

Antioxidant activity of medicinal spices and aromatic herbs

M. Patel Riddhi and T. Jasrai Yogesh

Department of Botany, University School of Sciences, Gujarat University, Ahmedabad-380009, Gujarat, India.

Received for publication January 15, 2012; accepted Feburary 20, 2012

Abstract

Essential oils of many plants besides having a strong and pleasant aroma also are biologically active as an antioxidant. They have an important economic role in the medical and pharmaceutical industries, aromatherapy and cosmetology, production of natural food flavorings and as natural preservative. A variety of free radical scavenging antioxidants are found in dietary sources like fruits, vegetables, aromatic herbs, spices *etc*. The antioxidant role of aromatic principles also have medicinal effects and play important roles in long term health, reduction in the risk of chronic and degenerative diseases and preventing cellular damage, when included in regular diet. Considering the highly significant medicinal role of antioxidant, in the present investigation, effort is made to find out the antioxidant activity screening assays implemented here is % DPPH radical scavenging activity (RSA). All the plant extracts have shown an excellent activity. The highest activity recorded in the present assay is with *Ocimum sanctum* extract 76.608 \pm 0.063 % for DPPH radical scavenging activity.

Key words: Plant extracts, essential oils, antioxidant, free radicals, chronic and degenerative diseases

Introduction

Plants synthesize essential oils to protect from infections and parasites. The essential oils are the secondary metabolites of the aromatic plants which include the fragrant material present in any part from the root, bark, wood, seed, fruit, leaf, flower or in the whole plant (Yoo *et al.*, 2008). Essential oils are made of a complex mixture of organic substances with different functional groups like phenolic compounds containing hydroxyl groups (-OH) and low molecular volatile terpenoids mainly mono- and sesquiterpenes (Kitazurua *et al.*, 2004; Misharina *et al.*, 2009). Many aromatic plants are medicinally important due to these secondary compounds and their usage in regular diet, not only serve as fragrance and flavoring agents but also as dietary antioxidant.

Author for correspondence: Dr. Y.T. Jasrai

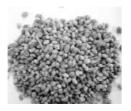
Tel.: +91-09824035684

Antioxidant inhibits oxidation process even at relatively small concentration by acting as a radical scavenger, oxygen scavenger, triplet and singlet form. They possess diverse physiological roles in the body and are a key for good health. Antioxidants are likely to prevent several chronic diseases caused by free radicals such as atheroscelerosis, cancer, diabetes, arthritis, inflammation, cardiovascular and ageing related problems (Kaur and Kapoor, 2001; Apak *et al.*, 2007; Markowicz *et al.*, 2007). Furthermore, they inhibit other food deterioration affecting its nutritional quality and flavor by preventing lipid peroxidation and microbial spoilage and works as a natural preservative agent (Kaur and Kapoor, 2001; Singh *et al.*, 2004; Juki *et al.*, 2006; Markowicz *et al.*, 2007). Thus, nowadays, herbs and spices have great potential in a growing nutrition industry (Samojlik *et al.*, 2010).

Thus, in recent decades, there has been great interest in screening essential oils and various plant extracts to obtain natural antioxidants with broad-spectrum actions (Wu *et al.,* 2009). However, despite of huge medicinal value of Indian medicinal plants, their rich diversity is yet to be scientifically evaluated for such properties.

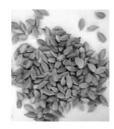
Professor and Head, Department of Botany, University School of Sciences, Gujarat University, Ahmedabad-380009, Gujarat, India. E-mail: yjasrai@yahoo.com

76


Cinnamomum zeylanicum

Cinnamomum tamala

Citrus sinensis


Coriandrum sativum

Cuminum cyminum

Cymbopogon caesius

Elettaria cardamomum

Foeniculum vulgare

Illicium verum

Mentha piperita

Myristica fragrans

Ocimum sanctum Figure 1. Plants used for the study

Table 1. Active phytochemicals present in plants

Plants and part	Phytochemicals
Anethum sowa Roxb. ex Fleming. Seeds	Carvone, limonene, phellandrene, pinene, diterpene, dihydrocarvone, cineole, myrcene, paramyrcene, dillapiole, isomyristicin, myristicin, myristin, apiol, dillapiol
<i>Cinnamomum zeylanicum</i> Blume. Bark	Cinnamaldehyde, eugenol, trans-cinnamic acid
Cinnamomum tamala Nees. & Eberm. Leaves	Phellandrene, eugenol, linalool, cinnamaldehyde, α -and β - pinene, p-cymene, limonene, Caryophyllene
Citrus sinensis Osbek. Fruit peel	Limonene, hesperidin, rutoside, sinensetin, nobiletin, tangeretin, polymethoxylated flavones, hydroxycinnamates, gallic acid, elagic acid
Coriandrum sativum L. Seeds	Linalool, α -and β -pinene, limonene, λ -terpinene, p-cymene, anethole, geraniol, camphorgeranyl acetate
Cuminum cyminum L. Seeds	Cuminaldehyde, p-cymene, cuminic aldehyde, cyminol
<i>Cymbopogon caesius</i> (Nees et Hook et Arn) Stapf. Leaves	Carvone, perillyl alcohol, geraniol, limonene
Elettaria cardamomum (L.) Maton. Fruit	Bisabolene, borneol, campesterol, camphene, camphor, 1, 8-cineole, citronellal, citronellol, geraniol, α-terpinyl acetate, α-terpineol, linalool
Foeniculum vulgare Mill. Seeds	Trans-anethole, fenchones, methylchavicol, anisaldehyde, α -and β -pinene, α -phellandrene, limonene, estragole, safrol, camphene, β -myrcene, p-cymen, salicylic acid, hydroquinone, pyrogallic acid, resorcinol, protochatechenic, chlorogenic acid, vanillin, p-coumaric acid, ferulic acid, o-coumaric acid, coumrin, cinnamic acid
Illicium verum Hook. f Fruit	Trans- and cis-anethole, estragole, limonene, p-anisaldehyde, anisylacetone
Mentha piperita L. Leaves	Menthol, menthone, carvone, pulegone, isorhoifolin, menthoside, piperitoside, nevadensin, hymenoxin, menthocubanone
<i>Myristica fragrans</i> Houtt. Fruit	Eugenol, methyl eugenol methyl isoeugenol, <i>cis</i> -isoeugenol, terpineol isoeugenol, linalool, geraniol, nerol, benzyl alcohol, 2-phenylethanol, pulegone, thujone, cuminol, isoelimicin, terpinen-4-ol., α -and β -pinene, limonene myristicin, safrole
Ocimum sanctum L. Leaves	Cineole, eugenol, ursolic acid, cirsilineol
Santalum album L. Wood	α -and β -Santalol, α -and β -santenes, teresantalol, santenol, santalone, 1-santenone, α -and β -santalic acid
<i>Trachyspermum ammi</i> (L.) Sprague. ex. Turrill. Seeds	Thymol, p-cymene, terpinene, α -pinene, terpinene-4-ol, terpinene, p-cymene

Source: (Singh *et al.*, 2004; Juki *et al.*, 2006; Singh *et al.*, 2006; Khalil *et al.*, 2007; Nickavar *et al.*, 2008; Singh *et al.*, 2008; Farooq *et al.*, 2009; Anwara *et al.*, 2009; Dzamic *et al.*, 2009; Patel and Jasrai, 2009; Kaur and Arora, 2010)

Mechanism of action

During the normal metabolism, oxidation reactions produce free radicals which start off chain reactions. Antioxidants are free radical scavengers and terminate these chain reactions by being oxidized themselves and acting as reducing agents. Antioxidants function as hydrogen donors and inhibit the formation of free alkyl radicals or interrupt the propagation of the free radical chain (Aluyor and Ori-Jesu, 2008; Nahar et al., 2009). They interrupt the harmful free radicals in the body and forms a stable radical (Aluyor and Ori-Jesu, 2008). More precisely, biochemically they function as singlet or triplet oxygen quenchers, free radical scavengers, peroxide decomposers, enzyme inhibitors and synergists (Kitazurua et al., 2004; Mandal et al., 2009). This way they help to prevent several chronic diseases and the process of ageing in the body. Thus, the quest for newer and newer finding to find out more sources of natural antioxidants boost their usage and will lead to fit and healthy body in a natural way. Antioxidant activities of essential oils are mainly attributed to the presence of active principles or Plant Secondary Metabolites (PSMs) and many times to synergistic effect of active principles and other minor metabolites (Table 1).

Screening DPPH radical scavenging activity of plant extracts

DPPH is a stable nitrogen-centered free radical that accepts an electron or hydrogen radical to become a stable diamagnetic molecule (Sanja et al., 2009). The DPPH scavenging ability and reducing power assays provides preliminary information on the reactivity of the test compound with a free radical and its hydrogen-donating propensity (Rathee et al., 2006). During this free radical scavenging assay, the color of DPPH solution changes from deep violet to a pale yellow due to formation of colorless α -Diphenyl- β -picryl hydrazine a stable molecule, via either transfer of an electron or hydrogen atom to DPPH, thus, neutralizing its free radical character (Nickavar et al., 2008; Nahar et al., 2009; Sreelatha and Padma, 2009). Here the odd electron of the radical becomes paired off with hydrogen donated by the extract, resulting in the reduction of absorption strength. DPPH, has characteristic absorbance maxima at 517 nm, which decreases with the scavenging of the radical (Singh et al., 2009; Porwal et al., 2010). The reduction of DPPH radicals can be observed by the decrease in absorbance at 517 nm and on the degree of discoloration due to the radical scavenging ability of antioxidant (Aquil et al., 2006; Sreelatha and Padma, 2009). Many researchers have reported positive correlation and observed that high reduction of DPPH is related to the high scavenging activity and higher amount of antioxidants present in the sample. EC_{50} (Effective concentration of extract needed for 50% free radical inhibition) is the amount of antioxidant present in the sample necessary for 50% DPPH inhibition. Thus, lower the EC_{50} value, higher the antioxidant activity (Ghafar *et al.*, 2010).

Materials and Methods

Collection and extraction of plant material

Plants used in the present study were Anethum sowa Roxb. ex Fleming., Cinnamomum zeylanicum Blume., Cinnamomum tamala Nees. & Eberm., Citrus sinensis Osbek., Coriandrum sativum L., Cuminum cyminum L., Cymbopogon caesius (Nees et Hook et Arn) Stapf., Elettaria cardamomum (L.) Maton., Foeniculum vulgare Mill., Illicium verum Hook. f., Mentha piperita L., Myristica fragrans Houtt., Ocimum sanctum L., Santalum album L. and Trachyspermum ammi (L.) Sprague ex. Turrill. The plant material for the study was purchased from the local markets of Gujarat state (Figure 1). The collected herbs were shade dried. Dried plant material was grinded in to a fine powder with the help of domestic mixture grinder. The powdered drug was then subjected for the solvent extraction. As hexane is a non-polar solvent, can very well dissolve and extract volatile oil components like Monoterpenes. Thus, all the plant powder was extracted in hexane in the ratio of 10 gm powder vs. 100 ml solvent with occasional shaking. The powder was then allowed to soak in the solvent for over night in the air tight erlenmeyer flask. The content was filtered through the whatman filter paper no.1 and concentrated in the air until all the solvent gets evaporated. The extract was subsequently collected in the glass vial and dry weight of each extract was taken.

Antioxidant activity analysis

All the extracts were then subjected for the screening of antioxidant activity following standardized protocols. The chemicals utilized were of pure and analytical grade. Readings were taken in six replicates for each sample. The detailed procedure of the *in vitro* assay was mentioned below. IC_{50} value was calculated for standard, representing the concentration of the compounds that caused 50% inhibition/ antioxidant activity.

DPPH radical scavenging assay

2ml 0.5 mM methanolic solution of DPPH (1,1-diphenyl-2picrylhydrazyl) is mixed with the 2 ml methanolic solution containing 3 mg extract. The mixture was shaken vigorously and allowed to incubate in dark for 30 minutes. Presence of antioxidant activity was indicated by turning of dark violet to brownish color or light yellow. More the antioxidant activity, more paler the colour of mixture after incubation. OD was taken at 517 nm. BHA (Butylated hydroxyl Toluene) was used as a reference compound. The calculation was performed using following formula (Ghasemi *et al.*, 2009). % DPPH Radical Scavenging Activity (RSA)

A control = OD of DPPH solution without extract or standard

A sample = OD of DPPH solution with extract or standard

Results and Discussion

In the DPPH radical scavenging assay, all the hexane extracts at 0.6mg/ml concentration had demonstrated significant antioxidant activity (Figure 2).

The % DPPH RSA IC₅₀ value for standard BHA was observed at 0.08mg/ml concentration. In other terms, 0.08 mg/ml concentration of BHA found to inhibit 50% DPPH radical in the assay. In the present study, *Ocimum sanctum* (76.608 \pm

0.063) had demonstrated maximum % DPPH radical scavenging activity (RSA) followed by Myristica fragrans (58.737 ± 0.598) and *Cinnamomum tamala* (58.704 ± 0.619) extracts. A moderate activity was exhibited by the Trachyspermum ammi (45.556 ± 0.377), Cinnamomum *zeylanicum* (34.539 ± 0.432) , *Mentha piperita* (32.777 ± 0.169) , Cymbopogon caesius (31.672 ± 0.475) , Coriandrum sativum (30.405 ± 0.405) and Anethum sowa extract (29.391 ± 0.477) . While minimum activity was recorded for Citrus sinensis (25.972 ± 0.164) . The solvent hexane was used to isolate the aromatic terpenoid compounds which are the main phytochemicals of the spices (Table 1). Thus, as indicated in the experimental results in Figure 2, all hexane crude extracts had demonstrated presence of appreciable free radical scavenging activity. As the volatile fraction of spices is found to possess free radical scavenging and antioxidant effect, it proves the importance of spices in the diet for good health.

Antioxidant activity of Hexane extracts

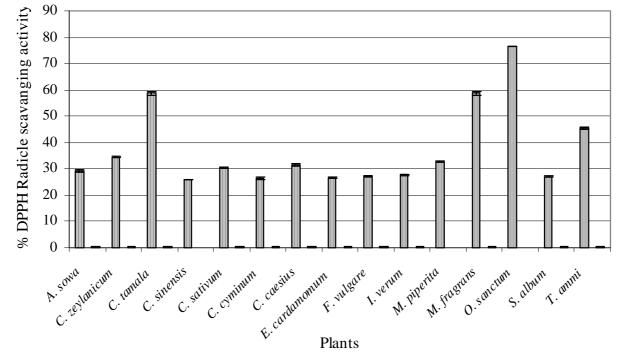


Figure 2. Figure showing amount of % DPPH RSA

Conclusion

Plants used for the present investigation are a routine spices and are part of our daily diet. They are not only taste modifiers but after doing this study, it is proved that they are potential antioxidants. The hydrogen donating tendency of antioxidant molecule neutralizes the damaging free radicals in the body. Thus the present work indicates that we should include spices along with green vegetables and fruit in our daily diet so as to prevent an oxidative damage by free radicals and keep your body fit and fine. Present research work has also contributed for the further development of phytomedicines and nutraceuticles containing these extracts in form of refined drugs and supplements for the protection of body.

Reference

Aluyor, E.O. and Ori-Jesu, M. (2008). The use of antioxidants in vegetable oils - A review. African J. Biotec., 7 (25): 4836 -4842.

Anwara, F.; Alia, M.; Hussaina, A.I. and Shahida, M. (2009). Antioxidant and antimicrobial activities of essential oil and extracts of fennel (*Foeniculum vulgare* Mill.) seeds from Pakistan. Flavour Fragr. J., **24**: 170 -176. Apak, R.; Guclu, K.; Demirata, B.; Ozyurek, M.; Celik, S. E.; Bektasoglu, B.; Berker, K. I. and Ozyurt, D. (2007). Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, **12**: 1496 - 1547.

Aquil, F.; Ahmad, I. and Mehmood, Z. (2006). Antioxidant and free radical scavenging properties of twelve traditionally used Indian medicinal plants. Turk J. Biol., **30**: 177 -183.

Dzamic, A.; Sokovic, M.; Ristic, M.S.; Grijic-Jovanovic, S.; Vukojevic, J. and Marin, P.D. (2009). Chemical composition and antifungal activity of *Illicium verum* and *Eugenia caryophyllata* essential oils. Chem. of Natural Compounds, **45** (2): 220 -221.

Farooq, A.; Ijaz, H.A.; Hussain, S.S.T. and Iqbal, B.M. (2009). Changes in composition and antioxidant and antimicrobial activities of essential oil of fennel (*Foeniculum vulgare* Mill.) fruit at different stages of maturity. J. Herbs, Spices & Medicinal Plants, **15** (2): 187- 202.

Farooq, A.; Muhammad, A.; Abdullah, I.H. and Muhammad, S. (2009). Antioxidant and antimicrobial activities of essential oil and extracts of fennel (*Foeniculum vulgare* Mill.) seeds from Pakistan. Flavour Fragr. J., **24**: 170 -176.

Ghafar, M.F.A.; Prasad, K.N.; Weng, K.K. and Ismail, A. (2010). Flavonoid, hesperidine, total phenolic contents and antioxidant activities from Citrus species. African J. Biotec., **9** (3): 326 -330.

Ghasemi, K.; Ghasemi, Y. and Ebrahimzadeh, M.A. (2009). Antioxidant activity, phenol and flavanoid contents of 13 Citrus species peels and tissues. Pak. J. Pharm. Sci., **22** (3): 277 -281.

Juki, M.; Politeo, O. and Milo, M. (2006). Chemical composition and antioxidant effect of free volatile Aglycones from Nutmeg (*Myristica fragrans* Houtt.) compared to its essential oil. Croatica Chemica Acta, **79** (2): 209 -214.

Kaur, C. and Kapoor, H.C. (2001). Antioxidants in fruits and vegetables: The millennium's health. Int. J. of Food Sci. and Tech., **36**: 703 -725.

Kaur, G.J. and Arora, D.S. (2010). Bioactive potential of *Anethum graveolens*, *Foeniculum vulgare* and *Trachyspermum ammi* belonging to the family Umbelliferae - Current status. J. of Medicinal Plants Res., **4** (2): 087 -094.

Khalil, M.Y.; Moustafa, A.A. and Naguib, N.Y. (2007). Growth, phenolic compounds and antixidant activity of some medicinal plants grown under organic farming condiion. World J. Agri. Scin., **3** (4): 451 -457.

Kitazurua, E.R.; Moreirac, A.V.B.; Mancini-Filhoc, J.; Delince, H. and Villavicencio, A.L.C.H. (2004). Effects of irradiation on natural antioxidants of cinnamon (*Cinnamomum zeylanicum* N.). Radiation Physics and Chemistry, **71**: 37 -39.

Mandal, S.; Yadav, S.; Yadav, S. and Nema, R.K. (2009). Antioxidants: A review. J. Chemical and Pharma. Res., **1** (1): 102 -104.

Markowicz, B.D.H.; Saldanha, L.A.; Catharino, R.R.; Sawaya, A.C.H.F.; Cunha, I.B.S.; Carvalho, P.O. and Eberlin, M.N. (2007). Phenolic antioxidants identified by ESI-MS from Yerba Mate (*Ilex paraguariensis*) and Green Tea (*Camelia sinensis*) extracts. Molecules, **12**: 423 -432.

Misharina, T.A.; Terenina, M.B. and Krikunova, N.I. (2009). Antioxidant properties of essential oils. App. Biochem. and Microbio., **45** (6): 642 -647.

Nahar, L.; Ripa, F.A.; Rokonuzzaman, and Alim Al- Bari, M.A. (2009). Investigation on antioxidant activities of six indigenous plants of Bangladesh. J. Applied Sci. Res., **5** (12): 2285 -2288.

Nickavar, B.; Alinaghi, A. and Kamalinejad, M. (2008). Evaluation of the Antioxidant Properties of Five *Mentha* Species. Iranian J. Pharm. Res., **7** (3): 203 -209.

Patel, R.M. and Jasrai, Y.T. (2009). Plant secondary metabolites and their commercial production. South Asian J. Social and Political Sci., **9** (2): 115 -122.

Porwal, P.; Shukla, K.; Mishra, D.K.; Mahajan, S.C. and Tiwari, A. (2010). comparative *in vitro* antioxidant activity of *Pongamia pinnata* Linn. leaves extracts and isolated compound. Int. J. Pharma. & Biological Archives, **1** (1): 69-75.

Rathee, J.S.; Patro, B.S.; Mula, S.; Gamre, S. and Chattopadhyay, S. (2006). Antioxidant activity of *Piper betel* leaf extract and its constituents. J. Agric. Food Chem., **54**: 9046 -9054.

Samojlik, I.; Lakic, N.; Mimica-Dukic, N.; Akovic-Svajcer, K. and Bozin, B. (2010). Antioxidant and Hepatoprotective potential of essential oils of Coriander (*Coriandrum sativum* L.) and Caraway (*Carum carvi* L.) (Apiaceae). J. Agric. Food Chem., **58**: 8848 -8853.

Sanja, S.D.; Sheth, N.R.; Patel, N.K.; Patel, D. and Patel, B. (2009). Characterization and evaluation of antioxidant activity of *Portulaca oleracea*. Int. J. Pharmacy and Pharma. Sci., **1** (1): 74 -84.

Singh, G.; Kiran, S.; Marimuthu, P.; Isidorov, V. and Vinogorova, V. (2008). Antioxidant and antimicrobial activities of essential oil and various oleoresins of *Elettaria cardamomum* (seeds and pods). J. of the Sci. Food and Agric., **88**: 280 -289.

Singh, G.; Maurya, S.; Catalan, C. and Lampasona, M.P.D. (2004). Chemical constituents, antifungal and antioxidative effects of Ajwain essential oil and its acetone extract. J. Agric. Food Chem., **52**: 3292 - 3296.

Singh, G.; Maurya, S.; de Lampasona, M.P. and Catalan, C.A.N. (2006). Chemical composition, antifungal, antioxidant and sprout suppressant activities of coriander (*Coriandrum sativum*) essential oil and its oleoresin. Flavour Fragr. J., **21**: 472 -479.

Singh, R.; Singh, B.; Singh, S.; Kumar, N.; Kumar, S. and Arora, S. (2009). Investigation of ethyl acetate extract/fractions of *Acacia nilotica* willd. Ex Del as potent antioxidant. Rec. Nat. Prod., **3** (3): 131 -138.

Sreelatha, S. and Padma, P.R. (2009). Antioxidant activity and total Phenolic content of *Moringa oleifera* leaves in two stages of maturity. Plant Foods Hum. Nutr., **64**: 303 -311.

Wu, N.; Fu, K.; Fu, Y.J.; Zu, Y.G.; Chang, F.R.; Chen, Y.H.; Liu, X.L.; Kong, Y.; Liu, W. and Gu, C.B. (2009). Antioxidant activities of extracts and main components of Pigeonpea (*Cajanus cajan* (L.) Millsp.) Leaves. Molecules, **14**: 1032 -1043.

Yoo, K.M.; Lee, C.H.; Lee, H.; Moon, B. and Lee, C.Y. (2008). Relative antioxidant and cytoprotective activities of common herbs. Food Chemistry, **106**: 929 -936.

80