplots indicated that the
data are skewed with outliers. Using 20% trimmed means (R function
yuenv2) yields an estimated difference of 3.7, p = .076. The lengths
of the confidence intervals differ substantially; the ratio of the
lengths is .67. Using a percentile bootstrap method again, using a
20% trimmed mean (via the R function trimpb2), p = .0475
suggesting that typical hangover symptoms are higher for the control
group. Comparing medians (with the R function pb2gen and the
argument est=hd) gives similar results: p = .038.

Stromberg (1993) reports data on 29 lakes in Florida dealing with
the average influent nitrogen concentration (NIN) and water
retention time (TW). Least squares regression finds no association
(p=.72). But using a robust regression estimator via the R function
regci, now an association is found (p<.001). There are outliers that
mask an association among the bulk of the data.

Although a few outliers can mask an association, it is noted that the
reverse can happen as illustrated in Wilcox (2012a).

Figure 3: A plot of the number of flowers and the number of seeds
for a variety of lentil. The dashed line is the regression
line using all of the data. The solid line is the regression
line ignoring the three outliers in the lower right corner

11.  Conclusion

It is impossible to describe in a single paper the many advances and
improvements that are now available. There are many details, issues
and techniques beyond those mentioned here. For example, robust
regression smoothers provide a flexible way of dealing with curvature
that can reveal associations that would be routinely missed with
the usual parametric models. There are effective methods for
comparing the tails of distributions. (These methods compare the
upper and lower percentiles.) There are even new methods for
dealing with highly discrete data. The main point is that we now
have the technology for getting a much deeper and more accurate
understanding of data. All that remains is taking advantage of what
modern technology has to offer.
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