
Garg S. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 91-94

 www.johronline.com 91 | P a g e

For Correspondence:
shivigarg101ATgmail.com
Received on: October 2013.
Accepted after revision: November 2013.
Downloaded from: www.johronline.com

1. Introduction
A compiler is a computer program that
transforms source code written in
a programming language into another
computer language as object code. The name
"compiler" is primarily used for programs that
translate source code from a high-level
programming language to a lower level
language or machine code. If the compiled

program can run on a computer whose CPU or
operating system is different from the one on
which the compiler runs, the compiler is
known as a cross-compiler.
A compiler is a special program that processes
statements written in a particular
programming language and turns them into
machine language or "code" that a computer's
processor uses.
When executing , the compiler first parses all
of the language statements syntactically one
after the other and then, in one or more
successive stages or "passes", builds the
output code, making sure that statements that
refer to other statements are referred to
correctly in the final code. Traditionally, the
output of the compilation has been

Abstract:
A compiler’s job is to Lower the abstraction level, eliminate overhead from language abstractions,
map source program onto hardware efficiently hide hardware weaknesses, utilize hardware
strengths equal the efficiency of a good assembly programmer. The process of compiling a set of
source files into a corresponding set of class files is not a simple one, but can be generally divided
into three stages. Different parts of source files may proceed through the process at different rates,
on an "as needed" basis.

Keywords: Specialization- pursuing a particular line of work, Fidelity- strict observance of
promises, Immutable- unchangeable, Trivia- inconsequential, Computation- an act or process.

Abbreviation:-IDE- integrated development environment, IR- intermediate representation

COMPILER AND ITS PHASES

Shweta Garg, Shrishti Vashist, Shruti Aggarwal

 CSE Department, Dronacharya College Of Engineering,
Gurgaon, India

Journal Of Harmonized Research (JOHR)

Review Article

 Journal Of Harmonized Research in Engineering
 1(2), 2013, 91-94 ISSN 2347 – 7393

Garg S. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 91-94

 www.johronline.com 92 | P a g e

called object code or sometimes an object
module.
A compiler is likely to perform many or all of
the following operations: lexical
analysis, preprocessing, parsing,semantic
analysis (Syntax-directed translation), code
generation, and code optimization.
2. Structure of a compiler
Compilers bridge source programs in high-
level languages with the underlying hardware.
A compiler requires
1) determining the correctness of the syntax of
programs
 2) generating correct and efficient object code
 3) run-time organization
 4) formatting output according to assembler
and/or linker conventions.
 A compiler consists of three main parts: the
frontend, the middle-end, and the backend.
The front end checks whether the program is
correctly written in terms of the programming
language syntax and semantics.
In this:-
1) legal and illegal programs are recognized.
2) Errors are reported.
3) Type checking is also performed by

collecting type information.
 The frontend then generates an intermediate
representation or IR of the source code for
processing by the middle-end.
The middle end is where optimization takes
place. Typical transformations for
optimization are removal of useless or
unreachable code, discovery and propagation
of constant values, relocation of computation
to a less frequently executed place (e.g., out of
a loop), or specialization of computation based
on the context. The middle-end generates
another IR for the following backend. Most
optimization efforts are focused on this part.
The back end is responsible for translating the
IR from the middle-end into assembly code.
The target instruction(s) are chosen for each
IR instruction. Register
allocation assigns processor registers for the
program variables where possible. The
backend utilizes the hardware by figuring out
how to keep parallel execution units busy,
filling delay slots, and so on.

A diagram of the operation of a typical multi-
language, multi-target compiler

3. Phases of compiler:-

3.1. Lexical analysis:-

Lexical analysis is the process of analyzing a
stream of individual characters, into a
sequence of lexical tokens to feed into the
parser. It separates characters of the source
language into groups that logically belong
together,these groups are knowns as
tokens.The normal tokens are keywords such
as DO or IF, identifiers and operator
symbols.It is also known as scanner.

For example given the input string:

integer aardvark := 2, b;
Output of the lexical analyzer is:-
keyword integer
word aardvark
assignment operator
integer 2
comma
word b
semi_colon

3.2. Syntax analysis:-

Garg S. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 91-94

 www.johronline.com 93 | P a g e

The syntax analyzer groups tokens together
into syntactic structures.It is also known as
parser.it has two functions:-
1) It checks that the tokens appearing in
its input occur in patterns that are permitted by
the specification of the source language.
2) It imposes on the tokens a tree-like
structure that is used by the subsequent phases
of the compiler.
 Syntax trees are the primary structure used
for compilation, code analysis, binding,
refactoring, IDE features, and code
generation. No part of the source code is
understood without it first being identified and
categorized into one of many well-known
structural language elements.
Syntax trees have three key attributes. The
first attribute is that syntax trees hold all the
source information in full fidelity. This means
that the syntax tree contains every piece of
information found in the source text, every
grammatical construct, every lexical token,
and everything else in between including
whitespace, comments, and preprocessor
directives.
 For example, each literal mentioned in the
source is represented exactly as it was typed.
The syntax trees also represent errors in
source code when the program is incomplete
or malformed, by representing skipped or
missing tokens in the syntax tree.
This enables the second attribute of syntax
trees. A syntax tree obtained from the parser is
completely round trippable back to the text
it was parsed from. From any syntax node, it
is possible to get the text representation of the
sub-tree rooted at that node. This means that
syntax trees can be used as a way to construct
and edit source text. By creating a tree you
have by implication created the equivalent
text, and by editing a syntax tree, making a
new tree out of changes to an existing tree,
you have effectively edited the text.
The third attribute of syntax trees is that they
are immutable and thread-safe. This means
that after a tree is obtained, it is a snapshot of
the current state of the code, and never
changes. This allows multiple users to interact
with the same syntax tree at the same time in
different threads without locking or

duplication. Because the trees are immutable
and no modifications can be made directly to a
tree, factory methods help create and modify
syntax trees by creating additional snapshots
of the tree. The trees are efficient in the way
they reuse underlying nodes, so the new
version can be rebuilt fast and with little extra
memory.
A syntax tree is literally a tree data structure,
where non-terminal structural elements parent
other elements. Each syntax tree is made up
of nodes, tokens, and trivia.
Syntax nodes are one of the primary elements
of syntax trees. These nodes represent
syntactic constructs such as declarations,
statements, clauses, and expressions. .
All syntax nodes are non-terminal nodes in the
syntax tree, which means they always have
other nodes and tokens as children. As a child
of another node, each node has a parent node
that can be accessed through
the Parent property. Because nodes and trees
are immutable, the parent of a node never
changes.
Syntax tokens are the terminals of the
language grammar, representing the smallest
syntactic fragments of the code. They are
never parents of other nodes or tokens. Syntax
tokens consist of keywords, identifiers,
literals, and punctuation. For example, an
integer literal token represents a numeric
value.
3.3. Intermediate code generation:-
The intermediate code generation phase
transforms the parse tree which is the output
of the syntax analyzer into an intermediate-
language representation of the source
program. One popular type of intermediate
language is three address code. A three
address code statement is:
A := B op C
 Where A,B and C are operands and
op is a binary operator.
3.4. Code optimization:-
Code optimization is an optional phase
designed to improve the intermediate code so
that the ultimate program runs faster and takes
less space. Its output is another intermediate
code program that does the same job as the
original, but in a way that saves time and

Garg S. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 91-94

 www.johronline.com 94 | P a g e

space. Optimization is the process of
transforming a piece of code to make more
efficient (either in terms of time or space)
without changing its output or side-effects.
The only difference visible to the code’s user
should be that it runs faster and/or consumes
less memory. It is really a misnomer that the
name implies you are finding an "optimal"
solution— in truth, optimization aims to
improve, not perfect, the result.
Optimization can occur at a number of
"levels":
3.4.1.Design level
At the highest level, the design may be
optimized to make best use of the available
resources.
3.4.2.Source code level
Avoiding poor quality coding can also
improve performance, by avoiding obvious
"slowdowns". After that, however, some
optimizations are possible that actually
decrease maintainability.
3.4.3.Build level
Between the source and compile
level, directives and build flags can be used to
tune performance options in the source code
and compiler respectively.
3.4.4.Compile level
Use of an optimizing compiler tends to ensure
that the executable program is optimized at
least as much as the compiler can predict.
3.4.5.Assembly level
At the lowest level, writing code using
an assembly language, designed for a
particular hardware platform can produce the
most efficient and compact code if the
programmer takes advantage of the full
repertoire of machine instructions.

3.5. Code generation:-
code generation is the process by which
a compiler's code generator converts
some intermediate representation of source
code into a form that can be readily executed
by a machine. It is a mechanism to produce
the executable form of computer programs,
such as machine code, in some automatic
manner.
 compiler's "code generation" phase include:
• Instruction selection: which instructions to

use.
• Instruction scheduling: in which order to

put those instructions. Scheduling is a
speed optimization that can have a critical
effect on pipelined machines.

• Register allocation: the allocation
of variables to processor registers

• Debug data generation if required so the
code can be debugged.

Refernces:-
1. Compiler textbook references A collection

of references to mainstream Compiler
Construction Textbooks

2. Aho, Alfred V.; Sethi, Ravi; and Ullman,
Jeffrey D., Compilers: Principles,
Techniques and Tools(ISBN 0-201-10088-
6) link to publisher

3. Karen Ng, Principal Lead Program
Manager, Microsoft Corporation
Matt Warren, Principal Architect,
Microsoft Corporation
Peter Golde, Partner Architect, Microsoft
Corporation
Anders Hejlsberg, Technical Fellow,
Microsoft CorporationSeptember 2012

