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Abstract
In this paper the scanning techniques of PET and fMRI are presented and discussed in technical terms. The main focus of this paper is the
physiological processes underpinning these techniques and the ways they operate temporally and spatially. Physiological processes captured
by these techniques refer generally to the volume of blood in the brain and the concentration of oxygen in the blood. Temporal and spatial
resolution in the case of these methods refers to data collection when the brain is scanned. Temporal resolution records the exact time when
a cognitive process takes place; spatial resolution demonstrates in what part of the brain such activity takes place. A comparison between
these two techniques shows that one needs the other in terms of measuring the blood and oxygen in the brain so clear pictures of cognitive
processes and their locations to be obtained. Both PET and fMRI are in use from cognitive neuroscience, for through the measures that they
take from the brain, cognitive processes and their locations can be clearly identified and read.
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Introduction

Cognitive neuroscience explores the mind’s cognitive processes by studying the brain’s neural activities. Neural
activities are located in specific regions of the brain and are investigated through imaging techniques such as
PET and fMRI (Otte & Halsband, 2006).

PET (Positron Emission Tomography) and fMRI (functional Magnetic Resonance Imaging) are non-invasive
scanning techniquesi (Shibasaki, 2008). They both make use of cutting-edge technology in order to systematically
study and diagnostically examine the structural and functional complexities of human brain (McKeefry, Gouws,
Burton, & Morland, 2009). PET and fMRI are computerised methods aiming to explore cerebral functions and
disorders.

PET is a scanning technique allowing for the recording of changes in the brain after injury with or without cognitive
activation (Tate, Shenton, & Bigler, 2012). It is also a method that studies higher-order cognitive abilities, such
as language, memory, and perception (Kitson, Cuccurullo, Ciarmiello, Salvo, & Mansi, 2009; Matthews, Johansen-
Berg, Reddy, 2004). Functional MRI is an imaging technique that detects which brain areas are involved in partic-
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ular neural actions, cognitive processes, or emotional responses. It is also a widely used method to investigate
diseased parts of the brain (Billings, Churchill, & Payne, 2010). PET and fMRI explore the brain’s physiological
constraints through spatiotemporal dynamics.

In this paper, it will be discussed how physiological processes have an impact on temporal and spatial resolution
with regards to cognitive operations occurring in various parts of the brain. To this aim, specific examples will be
provided so that the reader to understand how cognitive processes taking place depend on spatiotemporal dynamics
and their physiological stipulations. PET and fMRI make use of physiological processes of the brain so to record
temporal and spatial resolution measurements.

In particular:

1. PET and fMRI investigate the activity of neurons in terms of metabolic changes taking place in blood and
oxygen flow (Ward, 2010, p. 53).ii PET and fMRI look at the volume of blood in the brain and the concentration
of oxygen in the blood (Ito, Ibaraki, Kanno, Fukuda, & Miura, 2005). Both methods measure physiological
processes and record changes when participants are asked to perform cognitive tasks (Whelan, 2007).

2. PET and fMRI temporal and spatial resolution are determined by physiological and cognitive processes
(Chen, Wieckowska, Meyer, & Pike, 2008). PET and fMRI, by recording physiological processes, investigate
mental activities of the brain while at the same time temporal and spatial resolutions generate data - deriving
from neurotransmitter and receptor molecules to large network brain cells - regarding the structure and
function of the brain at all levels (Cavanna & Trimble, 2006; Ganis & Kosslyn, 2002, p. 493).

3. PET and fMRI modalities are considered to be limited not in terms of utility and functionality, but in terms
of accuracy as to the recording of cognitive activities, such as changes taking place on inhibitory and/or
excitatory synapsesiii the distance between which is just a few millimetres as to the physiologic propertiesiv

they depend on (Buckner & Logan, 2001, p. 29; Chen & Li, 2012).

4. In comparing the two techniques what we find is that cognitive processes which are detected through PET
can also be detected from fMRI scanners as well (Berlin, 2011). fMRI scanners can detect more cognitive
activations compared to cognitive activations detected by PET. fMRI scanners prove more powerful from
PET ones for they have been found to be more clinically useful in the detection of hemispheric mapping of
cognitive processes (Sternberg, 2011).

The Human Brain

The human brain is an organ of complicated physiology which consumes 20% of the body’s oxygen available in
the blood (Berker, 1996; Dunn, Ellegala, Fox, & Kim, 2006). It consists of 100.000.000.000 neurons of which
85.000 are lost per day between the ages 20-90 years. For someone who lives up to 90 years of age, the number
of neurons who he/she may lose may increase up to 2.171.750.000 (Gazzaniga, 2009). PET investigates the
brain through radiation, whereas fMRI through magnetic fields of 1.5 to 3 Tesla (T). Images obtained from both
are analysed through voxels (Myers, 2002; Leite, 2009). Voxels are separated to small volumes of thousands,
each of which represents data structures consisted of elements, such as colour and opacity, in a 3-D space
(Crassin, 2011; Goldwasser & Reynolds, 1987). Through PET and fMRI, cognitive neuroscience is able to study
in vivo physiological processes of particular brain regions (Lane et al., 2009; Volkow, Rosen, & Farde, 1997).
Physiological processes are associated to neuronal activation of brain regions involved in task implementation.
Responses collected from performance on tasks explain issues of greater or lower stimulation at specific areas
of the brain (Kelly & Garavan, 2005; Tancredi & Brodie, 2007).
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Physiological Processes Underpinning PET

PET employs radioactivity to quantitatively analyse metabolism and /or neurotransmitter receptors. (Sattler, Lee,
Lonsdale, & Coche, 2010). Radioactivity is contained in naturally occurring elements, such as carbon, oxygen
and nitrogen, which signal out data ready to be analysed (Leopold, 2007; Prichard & Brass, 1992). In PET the
signal is provided by radio-labeled water which, after injection, circulates into the tissue surrounding the blood
vessels (de Barros, Tsourkas, Saboury, Cardoso, & Alavi, 2012; Raichle, Grubb, Gato, Eichling, & Ter-Pogossian,
1976).

Radioactivity is the main method for measuring neural activity through PET (Aine, 1995; Schei, 2011). Radiotracers,
such as oxygen-15 (H2

15O) and fluorine-18 (18F)v are injected into the participant’s bloodstream in order changes
in blood flow in particular brain regions to be directly measured (Kitson et al., 2009). Oxygen-15 can be injected
in the form of water, whereas fluorine-18 is usually injected as glucose sugar (Burger & Townsend, 2007; Wagner,
1985). The distribution of tracers in the brain is the work of local blood supply, whereas variations of signals received
from these tracers are the outcome of blood flow changes (Bammer et al., 2005; Brown, Clark & Liu, 2007). Ra-
diotracers can provide information associated to the circulation of blood flow in a brain area, so emission of signals
to be recorded (Lane et al., 2009). However, other tracers, such as radio-labelled neurotransmitters can also be
used. Radio-labelled neurotransmitters can assist the understanding of substance-induced agents, such as the
effect of drugs in the chemistry of the brain, based on the coupling between neuronal activity, metabolism and
hemodynamics (Jenkins, 2012; Turner & Jones, 2003).

PET images are received by tracing the blood flow with water, or by glucose metabolism containing a hydrogen
atom (Rex et al., 2008).viResearch has shown that blood flow provides better readings of brain function compared
to glucose consumption. This is because blood flow is more sensitive to neural activation than glucose (Kurzban,
2010; Raichle, 1994). Also, blood flow imaging can be repeated more times per session, so changes in cerebral
functions to be recorded for different tasks. The outcome of this are adequately imaged neural activities from dif-
ferent parts of the brain (Frackowiak & Friston, 1994; Mukamel & Fried, 2012).

PET is a sensitive method in that it employs the use of radiotracers labelled with short-lived positron-emitting
isotopes so that chemical reactions in the brain can be read (Ganguly, Mondal, Nandy, & Roesch, 2009; Posner
& Raichle, 1994). Tracers in the blood flow are lacking radioactive stability. In order to come to a normal and bal-
anced form a positron needs to be emitted for spatial images of the brain to be recorded (Leenders, Gibbs,
Frackowiak, Lammertsma, & Jones, 1984; Velikyan, 2011). A positron during PET consumes lower energy in that
it travels a shorter distance – between 2-3mm - to collide with an electron (Phelps, 2000; Roß & Ametamey, 2011).
An electron frees two photons that are spotted by detectors placed around the head and in this way the accuracy
of readings can be monitored (Cherry, 2006; Khalil, 2011).

Biochemical selectivity is another significant feature of PET. Through biochemical selectivity, specific radiotracers
are designed to be selectively bound with molecular targets (Pike, 2009)vii. Molecular targets, such as receptors,
transporters and enzymes influence the metabolism or synthesis of neurotransmitters (Diamanti-Kandarakis et
al., 2009; Weng, Ding, & Volkow, 1999)viii. In this way, PET is also widely used in the study of biochemical and
pharmacological imaging of the brain, together with the identification of anatomical aspects related to cognitive
processes (Drevets, Price, & Furey, 2008; Volkow et al., 1997).

The identification of anatomical aspects through PET refer to the localisation of cognitive processes in certain
areas of the brain. Identification of location helps neuroscientists research interactions between cognitive processes
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via relevant physiological precipitants, such as cerebral blood flow. PET in studying the physiological processes
taking place in the brain greatly contributes to questions of localisation and interaction (Stam & van Straaten,
2012). The biochemical imaging of brain identifies through PET themechanisms involved in the study of compounds
of composite cognitive activities, whereas the pharmacological imaging through this imaging technique is a com-
bination of diagnostic mapping of neuronal activation and drug development in terms of clinical monitoring of the
factors triggering cognitive processes in the brain (Lawrence & Heinz, 2011).

The PET technique explains cognitive processes mediated by respective neural activity (Drevets et al., 2008;
Pinel, 2003). It also helps to diagnose cerebral disorders as well as in the investigation and understanding of the
causes of brain diseases, so that to offer relevant treatments (Linden, 2006).

Physiological Processes Underpinning fMRI

Functional MRI is a non-invasive technique and does not use ionised radiation as it is the case for PET (Kwan-
Hoong, Ahmad, Nizam, & Abdullah, 2003; Sutton, Ouyang, Karampinos, & Miller 2009). Investigation in the
scanner can last up to 60minutes. Functional MRI depends on blood flow increase in vessels and tissues associated
to the brain’s neuronal activity (Belliveau et al., 1991; Moridani, 2009). The outcome of such increase is a reduced
level of deoxyhemoglobin in oxygen extraction (Huppert et al., 2009)ix.

Functional MRI studies neural activity in relation to oxygen levels fluctuated in the blood. Heightened demand for
oxygen in the blood increases neural activity (Laureys, Peigneux, & Goldman 2002; Vazquez, Masamoto, Fukuda,
& Kim, 2010). Increased neural activity means that brain regions are in need for more oxygen. Demands in oxygen
are obtained via increased blood flow to meet neural metabolic activation (Jespersen & Østergaard, 2012; Mintun
et al., 2001).

Functional MRI measures the intensity of radio-waves received by the brain (Devonshire et al., 2012; Price, Allison,
Massoth, Clarke, & Drost, 2002). Magnetic resonance signals are sensitive to the sum of deoxyhemoglobin levels
in the blood (Kim & Ogawa, 2012; Toronov et al., 2003). Deoxyhemoglobin sometimes functions as an internal
contrast-enhancing agent which serves as a source for signals received from fMRI (Bandettini, Wong, Hinks,
Tikofsky, & Hyde, 1992; Kim & Bandettini, 2010). The investigation of neuronal activity via fMRI depends on three
main physiological processes:

1. Blood volume, where cerebral blood flow is measured regionally.

2. Blood flow, where water molecules in blood are magnetically monitored in order for signal changes to be
detected.

3. Blood oxygenation, where blood vessels display falling levels of baseline oxygenation. In this way, neuronal
stimulation increases blood flow, whilst oxygen consumption does not (Bandettini, 2006).

Functional MRI is sensitive to blood oxygen level-dependent signal changes (BOLD)x, and hence highly popular
for “taking” brain mapping images to be taken (Feng, Caprihan, Blagoev, & Calhoun, 2009; Ogawa, Lee, Kay, &
Tank, 1990). Due to venous blood flowing from a region - during neural activity - the production of BOLD signal
changes affects the degree of deoxygenation (Christen, Bolar, & Zaharchuk, 2013; Gore, 2003). This may result
in a displacement of the position of signal change from the location of neural activity to the draining veins (Olman,
Inati, & Heeger 2007). The popularity of the BOLD fMRI methodology relates to the fact that it can be performed
on many clinical scanners, for no external agents, such as tracers or contrast, are required (Chiou & Hillary, 2011;
Kwong et al., 1992).
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Functional MRI can also measure blood flow and blood volume through a method called arterial spin labelling
(ASL). Through this method it is succeeded repetitive measurement of cerebral blood flow (CBF). If we compare
arterial spin labelling to contrast-based methods, such as BOLD, ASL techniques provide a more biologically-
based correlate to the activation of neurons aiming at adequate estimations regarding the location and extent of
neural function (Liu & Brown, 2007). ASL is a rich method for the measure of cerebral blood flow by the help of
fMRI. Another method for measuring perfusionxi with fMRI is dynamic susceptibility contrast (DSC) where quanti-
fication of blood vessels fluid is taken (Zaharchuk et al., 2010). Cognitive neuroscience research is concerned
with the activity of neurons in the brain and has been greatly benefited by the use of perfusion methods such as
ASL and DSC through the technical applications of fMRI.

Neural activity fluctuations influence the BOLD signal. The BOLD signal depends on the hemodynamic response
function (HRF)xii, which follows three stages (Arichi et al., 2012; Hoge & Pike, 2001; Logothetis, Pauls, Augath,
Trinath, & Oeltermann 2001). The initial dipwhere the amount of oxygen consumed from neurons increases levels
of deoxyhemoglobin, whilst it decreases the BOLD signal (Li & Freeman, 2007). The initial dip provides a good
spatial localiser in regard to early neural activity and cerebral blood flow (CBF) increases (Ances, 2004; Wager,
Hernandez, Jonides, & Lindquist, 2007). Next is overcompensation where consumption of increased oxygen
relates to blood flow increase in a particular brain area. Blood flow increase is higher compared to the oxygen
consumption increase (Hoshi & Tamura, 1993; Schleim &Roiser, 2009). That means that the BOLD signal increases
too. The increase in BOLD signal is what fMRI records. Finally, comes undershootingwhere blood flow and oxygen
consumption levels dip prior to coming back to initial stages (Lu, Golay, Pekar, & van Zijl, 2004; Poser, van Mierlo,
& Norris, 2011). This could lead the venous system into relaxation, whilst deoxyhemoglobin levels to a further in-
crease (Aquino, Schira, Robinson, Drysdale, & Breakspear, 2012; McIntyre, Richter, Morden, Wennerberg, &
Frankenstein, 2003).

Functional MRI can also measure metabolic changes through methods called MR spectroscopy and/or fMRI
spectroscopy. MR spectroscopyxiii refers to a non-invasive test of diagnosis which measures metabolic changes
in the form of biochemical alterations in the brain. In this way, what is compared is normal brain activity as to the
chemical composition of brain tissue to brain abnormal activity. MR spectroscopy is very useful tool in the detection
of tissue changes from normal to abnormal brain activity and vice versa (Kirov, Tal, Babb, Herbert, & Cohen,
2013).

The use of fMRI spectroscopy is a combination of magnetic resonance spectroscopy (MRS), fMRI, and diffusion-
tensor imaging (DTI)xiv. Through this combination what is measured are metabolic, functional and connectivity
correlates of brain structures via the activation of neuron-based cognitions. What is obtained is the assessment
of physiological function of observable metabolites and concentration changes of cerebral blood flow and their
correlation to cognitive performance participants are subjected to during tasks (Mangia et al., 2006; Minati, Grisoli,
& Bruzzone, 2007).

In testing a participant across the same brain area, hemodynamic response function does not exhibit important
fluctuations with regards to neural activity. However, when a participant’s brain is scanned across different areas,
hemodynamic response function appears with changes having to do with cerebrovascular (cognitive functions
related to blood vessels supplying the brain) and oscillary brain dynamics (alpha, beta gamma, delta and theta
oscillations activating neural assemblies in different cortical locations) as well as time-frequency distribution (the
study of a signal both in time and frequency domains at the same time) (Akgül, Sankur, & Akin, 2005; Başar,
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Güntekin, & Öniz, 2006; Cohen, 1989); something, which is also the case when different participants take part in
the same study (Schwartz, Maquet, & Frith, 2002). The amount of deoxygenated hemoglobin found within a voxel
may decrease local hemodynamic responses in the order of seconds (Buckner et al., 1996; Eggebrecht et al.,
2012).

Before concluding this part of the discussion, it is argued that PET, fMRI, and MR Spectroscopy are not always
found in concert as to which one could be the process of choice when certain questions about brain functions in-
volving cognitive activations are targeted. That implies that there are researchers who consider that to identifying
particular brain functions, PET, fMRI, MR spectroscopy imaging techniques should better be individually used
and not in combination (Crosson et al., 2010; Pillai, 2010).

To use an example, in studying the dopamine system in the brainxv. The reason I show specific interest to
dopamine is because it's a metabolite which can positively correlate PET and fMRI (Moeller, Tomasi, Honorio,
Volkow, & Goldstein, 2012). Neuroscientists argue that the positive correlation between PET and fMRI, in reference
to dopamine, has to do with the fact that neuronal activation that is elicited in various areas in the brain, such as
the amygdala and the dorsal anterior cingulate cortex can be measured both in terms of 6-[18F]fluoro-L-DOPA
positron emission tomographyxvi as well as functional magnetic resonance imaging BOLD signal changes (Barrio
et al., 1990). A correlation between PET and fMRI, the above areas refer to, is when dopamine is released under
conditions of stress so that regulation between aversive stimuli to be processed (Kienast et al., 2008). PET and
fMRI prove useful techniques for such processing to be recorded and fully measured.

Other example of having PET and fMRI working in unison for the generation of data is the study of serotonin via
a combination of functional and molecular measurements regarding the imaging of its activity in the brain (Gerstl
et al., 2008). Another example could be the study of neurotransmitter systems of noradrenaline and acetylcholine
in view to obtain mapping information as to the regulation of prefrontal cortical function. A combination of PET
and fMRI can again prove useful in respect to the scanning of cognitive activities related to that part of the brain
(Robbins, 2005).

it is suggested that through PET imaging dopaminergic activity can be indirectly mapped by the use of particular
tracers - as from page 3ff of the present article - so that functional consequences of this neurotransmitter to be
observed with regards to the neuronal activation of specific pathways (Slagter et al., 2012).

In comparison to that, imaging dopaminergic activity with fMRI is a direct process. What is meant is that dopam-
inergic activity and/or release is recorded not only through reward consumption - as in note 15 - but also through
reward prediction; in other words, after a task has been completed, as well as before that to be put into an imple-
mentation procedure (Knutson & Cooper, 2005).

Finally, in measuring dopaminergic activity through MR spectroscopy there have been discovered associations
between neurotransmission of mental disorders. A dysfunctional state which relies on dopaminergic activity and
has been explored via MR spectroscopy is the condition of schizophrenia, where associations between glutamate
and dopamine have been recorded as to the onset of this disorder, i.e. dopamine was found being modulated by
glutamate in the case of schizophrenia (Marsman et al., 2013).

In summing up, as to the role of dopamine being examined under differing imaging techniques, such as PET,
fMRI, and MR spectroscopy, there are evidence-based studies proving the role of PET as a general mapping
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technique to the outset of the identification of dopaminergic activity; fMRI as a direct process to signaling out
dopamine in view to identifying issues of prediction and consumption of the reward activity of this neurotransmitter;
and MR spectroscopy in terms of recording interactions of dopamine with other neurotransmitters, such as
glutamate.

Another example could be the study of the cognitive ability of attention. In studying attention via PET imaging,
what is recorded is the relationship of this cognitive ability to particular stimulus features, such as shape, movement,
location, size and colour, when subjects undergo specific tasks (Awh, Vogel, & Oh, 2006). As to the study of at-
tention via fMRI, what can be imaged is the neuronal association between this cognitive ability to decreased per-
ceptions of pain, in a case such as distracting a subject's attention from harmful stimulants (Hammersley, 2010).
As to the study of attention via MR spectroscopy, what can be imaged is the role of attention as intellectual func-
tioning in terms of metabolite changes; in other words, what is imaged are differences in metabolite activity and
how these influence attention during target implementations, such as subjects being prompted to a particular
stimulus regarding visual attention during increase or decrease of amino acids (Yeo et al., 2011).

In summing up, as to the second example I have used regarding the cognitive ability of attention and how that
could be imaged during PET, fMRI and MR spectroscopy techniques, it may be argued that the former of them
studies attention in relation to object observation features so that the brain to be stimulated; fMRI studies how
attention could be increased and/or decreased when neuronal activity is distracted from object observation; whilst,
finally, MR spectroscopy studies attention via metabolic alteration.

What Determines the Temporal and Spatial Resolution of These Methods

Temporal and spatial resolution form an integral part of data collection for both techniques. Temporal resolution
is based on the time needed for a cognitive process to occur, whereas spatial resolution on the location a cognitive
activity is processed in the brain (Roche, Commins, & Dockree, 2009). By ‘location’ it is meant that a brain area
may respond to a stimulus other areas could respond too (Chialvo, 1997; Grill-Spector, Henson, & Martin, 2006).

The spatiotemporal characteristics of PET and fMRI are determined by:

• The knowing-where of cognitive functions anatomy and processes

• The knowing-when of brain activity and human behaviour

• The knowing-what of physiological processes regarding the changes occurring in different brain regions
(Pichler, Kolb, Nägele, & Schlemmer 2010; Weng et al., 1999).

PET and fMRI spatiotemporal resolution is also determined by hemodynamic responses and oxygenation changes
as per the neural activity underpinning these physiological constraints (Detre & Wang, 2002). Temporal resolution
refers to when a neural event takes place and how long it lasts, whereas spatial resolution focuses on where that
neural event is situated (Nadal, Munar, Àngel-Capó, Roselló, & Cela-Conde, 2008; Shadlen & Newsome, 1996).
Cognitive neuroscience does not simply observe where neuronal activity happens but to what extent can be ac-
curately explained in relation to the spatiotemporal underpinnings of its occurrence (Stephan, 2004).

Spatiotemporal dynamics depend on duration (time), frequency (rate of occurrence) and the brain areas cognitive
processes take place (Démonet, Thierry, & Cardebat, 2005; Michel, Seeck, & Landis, 1999). PET has poor tem-
poral resolution (30sec), whereas it has good spatial resolution (10mm); 30sec in PET refers to the time a tracer
needs to reach the brain, whereas another 30sec are needed for radiation to peak (Benaron et al., 2000). Longer
times refer to slower speed, and slower speed in PET emphasises the problem of slow recordings of cognitive

Psychological Thought
2013, Vol. 6(2), 173–195
doi:10.5964/psyct.v6i2.75

Varvatsoulias 179

http://www.psychopen.eu/


processes (Massimini, Huber, Ferrarelli, Hill, & Tononi, 2004). Cognitive processes are normally recorded at a
time closer to one second, which is why PET temporal resolution is poor (Bell, 2004).

Time determines a relatively poor temporal resolution in the order of seconds (1-4sec) for fMRI, but very good
spatial resolution (1mm). For instance, hemodynamic responses may result in a decrease of temporal resolution
from 2sec to 4sec. This is because hemodynamic responses determine time constraints during neural events
(Kwong et al., 1992; Uludağ, 2008). Recording speed is better in fMRI, for it allows cognitive phenomena to be
monitored more accurately, and also to be located more precisely (Detre &Wang, 2002; Marrelec, Ciuciu, Pélégrini-
Issac, & Benali, 2004).

Temporal and spatial resolution measurements are important in the understanding of individual differences between
participants undergoing the same or different cognitive tasks, as well as in the comprehension of cognitive processes
between controls and brain-impaired patients (D’Esposito, 2008). Recordings of cognitive activities through fMRI
provide a better understanding regarding their region and spatial location in the hemispheres (Stevens, Calhoun,
& Kiehl, 2005).

Since spatiotemporal resolution differs between these two methods, PET and fMRI can be employed in association
with event-related or blocked designs (Ward, 2010). Blocked designs are suggested for PET due to the poor
temporal resolution of this method (Horwitz, Friston, & Taylor, 2000; Petersen & Dubis, 2012). Through blocked
designs participants can perform repeated tasks in both PET and fMRI many times (Grabowski & Damasio, 1996).
Event-related fMRI calculates selective averaging of individual tests in mixed tasks in order for brain functions to
be studied more effectively (Jimura & Braver, 2010; Weng et al., 1999).

Comparison Between PET and fMRI

Spatiotemporal resolutions are determined by the study of basic units of activated networks at the time when and
location where neural events occur (Logothetis, 2008). Variability of changes in a signal at the time it is received
and the space it is situated in can also determine PET and fMRI spatiotemporal resolution (Kiebel & Friston, 2004).
Table 1 below presents differences between PET and fMRI scanning techniques applicable to their temporal and
spatial resolution.

In summary, there is an increasing interest both techniques to be used in combination, for PET is a more sensitive
method compared to BOLD fMRI, the reason being the quantitative investigation of events at the molecular level
through the use of radio-labeled tracer molecules and has proved to be the one of the most powerful methodologies
in vivo (Bolus, George, Washington, & Newcomer, 2009; Zaidi & Del Guerra, 2011, p. 5667). As such, PET and
fMRI alone are not accurate to deal with a wide area of questions in a research or diagnostic study. Nowadays,
it is rather common for PET and fMRI readings to be obtained on separate scanners, and then spatially co-registered
via advanced image-alignment algorithms (Hill, Batchelor, Holden, & Hawkes, 2001; Zaidi & Del Guerra, 2011)xx.
In this way, physiological constraints and cognitive processes are able to determine spatiotemporal characteristics
through better and more balanced resolutions (Crosson et al., 2010; Wager et al., 2007).
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Table 1

In Comparing PET and fMRI Several Reasons Can Be Identified for why Spatiotemporal Determination Is an Important Issue for Both These
Methods

Functional Magnetic Resonance Imaging (fMRI)Positron Emission Tomography (PET)

fMRI images the concentration of oxygen in the blood.PET technique images the brain’s blood volume.

In fMRI no radioactive exposure is involved, and signals depend on
deoxyhemoglobin levels. Due to this fact, fMRI imaging can take place
more than once.

PET signals are generated by the use of radioactive tracers. PET
imaging may take place only once.

fMRI makes no use of pharmacological agents.PET makes use of positron-emitting radiopharmaceuticals.

Temporal resolution in fMRI between 1-4sec. Image acquisition rate
is more accurate and images are recorded in more detail (Crosson et
al., 2010; Kim, Richter, & Uğurbil, 1997).

Temporal resolution is 30sec in PET. It is regarded s slow, given the
time needed for cognitive processes to be recorded (1sec).

Functional image resolution for fMRI is 1mm. The more images are
obtained, the higher the spatial resolution can be. In contrast, single

Functional image resolution for PET is 10mm.

signal measurements are usually not preferable for their decay is much
lower than that of multiple images (Bandettini, 2002; Kim et al., 2004).

Functional MRI scan time is very short, on an order of 1.5 to 2.0min
per run, which means that faster functional brain imaging is provided

Multiple imaging acquisitions are required by PET, which means that
participants need to remain in the scanner for extended times (Massoud
& Gambhir, 2003; Poline et al., 2012). and participants do not need extended times in the scanner (Amaro

& Barker, 2006; Pruessmann, Weiger, & Boesiger, 2000).

fMRI produces smaller and quicker resolutions.PET produces much larger and slower resolutions.

Event-related or blocked designs are possible for fMRI. In efMRI
dissimilar stimuli or conditions can intertwine with one anotherxviii.

Only blocked designs are possible for PET (Ward, 2010). In PET
blocked designs, stimuli that refer to the same condition can be
categorised together (Schon, Tinaz, Somers, & Stern, 2008)xvii.

In fMRI some brain regions, such as those near sinusesxix, are difficult
to be imaged (Devlin et al., 2000; Shmueli et al., 2009).

PET is more sensitive in the imaging of the brain, for it can scan the
whole of it.

Signals in fMRI can also be easily altered due to participants’ head
movement partly because of the noise they hear when the fMRI is

Another issue not found the PET is that fMRI is very noisy. That means
that when participants are asked to perform cognitive tasks, they may

operating. In PET, signals are not altered because of head movement
(Goebel, 2007; Seto et al., 2001).

more easily be distracted. Noise, can be an issue for signal changes
too (Ward, 2010)

fMRI as a method of choice to study neuronal activity has been found
to be more direct compared to PET, for on the one hand

PET as a method of choice to study neuronal activity has been found
to be more useful in the identification of object observation in terms of

neurotransmission can be identified not only during or after a particularthe neurotrans-mission involved, which by the help of MR spectroscopy
can be outlined in the form of changes in metabolic activity. task but also prior such task to take place. The conjunction of fMRI to

MR spectroscopy in the study of neurotransmitters can as well be
fruitful because the study of metabolic changes can be recorded in
the increase and/or decrease of neurotransmission activity.

Conclusion

PET and fMRI are imaging techniques studying the human brain. They are non-invasive methods investigating
neural pathways, allowing for cognitive processes to be explored. The physiological underpinnings of PET are
that it researches brain activities via blood flow volume, whereas fMRI that it examines the amount of oxygen in
the blood. PET employs ionised radiation to study the brain by means of injecting in the bloodstream tracers such
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as oxygen-15 and fluorine-18, whilst fMRI studies deoxyhemoglobin levels in the blood, as well as changes in
blood oxygen level-dependent signals (BOLD).

Brain activity and cognitive processes are recorded through corresponding spatiotemporal characteristics. PET
and fMRI spatiotemporal resolution is determined by hemodynamic response measurements and neuronal
activity oxygenation changes in relation to the aforementioned physiological constraints. When and where cognitive
processes take place plays a significant role in the determination of spatiotemporal dynamics in terms of the time
and space of their occurrence. However, there are differences in the spatiotemporal dynamics between these two
methods: PET has poor spatiotemporal resolution, whereas fMRI has a better one.

Functional MRI, unlike PET, is more predominant nowadays (Pichler, Wehrl, & Judenhofer, 2008). One of the
main reasons is that the former does not employ radiation and participants can be studied many times. Another
is that both techniques measure cognitive processes in relation to different physiological constraints. However,
PET and fMRI can both provide an accurate scanning of the whole brain, though fMRI is noisy, compared to PET,
which means that participants’ performance may be affected. PET and fMRI can also prove more elaborate
techniques when conjoined to MR spectroscopy in order that areas in the brain to be offered more detailed
scanning and mapping. Finally, the use of fMRI through ASL has been found very useful in providing more accurate
recordings of the spatial presence of cognitive functions.

PET and fMRI are powerful imaging techniques in the study of neuronal activity and its association to human
cognition. They can correlate positively with each other in the study of neurotransmitters, such as in the case of
dopamine, so that modulation between aversive stimuli to be processed and efficiently recorded. However, there
is still something missing as to the understanding of how neuronal activity - being subjected to physiological
changes - produces cognitive activation. To this day, a possible answer to such question is claimed to be MR
spectroscopy through which metabolite changes can offer explanations as to how parts of the brain with seemingly
less interactions to one another could actually be related to each other in terms of increased or decreased cognitive
activation. That means, as discussed in the main part, that metabolic changes in the brain do influence physiolo-
gical processes occurring in different brain regions; changes, which entail cognitive activation fluctuations precip-
itated by physiological processes.

Notes
i) PET, though it employs ionizing radiation* for the production of imaging data, it is considered as a type of nuclear medicine
noninvasive technique based on painless medical tests (Bailey, Townsend, Valk, & Maisey, 2005). *Ionizing radiation refers
to particles able to carry enough energy, so that an electron to be liberated by an atom or molecule via ionizing it. 'Ionizing
radiation' is produced via artificial or natural nuclear reactions by the help of high temperature. In ionizing radiation are included
alpha, beta, gamma rays, X-rays and cosmic rays (Camphausen & Coia, 2008).
ii) Also, fMRI can measure blood and oxygen flow through ASL (Anterior Spin Labeling) methods. ASL demonstrates easily
and quickly hypo- and hyperperfusion in a variety of different disease cases of general or specific localised scale (Deibler et
al., 2008; Noguchi et al., 2012).
iii) By inhibitory synapse it is meant the nerve impulse in the pre-synaptic cell which reduces the probability an action to be
fired by the post-synaptic cell. By excitatory synapse it is meant an action taking place in a pre-synaptic cell – the release of
a neurotransmitter - with the likelihood to increase an action needed in a post-synaptic cell – stimulated by the release of the
neurotransmitter (cp. Chih, Engelman, & Scheiffele, 2005).
iv) Some of them are: γ–aminobutyric acid, neuropeptides, calcium-binding proteins (parvalbumin and calbindin) (Druga, 2009;
Markram et al., 2004).
v) Oxygen-15 (H215O) refers to radio-labeled water which is useful for measuring the signal intensity coming through the PET
so to directly and specifically to reflect tissue perfusion (de Langen, van de Boogart, Vivian, Marcus, & Lubberink, 2008).

Psychological Thought
2013, Vol. 6(2), 173–195
doi:10.5964/psyct.v6i2.75

Physiological Processes Underpinning PET and fMRI Techniques 182

http://www.psychopen.eu/


Fluorine-18 (18F) is a radio-magnetic agent used in PET brain imaging to detect brain cell activity under various conditions of
examination (Schirrmacher et al., 2006).
vi) Hydrogen atom refers to the radioactive tracing of brain activity under particular tests and/or trials (Antoniewicz, Kelleher,
& Stephanopoulos, 2011).
vii) By ‘molecular targets’ are meant small molecules, proteins, nuclei acids, cells, tissues, or even parts of an organism (Kijanka
et al., 2009).
viii) In such a way, the molecules transport neurotransmitters back into cells and enzymes, the synthesis or metabolism of
which can be used as PET radiotracers (Thanos, Wang, & Volkow, 2008).
ix) The meaning of deoxyhemoglobin refers to the form of hemoglobin, which is the main protein in red blood cells, without
the oxygen. When hemoglobin is loaded with oxygen its colour is red, when it is not, is purple-blue (Berg, Tymoczko, & Stryer,
2011; Toronov et al., 2003).
x) The use of blood oxygen level-dependent signal changes (BOLD) is a specific brain scan – applicable also for the rest of
the body – that maps the neural activity related to blood changes as to the use of energy by cells in the brain (Huettel, Song,
& McCarthy, 2009).
xi) By 'perfusion' is meant "the delivery of blood flow to a tissue or organ" (Wolf & Detre, 2007, p. 346). Another name for the
perfusion in the brain is the cerebral blood flow (CBF) which is demonstrated via ml/g/min, i. e. via the reflection of the volume
of blood flow per gram in the time, measured in terms of minutes (Wolf & Detre, 2007).
xii) The hemodynamic response function explains the dynamic role of the regulation of blood in the brain. It also refers to a
technical principle as well whereupon fMRI is based (Stefanovic, Schwindt, Hoehn, & Silva, 2007).
xiii) MR spectroscopy analyses molecules such as protons or hydrogen ions. Commonly, is proton spectroscopy used. Its use
helps to differentiate metabolites in their existing state in the brain, so that to identify lesions in it. Such metabolites are amino
acids, lactate, lipid, alanine, N-acetyl aspartate, choline, creatine, and myoinositol (Stamper & Vagal, 2010).
xiv) 'Diffusion-tensor imaging' refers to the mapping of the diffusion process of molecules, primarily water, taking place in
biological tissues. What such imaging canmap are minute details of tissue architecture whether in normal or abnormal conditions
(Mandl et al., 2008).
xv) The neurotransmitter of dopamine is concerned with the regulatory system of brain areas that are associated to motor,
cognitive and motivational behaviours (Nieoullon, 2002).
xvi) By '6-[18F]fluoro-L-DOPA positron emission tomography ' there can be studied cerebral kinetics and metabolism "so that
reliable estimation of blood brain barrier transport, decarboxylation and release of stored 6-[18F] fluorodopamine radioactivity
to be measured" (Barrio et al., 1990, p. 487)
xvii) Blocked-designs, or otherwise called ‘Epoch-based designs’, are employed to examine across many trials images of the
brain. They refer to the low temporal resolution imaging that is based on blood dynamics (Bandettini, 1994).
xviii) In event-related functional magnetic resonance imaging (efMRI) what is detected are hemodynamic response changes
in the blood-oxygen level stimuli (BOLD) when neural activity is imaged with relevance to certain events (activation situations
neural activity is observed through) (Henson, in press).
xix) Sinuses are parts found next to brain regions, which have no valves and the blood may flow to different directions. The
aim of fMRI is to create detailed pictures of the air-filled spaces inside the skull (Wilkinson & Paley, 2008).
xx) Image-alignment algorithms refer to the specific alignment of overlapping adjacent images. In this way, it is sought the
correspondence association between adjacent overlapping images of brain regions so that cognitive activation of neural
pathways to be efficiently recorded (Li & Hu, 2010).
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