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1. Introduction 
Feedforward neural networks (FF networks) 
are the most popular and most broadly used 

 

Models in many practical applications. They 
are recognized by many different names, such 
as "multi-layer perceptrons." 
Learning In Feedforward Network  
The Feed Forward Network uses 
a supervised learning algorithm: not only the 
input pattern, but the neural net also needs to 
know to what category the pattern belongs. A 
collection of neurons connected together in a 
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Abstract 
In this Research paper, learning in feedforward networks will be considered. A feed forward 
neural network is an artificial neural network where connections between the units do not form 
a directed cycle. This is different from recurrent neural networks. The feedforward neural network 
was the first and simplest type of artificial neural network devised. In this network, the information 
moves forwardly in only one direction, from the input nodes, through the hidden nodes and to the 
output nodes. There are no cycles or loops in the network. 

 
Fig1: Structure of  feedforward netural 

 

 
A feedforward neural network is a actually inspired 
classification algorithm. It comprise of a (possibly large) 
number of simple neuron-like processing units, organized 
in layers. Every unit in a layer is associated with all the 
units in the previous layer. These connections are not all 
equal, each connection may have a different strength or 
weight. 
 

 
LEARNING IN FEEDFORWARD NEURAL NETWORKS 

 
Naveen Malik, Naeem Akhtar, Hardeep Rohilla, Rahul, Pankaj Sharma  

 
 

Dronacharya College of Engineering, Khentawas, 
Farukhnagar, Gurgaon, India 

Journal Of Harmonized Research (JOHR) 

Review article 

      Journal Of Harmonized Research in Engineering 
      1(2), 2013, 120-124 

 

ISSN 2347 – 7393 



Malik N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 120-124 

www.johronline.com 121 | P a g e  

 

network can be represented by a directed 
graph: 

 
 • Nodes represent the neurons, and arrows 
represent the links between them. 
 • Each node has its number, and a link 
connecting two nodes will have a pair of 
numbers (e.g. (1, 4) connecting nodes 1 and 
4). 
 • Networks without cycles (feedback loops) 
are called a feed-forward networks (or 
perceptron). 
Learning proceeds as follows: a pattern is 
given at the input layer . The pattern will be 
converted in its way through the layers of the 
network until it ranges the output layer. The 
units in the output layer all fit to a different 
category. The outputs of the network as they 
are now compared with the outputs as they 
preferably would have been if this pattern 
were correctly categorized: in the latter case 
the unit with the correct category would have 
had the largest output value and the output 
values of the other output units would have 
been very slightly. On the basis of this 
assessment all the connection weights are 
attuned a little bit to guarantee that, the next 
time this same pattern is presented at the 
inputs, the value of the output unit that agrees 
with the correct category is a little bit greater 
than it is now and that, at the same time, the 
output values of all the other incorrect outputs 
are a little bit lower than they are now. (The 
differences between the actual outputs and the 
venerated outputs are propagated back from 
the top layer to lower layers to be used at 
these layers to a mended connection weights. 
This is why the term backpropagation 
network is also often used to describe this 
type of neural network. 
Time taking in learning :- This  is hard to 
answer. It depends on the magnitude of the 
neural network, the number of patterns to be 

learned, the number of epochs, the 
forbearance of the minimizer and  Computing 
Speed , how much computing time the 
learning phase takes. 
Various learning methods are:- 
1.1. Perceptron Convergence Procedure 
Perceptron was introduced by Frank 
Rosenblatt in the late 1950's with a learning 
algorithm on it. Perceptron may have 
uninterrupted valued inputs. It works in the 
same way as the formal artificial neuron 
distinct before. Its activation is determined 
by equation: 
                   a=wTu + θ 
The perceptron is a binary classifier which 
maps its input  (a real-valued vector) to an 

output value  (a single binary value): 

 
where  is a vector of real-valued 
weights,  is the dot product (which 
here computes a weighted sum), and  is 
the 'bias', a constant term that does not 
depend on any input value. 

The Perceptron Convergence Procedure    
Step 1. Initialize weights and thresholds. 
• set the connection weights wj and the 
threshold value θ  to small random values. 
 
Step 2. Present new input and desired output. 
• present new continuous valued input 
x0,x1,….,xn-1 along with the desired output 
d(t). 
 
Step 3. Calculate actual output calculated by: 
                                                                       
y(t) = fn (  Σ J=0 

n-1 wj(t) xj(t) – θ ) 
 
Step 4. Adapt weights.            
• when an error occurs the connection weights 
adapted by the neuron  by the formula: 
Wj(t + 1) = wj(t) + η [d(t) - y{t)] xj(t) 
where η is a positive gain fraction that ranges 
from 0.0 to 1.0 and controls the  
adaption rate. 
 
Step 5. Repeat by going to Step 2- 4 untill 
error . 



Malik N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 120-124 

www.johronline.com 122 | P a g e  

 

1.2 The Least Mean Square Solution 
It is a modification to the perceptron 
convergence procedure. It reduces the mean 
square error between the desired output of a 
perceptron-like net and the actual output. The 
algorithm is called the Widrow-Hoff or LMS 
algorithm. The LMS algorithm is 
indistinguishable to the perceptron 
convergence procedure except that the hard 
limiting nonlinearity is made linear or 
replaced by a threshold-logic nonlinearity. 
Weights are corrected on every test by an 
amount that depends on the difference 
between  the desired and the actual output. A  
classifier could use desired outputs of 1 for 
class A and 0 for class B. During operation, 
the input would then be assigned to class A 
only if the output was above 0.5. 
 
LMS is a fast algorithm that decreases the 
MSE. The MSE is the average of the biased 
sum of the error for N training sample which 
defined as: 

 
 
where R is the output of the perceptron and Cj 
is the current test inputs. 
In order to train the perceptron by using LMS, 
we can repeat the test set, taking a set of 
inputs, calculating the output and then using 
the error to regulate the weight. This process 
can be done either arbitrarily by the test set, 
or for each test of the set in series. The 
learning rule of LMS is given as: 
 

 
 
The learning rule alters the weight based on 
the error (R-C or expected output minus 
actual output). Once the error is calculated, 
the weights are adjusted by a small amount 
, p in the direction of the input, E. This has 
the effect of regulating the weights to 
diminish the output error. 
The implementation of LMS is very simple. 
Initially, the weights vector is initialized with 
small arbitrary weights. The main repetition 

then arbitrarily selects a test, calculates the 
output of the neuron, and then calculates the 
error. Using the error, the formula of learning 
rule is applied to every weight in the vector. 
 
1.3 Gradient Descent Algorithm  
Gradient descent is a first- 
order optimization algorithm. To find a local 
minimum of a function using gradient 
descent, one takes steps relational to 
the negative of the gradient (or of the 
approximate gradient) of the function at the 
current point. If instead one takes steps 
relational to the positive of the gradient, one 
approaches a local maximum of that function; 
the process is then known as gradient ascent. 
Gradient descent is also known as steepest 
descent, or the method of steepest descent. 
When recognized as the later, gradient 
descent should not be chaotic with the method 
of steepest descent for approximating 
integrals. 
Enhanced approach would be to let the 
Adaline Linear Combiner to find the optimum 
weights by itself through a quest over the 
error surface. Instead of having a decently 
arbitrary search, some intelligence is added to 
the procedure such that the weight vector is 
changed by considering the gradient of e(w) 
iteratively [Widrow 60], according 
to formula known as delta rule: 
 

w(t+1)=w(t)+∆w(t) 
 

where         
  ∆w(t)=-η∇e(w(t)) 

 
In the above formula η is a small positive 
constant, determining the learning rate. 
For the real valued scalar function e (w) on a 
vector space w ∈ RN, the gradient ∇e(w) 
provides the direction of the steepest upward 
slope, so the negative of the gradient is the 
direction of the steepest descent . This fact is 
demonstrated in Figure1 for a parabolic 
error surface on two dimensions. 



Malik N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 120-124 

www.johronline.com 123 | P a g e  

 

                                         

 
Fig2 : Direction of the steepest gradient descent 
on the the paraboliod error on two-dimensional 
weight space . only equpotential curves of the 
error surface is shown instead of the 3D-error 
surface . 
Stepest descent algorithm  

Step 0. Given x0,set n := 0  

Step 1.  dn := −∇f(xk). If dn = 0, then stop.  

Step 2. Solve minα f(xn + αdn) for the 

stepsize αn, perhaps chosen by an exact or 
inexact linesearch.  

Step 3. Set xn+1 ← xn + αndn,n ← n +1. Go 
to Step 1.  

Note from Step 2 and the fact that dn = 

−∇f(xn) is a descent direction, it follows that 

f(xn+1) <f(xn). 
 
1.4 Back propogation Method  
Backpropagation, an abbreviation for 
"backward propagation of errors", is a 
common method of training artificial neural 
networks. From a desired output, the network 
learns from many inputs, similar to the way a 
child learns to identify a dog from examples 
of dogs. 
It is a supervised learning method, and is a 
generalization of the delta rule. For making 
up the training set, it requires a dataset of the 
desired output for many inputs. It is most 
beneficial for feed-forward networks 
(networks that have no feedback, or simply, 
that have no connections that loop). 
Backpropagation requires that the activation 
function used by the artificial neurons (or 
"nodes") be differentiable. 

A Back Propagation network learns by 
example. You give the algorithm specimens 
of what you want the network to do and it 
changes the network’s weights so that, when 
training is finished, it will give you the vital 
output for a particular input. Back 
Propagation networks are perfect for simple 
Pattern Recognition and Mapping Tasks. 
                      

 
 
So, if we put in the first pattern to the 
network, we would like the output to be 0 1 as 
shown in figure 3.2 (a black pixel is 
represented by 1 and a white by 0 as in the 
previous examples). The input and its 
corresponding target are called a Training 
Pair. 
Step of BackProgation algorithm  
1. First apply the inputs to the network and 
work out the output – remember this 
original output could be anything, as the 
initial weights were arbitrary numbers. 
 
2. Next work out the error for neuron B. The 
error is What you want – What you 
actually get, in other words: 
                             ErrorB = OutputB (1-
OutputB)(TargetB– OutputB) 
The “Output(1-Output)” term is necessary in 
the equation because of the Sigmoid 
Function – if we were only using a threshold 
neuron it would just be (Target – 
Output). 
 
3. Change the weight. Let W+BC be the new 
(trained) weight and WAB be the initial 
weight. 
                 W+BC = WBC + (ErrorB x 
OutputA) 
Notice that it is the output of the connecting 
neuron (neuron A) we use (not B). We 
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update all the weights in the output layer in 
this way. 
4. Calculate the Errors for the hidden layer 
neurons. Unlike the output layer we can’t 
compute these directly (because we don’t 
have a Target), so we Back Propagate 
them from the output layer (hence the name 
of the algorithm). This is done by 
taking the Errors from the output neurons and 
running them back through the 
weights to get the errors present in the  hidden 
layer . For example if neuron A is connected 
as shown to B and C then we take the errors 
from B and C to generate an error for A. 
ErrorA = Output A (1 - Output A)(ErrorB 
WAB + ErrorC WAC) 
Again, the factor  “Output (1 - Output )”  is 
present because of the sigmoid squashing 
function. 
5. Having obtained the Error for the hidden 
layer neurons now proceed as in stage 3 
to change the hidden layer weights. By 
repeating this method we can train a network 
of any number of layers. 
2. Applications 
Application of Feed Forward neural  include: 
• Function approximation (modelling) 

• Pattern classification (analysis of time-
series, customer databases, etc). 
• Object recognition (e.g. character 
recognition) 
• Data compression 
• Security (credit card fraud) 
References :- 
1. http://www.fon.hum.uva.nl/praat/manual/

Feedforward_neural_networks_1_1__The
_learning_phase.html 

2. http://en.wikipedia.org/wiki/Perceptron 
3. http://urrg.eng.usm.my/index.php?option=

com_content&view=article&id=165:learn
ing-algorithms-of-neural-network-least-
mean-squarelms-algorithm-
&catid=31:articles&Itemid=70 

4. The Steepest Descent Algorithm for 
Unconstrained Optimization and a 
Bisection Line-search Method Robert M. 
Freund February, 2004 Massachusetts 
Institute of Technology. 

5. www4.rgu.ac.uk/files/chapter3%20-
%20bp.pdf  

6. Comparitive Analysis Of Classification 
Algorithm In Multiple Categories Of 
Bioinformatics D.Chandra Varma 
(M.Tech), D.Dharmaiah M.Tech,(Ph.D) 
,IJERT

 

 

 

 

 


