
Malik N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 161-166

www.johronline.com 161 | P a g e

For Correspondence:
malik2008ATgmail.com
Received on: November 2013
Accepted after revision: December 2013
Downloaded from: www.johronline.com

• -

1. Introduction
Vector processing was once intimately
associated with the concept of a
"supercomputer". As with most architectural
techniques for achieving high performance, it
exploits regularities in the structure of

Abstract
A vector processor, or array processor, is a central processing unit (CPU) that implements an
instruction set containing instructions that operate on one-dimensional arrays of data called vectors.
This is in contrast to a scalar processor, whose instructions operate on single data items. Vector
processors can greatly improve performance on certain workloads, notably numerical simulation
and similar tasks. Vector machines appeared in the early 1970s and dominated supercomputer
design through the 1970s into the 90s, notably the various Cray platforms. The rapid rise in the
price-to-performance ratio of conventional microprocessor designs led to the vector
supercomputer's demise in the later 1990s.
Today, most commodity CPUs implement architectures that feature instructions for a form vector
processing on multiple (vectorized) data sets, typically known as SIMD (Single Instruction,
Multiple Data). Common examples include VIS, MMX , SSE, AltiVec and AVX . Vector
processing techniques are also found in video game console hardware and graphics accelerators. In
2000, IBM, Toshiba and Sony collaborated to create the Cell processor, consisting of one scalar
processor and eight vector processors, which found use in the Sony PlayStation 3 among other
applications.
Other CPU designs may include some multiple instructions for vector processing on multiple
(vectorised) data sets, typically known as MIMD (Multiple Instruction, Multiple Data) and realized
with VLIW . Such designs are usually dedicated to a particular application and not commonly
marketed for general purpose computing. In the Fujitsu FR-V VLIW/ vector processor both
technologies are combined.

IMPORTANCE OF VECTOR PROCESSING

Naveen Malik, Pankaj Sharma, Naeem Akhtar, Rahul, Hardeep Rohilla

Dronacharya College of Engineering, Khentawas,
Farukhnagar, Gurgaon, India

Journal Of Harmonized Research (JOHR)

Review article

 Journal Of Harmonized Research in Engineering
 1(2), 2013, 161-166

ISSN 2347 – 7393

Malik N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 161-166

www.johronline.com 162 | P a g e

computation, in this case, the fact that many
codes contain loops that range over linear
arrays of data performing symmetric
operations. The origins of vector architecure
lay in trying to address the problem of
instruction bandwidth. By the end of the
1960's, it was possible to build multiple
pipelined functional units, but the fetch and
decode of instructions from memory was too
slow to permit them to be fully exploited.
Applying a single instruction to multiple data
elements (SIMD) is one simple and logical way
to leverage limited instruction bandwidth.
The most powerful computers of the 1970s and
1980s tended to be vector machines, from
Cray, NEC, and Fujitsu, but with increasingly
higher degrees of semiconductor integration,
the mismatch between instruction bandwidth
and operand bandwidth essentially went away.
As of 2009, only 1 of the worlds top 500
supercomputers was still based on a vector
architecture.The lessons of SIMD processing
weren't entirely lost, however. While Cray-
style vector units that perform a common
operations across vector registers of hundreds
or thousands of data elements have largely
disappeared, the SIMD approach has been
applied to the processing of 8 and 16-bit
multimedia data by 32 and 64-bit processors
and DSPs with great success. Under the names
"MMX" and "SSE", SIMD processing can be
found in essentially every modern personal
computer, where it is exploited by image
processing and audio applications. A Vector
processor is a processor that can operate on an
entire vector in one instruction. The operands
to the instructions are complete vectors instead
of one element. Vector processors reduce the
fetch and decode bandwidth as the numbers of
instructions fetched are less. They also exploit
data parallelism in large scientific and
multimedia applications. Based on how the
operands are fetched, vector processors can be
divided into two categories - in memory-
memory architecture operands are directly
streamed to the functional units from the
memory and results are written back to
memory as the vector operation proceeds. In
vector-register architecture, operands are read
into vector registers from which they are fed to
the functional units and results of operations
are written to vector registers. Many

performance optimization schemes are used in
vector processors. Memory banks are used to
reduce load/store latency. Strip mining is used
to generate code so that vector operation is
possible for vector operands whose size is less
than or greater than the size of vector registers.
Vector chaining the equivalent of forwarding in
vector processors - is used in case of data
dependency among vector instructions. Special
scatter and gather instructions are provided to
efficiently operate on sparse matrices.
Instruction set has been designed with the
property that all vector arithmetic instructions
only allow element N of one vector register to
take part in operations with element N from
other vector registers. This dramatically
simplifies the construction of a highly parallel
vector unit, which can be structured as multiple
parallel lanes. As with a traffic highway, we
can increase the peak throughput of a vector
unit by adding more lanes. Adding multiple
lanes is a popular technique to improve vector
performance as it requires little increase in
control complexity and does not require
changes to existing machine code.
2. Brief History:-
Vector processing development began in the
early 1960s at Westinghouse in their Solomon
project. Solomon's goal was to dramatically
increase math performance by using a large
number of simple math co-processors under the
control of a single master CPU. The CPU fed a
single common instruction to all of the
arithmetic logic units (ALUs), one per "cycle",
but with a different data point for each one to
work on. This allowed the Solomon machine to
apply a single algorithm to a large data set, fed
in the form of an array.
In 1962, Westinghouse cancelled the project,
but the effort was restarted at the University of
Illinois as the ILLIAC IV. Their version of the
design originally called for a 1 GFLOPS
machine with 256 ALUs, but, when it was
finally delivered in 1972, it had only 64 ALUs
and could reach only 100 to 150 MFLOPS.
Nevertheless it showed that the basic concept
was sound, and, when used on data-intensive
applications, such as computational fluid
dynamics, the "failed" ILLIAC was the fastest
machine in the world. The ILLIAC approach of
using separate ALUs for each data element is
not common to later designs, and is often

Malik N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 161-166

www.johronline.com 163 | P a g e

referred to under a separate category, massively
parallel computing.A computer for operations
with functions was presented and developed by
Kartsev in 1967
3. Structure of Vector processors:
Commonly called supercomputers, the vector
processors are machines built primarily to

handle large scientific and engineering
calculations. Their performance derives from a
heavily pipelined architecture which operations
on vectors and matrices can efficiently exploit.

Vector Registers

Anatomy of a typical vector processor showing the vector registers and multiple floating point

ALUs.

The "conventional" scalar processing units are
not shown.
Data is read into the vector registers which are
FIFO queues capable of holding 50-100
floating point values. A machine will be
provided with several vector registers, Va, Vb,
etc. The instruction set will contain instruction
which:

• load a vector register from a location in
memory,

• perform operations on elements in the
vector registers and

• store data back into memory from the
vector registers.

Thus a program to calculate the dot-product of
two vectors might look like this:
V_load Va, addA

V_load Vb, addB

V_multiply Vc, Va, Vb

V_sum R1,Vc

1) where the last operation sums the elements
in vector register C and stores the result in a
scalar register, R1.

4. Implematation:-
4.1. Supercomputers:-
The first successful implementation of vector
processing appears to be the Control Data
Corporation STAR-100 and the Texas
Instruments Advanced Scientific Computer
(ASC). The basic ASC (i.e., "one pipe") ALU
used a pipeline architecture that supported both
scalar and vector computations, with peak
performance reaching approximately 20
MFLOPS, readily achieved when processing
long vectors. Expanded ALU configurations
supported "two pipes" or "four pipes" with a
corresponding 2X or 4X performance gain.
Memory bandwidth was sufficient to support
these expanded modes. The STAR was
otherwise slower than CDC's own
supercomputers like the CDC 7600, but at data

Malik N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 161-166

www.johronline.com 164 | P a g e

related tasks they could keep up while being
much smaller and less expensive. However the
machine also took considerable time decoding
the vector instructions and getting ready to run
the process, so it required very specific data
sets to work on before it actually sped anything
up.
The vector technique was first fully exploited
in 1976 by the famous Cray-1. Instead of
leaving the data in memory like the STAR and
ASC, the Cray design had eight "vector
registers," which held sixty-four 64-bit words
each. The vector instructions were applied
between registers, which is much faster than
talking to main memory. The Cray design used
pipeline parallelism to implement vector
instructions rather than multiple ALUs. In
addition the design had completely separate
pipelines for different instructions, for
example, addition/subtraction was implemented
in different hardware than multiplication. This
allowed a batch of vector instructions
themselves to be pipelined, a technique they
called vector chaining. The Cray-1 normally
had a performance of about 80 MFLOPS, but
with up to three chains running it could peak at
240 MFLOPS – a respectable number even as
of 2002.

Cray J90 processor module with four
scalar/vector processors
Other examples followed. Control Data
Corporation tried to re-enter the high-end
market again with its ETA-10 machine, but it
sold poorly and they took that as an opportunity
to leave the supercomputing field entirely. In
the early and mid-1980s Japanese companies
(Fujitsu, Hitachi and Nippon Electric
Corporation (NEC) introduced register-based
vector machines similar to the Cray-1, typically
being slightly faster and much smaller. Oregon-
based Floating Point Systems (FPS) built add-
on array processors for minicomputers, later

building their own minisupercomputers.
However Cray continued to be the performance
leader, continually beating the competition with
a series of machines that led to the Cray-2,
Cray X-MP and Cray Y-MP. Since then, the
supercomputer market has focused much more
on massively parallel processing rather than
better implementations of vector processors.
However, recognising the benefits of vector
processing IBM developed Virtual Vector
Architecture for use in supercomputers
coupling several scalar processors to act as a
vector processor.
4.2. SIMD
Vector processing techniques have since been
added to almost all modern CPU designs,
although they are typically referred to as
SIMD. In these implementations, the vector
unit runs beside the main scalar CPU, and is
fed data from vector instruction aware
programs
4.3. Description
In general terms, CPUs are able to manipulate
one or two pieces of data at a time. For
instance, most CPUs have an instruction that
essentially says "add A to B and put the result
in C". The data for A, B and C could be—in
theory at least—encoded directly into the
instruction. However, in efficient
implementation things are rarely that simple.
The data is rarely sent in raw form, and is
instead "pointed to" by passing in an address to
a memory location that holds the data.
Decoding this address and getting the data out
of the memory takes some time, during which
the CPU traditionally would sit idle waiting for
the requested data to show up. As CPU speeds
have increased, this memory latency has
historically become a large impediment to
performance; see Memory wall.
In order to reduce the amount of time
consumed by these steps, most modern CPUs
use a technique known as instruction pipelining
in which the instructions pass through several
sub-units in turn. The first sub-unit reads the
address and decodes it, the next "fetches" the
values at those addresses, and the next does the
math itself. With pipelining the "trick" is to
start decoding the next instruction even before
the first has left the CPU, in the fashion of an
assembly line, so the address decoder is
constantly in use. Any particular instruction

Malik N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 161-166

www.johronline.com 165 | P a g e

takes the same amount of time to complete, a
time known as the latency, but the CPU can
process an entire batch of operations much
faster and more efficiently than if it did so one
at a time.
Vector processors take this concept one step
further. Instead of pipelining just the
instructions, they also pipeline the data itself.
The processor is fed instructions that say not
just to add A to B, but to add all of the numbers
"from here to here" to all of the numbers "from
there to there". Instead of constantly having to
decode instructions and then fetch the data
needed to complete them, the processor reads a
single instruction from memory, and it is
simply implied in the definition of the
instruction itself that the instruction will
operate again on another item of data, at an
address one increment larger than the last. This
allows for significant savings in decoding time.
To illustrate what a difference this can make,
consider the simple task of adding two groups
of 10 numbers together. In a normal
programming language one would write a
"loop" that picked up each of the pairs of
numbers in turn, and then added them. To the
CPU, this would look something like this:
execute this loop 10 times
 read the next instruction and decode it
 fetch this number
 fetch that number
 add them
 put the result here
end loop
But to a vector processor, this task looks
considerably different:
read instruction and decode it
fetch these 10 numbers
fetch those 10 numbers
add them
put the results here
There are several savings inherent in this
approach. For one, only two address
translations are needed. Depending on the
architecture, this can represent a significant
savings by itself. Another saving is fetching
and decoding the instruction itself, which has to
be done only one time instead of ten. The code
itself is also smaller, which can lead to more
efficient memory use. But more than that, a
vector processor may have multiple functional
units adding those numbers in parallel. The

checking of dependencies between those
numbers is not required as a vector instruction
specifies multiple independent operations. This
simplifies the control logic required, and can
improve performance by avoiding stalls. As
mentioned earlier, the Cray implementations
took this a step further, allowing several
different types of operations to be carried out at
the same time. Consider code that adds two
numbers and then multiplies by a third; in the
Cray, these would all be fetched at once, and
both added and multiplied in a single operation.
Using the pseudocode above, the Cray did:
read instruction and decode it
fetch these 10 numbers
fetch those 10 numbers
fetch another 10 numbers
add and multiply them
put the results here
The math operations thus completed far faster
overall, the limiting factor being the time
required to fetch the data from memory.
Not all problems can be attacked with this sort
of solution. Adding these sorts of instructions
necessarily adds complexity to the core CPU.
That complexity typically makes other
instructions run slower—i.e., whenever it is not
adding up many numbers in a row. The more
complex instructions also add to the complexity
of the decoders, which might slow down the
decoding of the more common instructions
such as normal adding. In fact, vector
processors work best only when there are large
amounts of data to be worked on. For this
reason, these sorts of CPUs were found
primarily in supercomputers, as the
supercomputers themselves were, in general,
found in places such as weather prediction
centres and physics labs, where huge amounts
of data are "crunched"

 5.Conclution:-
Vector supercomputers are not viable due to
cost reason, but vector instruction set
architecture is still useful. Vector
supercomputers are adapting commodity
technology like SMT to improve their price-
performance. Superscalar microprocessor
designs have begun to absorb some of the
techniques made popular in earlier vector
computer systems (Ex - Intel MMX extension).
Vector processors are useful for embedded and

Malik N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 161-166

www.johronline.com 166 | P a g e

multimedia applications which require low
power, small code size and high performance.
6.References
[1]. http://www.wikipedia.org
[2]. Roger Espasa, Mateo Valero, James E.
Smith, ” Vector Architectures: Past, Present
and Future”, in Supercomputing, 1998.

[3]. Hennessy/Patterson Appendix G: Vector
Processing Appendix G
[4]. C. Kozyrakis, D. Patterson, ” Vector vs.
Superscalar and VLIW Architectures for
Embedded Multimedia Benchmarks”, in
MICRO, 2002.

