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ABSTRACT:  
High voltage-gated calcium (CaV) channels are the 

major source for Ca
2+

 influx that underlies Ca
2+

 -
dependent response in excitable cells.  Protein kinase C 

(PKC) is families of protein kinases enzymes that are 
play important roles in several signal transduction 

cascades.   Ca
2+

, CaV channels and PKC are involved in 
the processes of pain, insulin secretion, glucose 
homeostasis, smooth muscle physiology, response to 
neuro-chemicals, receptor sensitization, in modulating 
membrane structure events, in mediating immune 
response, in regulating cell growth, and in learning and 
memory.  The identification of the roles of these 
proteins will provide us significant knowledge for the 
understanding of the complexity of the ion channel 
physiology and regulation of many diseases.  In this 
short communications, we discuss the contribution of 
PKC in the modulation of calcium channels in Xenopus 
oocytes model.       
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INTRODUCTION 

OLTAGE GATED CALCIUM CHANNELS 
(CaV) 
The intracellular processes such as 

contraction, secretion, neurotransmission and gene 

expression are regulate by CaV mediate calcium 

channel influx in response to membrane 

depolarization1.  These channels are a family of 

hetero-multimers classified into six types (CaV 1.2, 

1.3, 1.4, 2.1, 2.2 and 2.3) based on their pore-

forming α1 subunits.  The members of α11.0 

subfamily, 1.2, 1.3 and 1.4 encodes the variants of 

the L-type channels;   α12.1 encodes P/Q-type 

channels, α12.2 encodes N-type channels and α12.3 

encodes R-type channels. The low voltage gated 

calcium channels are known as 3.0 subfamilies2,3.  

The α1 subunit is the largest, and it incorporates 

the conduction pore, the voltage sensor, and the 

gating apparatus.  The β, α2/δ, and γ subunit, viz., 

the N and C termini and the intracellular loops 

between domains I and II, II and III, and III and IV, 

possess the binding/recognition sites for second 

messengers such as G protein β subunits or 

intracellular Ca2+ ([Ca2+]i) as well as sites that can 

be phosphorylated by protein kinase C (PKC)4-6.   

The α1 sub-unit generates a functional CaV channel 

when expressed alone and determines the major 

characteristics of the channels, while the auxiliary 

sub-units modulate the expression and certain 

gating properties of the channels7,8.  
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The cytoplasmic regions of α1 sub-units possess 

recognition sites for a number of second 

messengers and enzymes that modulate channel 

activity and function9,10.   

The CaV1 subfamily initiates contraction, secretion, 

regulation of gene expression, integration of 

synaptic input in neurons, and synaptic 

transmission at ribbon synapses in specialized 

sensory cells.  The CaV2 subfamily is primarily 

responsible for initiation of synaptic transmission 

at fast synapses.  The CaV3 subfamily is important 

for repetitive firing of action potentials in 

rhythmically firing cells such as cardiac myocytes 

and thalamic neurons11.   

Protein kinase C (PKC) 

The family of lipid-activated Ser/Thr protein 

kinases is known as protein kinase C (PKC), 

present at different concentration in different 

cell/tissue types and is divided into three groups of 

isozymes based on co-factor requirements. The 

classical cPKCs-α, βI, βII and γ require 

diacylglycerol, phosphatidylserine (PS) and Ca2+ 

for activation.  The novel PKCs-δ,ε,η and θ  

require diacylglycerol and PS, but are Ca2+-

independent, while the atypical PKCs--ζ, ι/λ  and 

µ require neither Ca2+ nor diacylglycerol12-14. In 

addition, DAG-sensitive PKC isoforms can be 

activated pharmacologically using phorbol esters.  

 

Figure 1. PKC Family. Domain composition of PKC isoforms: pseudosubstrate (green rectangle), C1 domain [orange 

rectangle; C1B domain binds diacylglycerol (DAG)], C2 domain [yellow rectangle; Ca
2+

 binding], hinge segment, kinase 

domain (light blue) and carboxyl-terminal tail (CT; dark blue rectangle). 

  
DIFFERENTIAL REGULATION OF PKC ON 
VOLTAGE GATED CALCIUM CHANNELS 

CaV channels respond differently to various 

activators of PKC.  In the oocyte expression system, 

phorbol-12-myristate, 13-acetate (PMA) did not 

affect CaV1.2c or 2.1 currents, whereas, CaV2.2 and 

2.3 currents were potentiated.  In contrast, acetyl-

β-methylcholine (MCh) potentiated CaV 2.3 

currents, decreased CaV1.2c currents, and failed to 

modulate CaV2.1 or 2.2 currents15.  The selectivity 

of PKC isozyme may allow for the inclusion of 

different ion channels in response to different 

agonists; and the possibility is raised that selective 

PKC isozyme inhibitors may be able to modify the 

action of specific members of the calcium channel 

family because of different isozyme-selective target 

sites on the channels16.   

Phosphorylation at specific PKC sites in the I-II 

linker and C-terminus would seem to be sufficient 

for the activation of CaV 2.2 channels, in the CaV 2.3 

channels, these sites may be necessary but not 

sufficient.  The experiments suggest that the 

PKCβII and PKCε isozymes may be involved in I-II 

linker phosphorylation events when cells are 

stimulated by PMA.  Activation of the CaV 2.3 

channels by MCh additionally requires unique sites 

in the II-III linker and one in the C-terminus17,18. 

The evidence that PKC α is required for the MCh 

but not the PMA effect suggests that PKC α may 

effect phosphorylation at the II-III linker sites16.  

CaV 2.2 channels are critical for pain transduction 

and we found the five phosphorylation sites (Ser-

425, Ser-1757, Ser-2108, Ser-2132 and Thr-422) in 

the CaV 2.2 channels based on the PKC 

phosphorylation.  The contribution of Ser-1757 to 

the increased PMA response may be biologically 

significant.  The differential localization of Ser-

2132 and Ser-1757 of CaV α1 2.2 subunit splice 

variants and the modulation of one of them by PKC 

phosphorylation may be relevant in the regulation 

of the signal transduction for pain.  Thr-422, Ser-

425, and Ser-2108 are homologous to CaV α1 2.3 

subunit Thr-365, Ser-369, and Ser-1995 of CaV α1 
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2.3 subunit, and the latter set of Thr/Ser were 

responsible for PMA- or MCh-induced potentiation 

of CaV α12.317.  The regulation at these sites 

appears to be complex.  The availability or 

phosphorylation state of one site may determine 

the availability or role of another, i.e. the 

phosphorylation events may be ordered. It is 

possible that in the WT, Ser-425 becomes 

phosphorylated and blocks the phosphorylation of 

Thr-422 and the C-terminal sites leading to a 

limited response to PMA.  The combined action of 

Thr-422 or Ser-425 of the I-II linker with Ser-2108 

and not Ser-1757 or Ser-2132 of the C terminus 

suggests specific functional interaction, either 

direct or indirect, between the I-II linker and the C 

terminus. Such an action is analogous to the 

proposed interaction between the II-III linker and 

the C terminus in the CaV α1 2.3 subunit18. 

The mutational analysis suggests that PKCβII may 

be better at phosphorylating C-terminal sites of CaV 

α1 2.2 subunits.  Both PKCβII and PKCε can 

modulate the stimulatory Thr-422 in the I–II linker 

but PKCβII is better at regulating the inhibitory 

Ser-425 site.  The lesser effect of PKC βII, and 

possibly PKCε, at the inhibitory site may be via 

indirect effects of those cPKCs on PKCεfunction. 

Thus, differential activation of PKC isozymes may 

permit separate regulation of different members of 

the Ca channel family.  Even within one channel 

type, activation of different combinations of PKC 

isozymes may allow for graded levels of activation 

or inhibition and susceptibility or resistance of the 

channel to subsequent stimulatory events19-21. 

MCh or PKC isozymes a, βII or ε potentiated CaV2.2 

currents expressed with Cav2.2α1 subunits. The 

potentiation of CaV2.2 currents by MCh or PKC 

isozymes is inhibited by the CaV β subunits.  It is 

suggested that CaV β subunits compete with the 

PKC isozymes for the Ser/Thr PKC target sites on 

the CaV2.2α1 subunits, viz., Thr-422, Ser-425, Ser-

1757, Ser-2108 and Ser-2132. Among these sites, 

Thr-422, Ser-1757 and Ser-2132 are the possible 

PKCα sites since Ser/Thr-Ala mutation of these 

sites inhibited MCh potentiation of CaV2.2α1 

currents.  On the contrary, Ser-2108 is a possible 

PKC βII and ε site since its mutation did not affect 

MCh response.  Taken together it appears that CaV 

2.2α1 subunits are responsible for the pore 

formation and the auxiliary CaV β subunits are for 

their susceptibility to neuromodulators22. 

In differential affect of local anesthetic, isoflurane 

by itself inhibited CaV 2.1 and 2.2 currents in 

quantitatively similar manner, but the effect had a 

significant complexity in view of the activation of 

the PKC isozymes and their target sites. It is 

possible that the stimulatory PKC sites of CaV2.2 α1 

subunit, Thr-422, Ser-1757, Ser-2108 and Ser-

2132 counter-acted the inherent depressant effect 

of isoflurane observed on a wide variety of voltage-

gated channels.  In contrast, the inhibitory site 

(Ser-425), when present augmented the effect of 

isoflurane.  PKCδ potentiated CaV2.2 currents in 

the presence of isoflurane and similarly isoflurane 

was necessary for the potentiation of CaV2.1 

currents by PMA or the combination of PKCβII and 

PKCε.  This study demonstrates the complexity of 

combined direct and indirect actions of an 

anesthetic on an ion channel behavior.  It seems 

likely that PKC isozyme-induced alteration of CaV 

currents by isoflurane may vary in different cell 

types and tissues depending upon the specific PKC 

isozymes that are present.  In addition, it is 

possible that isoflurane-induced modulation of 

PKC activity could also have important 

consequences for other effecter proteins and 

intracellular cascades20, 23.  

CaV β subunits are members of membrane-

associated guanylate kinase family, thereby 

suggesting a role in scaffolding multiple signaling 

pathways around the channel. The tridimensional 

structure of this subunit supports the above 

statement as it has large space for the interaction 

with putative partners24; PKCα may be one such 

partner.  It has been reported by others also that 

PKC responsiveness of the ICa was modulated by 

CaV β subunits in a CaV α1 subunit dependent 

manner17, 25-27.  Taken together, insulin secretion is 

the result of interaction between CaV α1 subunits, 

their Ser/Thr sites, Cav β and PKC isozymes22.   

 

CONCLUSION 
The selectivity of PKC isozyme may allow for the 

inclusion of different ion channels in response to 

different agonists; and the possibility is raised that 

selective PKC isozyme inhibitors may be able to 

modify the action of specific members of the 

calcium channel family because of different 

isozyme-selective target sites on the channels.  
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