
Garg S. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 100-103

 www.johronline.com 100 | P a g e

For Correspondence:
shivigarg101ATgmail.com
Received on: October 2013
Accepted after revision: December 2013
Downloaded from: www.johronline.com

1. Introduction
An instruction set, or instruction set
architecture (ISA), is the part of the computer
architecture associated to programming,
including the native data types, instructions,
registers, addressing modes, memory
architecture, interrupt and exception
handling, and external I/O. An ISA includes a
pattern of the set of opcodes (machine

language), and the native commands
implemented by a particular processor.

Abstract:
The ideal memory system alleged by most programmers is one which has high capacity, yet allows
any word to be accessed immediately. To make the hardware estimated this performance, an
increasingly complex memory hierarchy, using caches and techniques like automatic prefetch, has
evolved. However, as the gap between processor and memory speeds continues to widen, these
programmer-visible mechanisms are becoming inadequate.

Keywords: Explicit- fully and clearly expressed, Retrieved- to recover, Native- being the place,
Specifier- to mention,pertaining to.
Abbreviation: ISA-instruction set architecture, I/O-input/output, CISC-complex instruction set
computer, RISC-reduced instruction set computer, VLIW-very long instruction word

INSTRUCTION SET

Shweta Garg, Shrishti Vashist, Shruti Aggarwal

 CSE Department, Dronacharya College Of Engineering,
Gurgaon, India

Journal Of Harmonized Research (JOHR)

Review Article

 Journal Of Harmonized Research in Engineering
 1(2), 2013, 100-103

ISSN 2347 – 7393

Garg S. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 100-103

 www.johronline.com 101 | P a g e

2. Overview
Instruction set architecture is eminent from the
microarchitecture, which is the set of
processor design techniques used to
implement the instruction set. Computers with
different microarchitectures can share a
common instruction set. For example, the Intel
Pentium and the AMD Athlon implement
nearly identical versions of the x86 instruction
set, but have radically different internal
designs.
Some virtual machines that support bytecode,
such as Smalltalk the Java virtual Machine,
and Microsoft's Common language Runtime
virtual machine, as their ISA implement it by
translating the bytecode for commonly used
code paths into native machine code, and
executing less-frequently-used code paths by
interpretation; Transmeta implemented the

x86 instruction set a top VLIW processors in
the same fashion.
3. Classification of instruction sets
A complex instruction set computer (CISC)
has many specialized instructions, which may
only be rarely used in practical programs. A
reduced instruction set computer (RISC)
simplifies the processor by only implementing
instructions that are frequently used in
programs; unusual operations are
implemented as subroutines, where the extra
processor execution time is offset by their rare
use. Theoretically, important types are the
minimal instruction set computer and the one
instruction set computer, but these are not
implemented in commercial processors.
Another variation is the very long instruction
word (VLIW) where the processor receives
many instructions encoded and retrieved in
one instruction word.

4. Instruction types
Examples of operations common to many
instruction sets include:
4.1. Data handling and memory operations
• set a register to a fixed constant value

• move data from a memory location to a
register, or vice versa. Used to store the
contents of a register, result of a
computation, or to retrieve stored data to
perform a computation on it later.

Garg S. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 100-103

 www.johronline.com 102 | P a g e

• read and write data from hardware
devices

4.2. Arithmetic and Logic operations
• add, subtract, multiply, or divide the

values of two registers, placing the result
in a register, possibly setting one or more
condition codes in a status register

• perform bitwise operations, e.g., taking the
conjunction and disjunction of
corresponding bits in a pair of registers,
taking the negation of each bit in a
register

• compare two values in registers (for
example, to see if one is less, or if they are
equal)

4.3. Control flow operations
• branch to another location in the program

and execute instructions there
• conditionally branch to another location

if a certain condition holds
• indirectly branch to another location,

while saving the location of the next
instruction as a point to return to

1) 4.4. Parts of an instruction

One instruction may have several fields,
which identify the logical operation to be
done, and may also include source and
destination addresses and constant values.
This is the MIPS "Add Immediate" instruction
which allows selection of source and
destination registers and inclusion of a small
constant.
On traditional architectures, an instruction
includes an opcode specifying the operation to
be performed, such as "add contents of
memory to register", and zero or more
operand specifiers, which may specify
registers, memory locations, or literal data.
The operand specifiers may have addressing
modes determining their meaning or may be in
fixed fields. In very long instruction
word(VLIW) architectures, which include
many microcode architectures, multiple
simultaneous opcodes and operands are
specified in a single instruction.
Some exotic instruction sets do not have an
opcode field , only operand(s). Other unusual
"0-operand" instruction sets lack any operand
specifier fields, such as some stack machines.

2) 4.4.1. Number of operands
Instruction sets ma y be categorized by the
maximum number of operands explicitly
specified in instructions.
(In the examples that follow, a, b, and c are
(direct or calculated) addresses referring to
memory cells, while reg1 and so on refer to
machine registers.)
• 0-operand (zero-address machines), so

called stack machines: All arithmetic
operations take place using the top one or
two positions on the stack: push a, push
b, add, pop c. For stack machines, the
terms "0-operand" and "zero-address"
apply to arithmetic instructions, but not to
all instructions, as 1-operand push and pop
instructions are used to access memory.

• 1-operand (one-address machines), so
called accumulator machines, include
early computers and many small
microcontrollers: most instructions specify
a single right operand (that is, constant, a
register, or a memory location), with the
implicit accumulator as the left operand

Garg S. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 100-103

 www.johronline.com 103 | P a g e

(and the destination if there is one): load
a, add b, store c. A related class is
practical stack machines which often allow
a single explicit operand in arithmetic
instructions: push a, add b, pop c.

• 2-operand — many CISC and RISC
machines fall under this category:

o CISC — often load a,reg1; add reg1,b;
store reg1,c on machines that are limited
to one memory operand per instruction;
this may be load and store at the same
location

o CISC — move a->c; add c+=b.
o RISC — Requiring explicit memory loads,

the instructions would be: load a,reg1;
load b,reg2; add reg1,reg2; store reg2,c

• 3-operand, allowing better reuse of data:
o CISC — It becomes either a single

instruction: add a,b,c, or more typically:
move a,reg1; add reg1,b,c as most
machines are limited to two memory
operands.

o RISC — arithmetic instructions use
registers only, so explicit 2-operand
load/store instructions are needed: load a,
reg1; load b,reg2; add reg1+reg2->reg3;
store reg3,c; unlike 2-operand or 1-
operand, this leaves all three values a, b,
and c in registers available for further
reuse.

• More operands—some CISC machines
permit a variety of addressing modes that
allow more than 3 operands (registers or
memory accesses), such as the VAX
"POLY" polynomial evaluation
instruction.

References
1. "Intel® 64 and IA-32 Architectures

Software Developer’s Manual"
2. Ganssle, Jack Proactive Debugging
3. http://cpushack.net/CPU/cpu7.html
4. The evolution of RISC technology at IBM

by John Cocke

