
 Yadav N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 45-53

 www.johronline.com 45 | P a g e

For Correspondence:
nikitachhillar@yahoo.com
Received on: September 2013
Accepted after revision: September 2013
Downloaded from: www.johronline.com

Introduction:
“Job scheduling” refers to a batch system that
supervises and scrutinizes the background data
and applications that are necessary for batch
jobs to occur. Job scheduler is a computer

application for managing unattended behind-
the-scenes program execution. It is also
known as Distributed Resource
Management System and Distributed
Resource Manager. Job Scheduling has been
one of the major components of IT
infrastructure since the early mainframe
systems.
� Long-term scheduling:
The long-term, or admission scheduler,
decides which jobs or processes are to be
acknowledged to enter the ready queue i.e. in

Abstract:
Scheduling is the method by which threads, processes or data flows are given access to system
resources like processor or other resources required. This is basically done to load balance a system
efficiently or accomplish a target quality of service. Scheduling algorithms are required by most
contemporary systems to perform multitasking i.e. execution of more than one process at a time and
multiplexing i.e. transmission of multiple flows simultaneously.
The scheduling is concerned chiefly with:
• Throughput - The total number of processes that complete their execution per time unit.
• Latency, specifically:

o Turnaround time - total time between submission of a process and its completion.
o Response time - amount of time it takes from when a request was submitted until the first

response is produced.
• Fairness / Waiting Time - Equal CPU time to each process (or more generally appropriate times

according to each process' priority). It is the time for which the process remains in the ready
queue.

Keywords: Scheduling, turnaround time, response time, average waiting time, scheduler

REDUCING TIME: SCHEDULING JOB

Nisha Yadav, Nikita Chhillar, Neha jaiswal

Department of Computer Science and Engineering,
Dronacharya College of Engineering, Khentawas, Farukhnagar,

Gurgaon, India

Journal Of Harmonized Research (JOHR)

Original Research Article

 Journal Of Harmonized Research in Engineering
 1(2), 2013, 45-53

ISSN 2347 – 7393

 Yadav N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 45-53

 www.johronline.com 46 | P a g e

the Main Memory which means, when an
attempt is made to execute a program, its
admission to the set of presently executing
processes is either permitted or delayed by the
long-term scheduler . Thus, this scheduler
orders what processes are to run on a system,
and the degree of concurrency to be sustained
at any one time i.e. whether a high or low
number of processes are to be executed
concurrently, and how the split between input
output intensive and CPU intensive processes
is to be handled. So long term scheduler is
responsible for controlling the degree of
multiprogramming. In modern operating

systems, this is used to make certain that real
time processes get sufficient CPU time to
finish their assignments. Without proper real
time scheduling, modern Graphical user
interfaces would seem slow. The long term
queue exists in the Hard Disk or the "Virtual
Memory". Long-term scheduling is also
important in large-scale systems such as batch
processing systems, computer clusters,
supercomputers and render farms. In these
cases, special purpose job scheduler software
is naturally used to support these functions, in
addition to any underlying admission
scheduling support in the operating system.

� Medium term scheduling:
Scheduler temporarily eliminates processes
from main memory and situates them on
secondary memory (such as a disk drive) or
vice versa. This is commonly referred to as
"swapping out" or "swapping in" (also
incorrectly as "paging out" or "paging in").
The medium-term scheduler possibly will
decide to swap out a process which has not

been active for a little time, or a process which
has a low priority, or a process which is page
faulting regularly, or a process which is taking
up a large amount of memory in order to clear
up main memory for other processes,
swapping the process back in later when more
memory is available, or when the process has
been unblocked and is no longer waiting for a
resource.

 Yadav N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 45-53

 www.johronline.com 47 | P a g e

In many systems today which support
mapping virtual address space to secondary
storage other than the swap file, the medium-
term scheduler may essentially perform the
role of the long-term scheduler, by treating

binaries as "swapped out processes" upon
their execution. In this way, when a segment
of the binary is required it can be swapped in
when insisted, or "lazy loaded".

� Short-term scheduling:
The short-term scheduler also called the CPU
scheduler is responsible for deciding which of
the ready, in-memory processes are to be
executed or allocated a processor after a clock
interrupt, an I/O interrupt, an operating system
call or another form of signal. Thus the short-
term scheduler makes scheduling decisions
much more frequently than the long-term or
mid-term schedulers - a scheduling decision
will at a minimum have to be made after every
time slice, and these are very short. This

scheduler can be preemptive, implying that it
is capable of forcibly removing processes
from a CPU when it decides to allocate that
CPU to another process, or non-preemptive
(also known as "voluntary" or "co-operative"),
in which case the scheduler is unable to
"force" processes off the CPU.
A preemptive scheduler relies upon a
programmable interval timer which invokes an
interrupt handler that runs in kernel mode and
implements the scheduling function.

Comparison between Schedulers:

 Yadav N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 45-53

 www.johronline.com 48 | P a g e

S.N. Long Term Scheduler Short Term Scheduler Medium Term Scheduler

1 It is a job scheduler It is a CPU scheduler It is a process swapping
scheduler.

2 Speed is least as compared to
all.

Speed is fastest among the
all.

Speed lies in between short
and long term scheduler.

3 It controls the degree of
multiprogramming

It provides less control
over degree of
multiprogramming

It decreases the degree of
multiprogramming.

4 It is almost absent or minimal
in time sharing system

It is also minimal in time
sharing system

It is an element of Time
sharing systems.

5 It selects processes from pool
and loads them into memory
for execution

It selects those processes
which are ready to execute

It can re-introduce the process
into memory and execution can
be continued.

Scheduling disciplines:
Scheduling disciplines are algorithms used for
allocating resources among parties which
simultaneously and asynchronously demand
them. Scheduling disciplines are used in
routers to handle packet traffic as well as in
operating systems to share processor time
among both threads and processes, disk drives
(I/O scheduling), printers (print spooler), most
embedded systems, etc. The main purposes of
scheduling algorithms are to reduce the
resource starvation and to ensure a fair
distribution amongst the parties consuming the
resources. Scheduling deals with the problem
of deciding which of the outstanding requests
is to be allocated resources. There are many
different scheduling algorithms. In this
section, we introduce several of them.
In packet-switched computer networks and
other statistical multiplexing, the notion of a
scheduling algorithm is used as an
alternative to first-come first-served queuing
of data packets.
The easiest and best-effort scheduling
algorithms are round-robin, fair queuing
which is a max-min fair scheduling algorithm,
proportionally fair scheduling and maximum
throughput. If differentiated or promised
quality of service is offered, as opposed to

best-effort communication, weighted fair
queuing may be utilized.
In advanced packet radio wireless networks
such as HSDPA (High-Speed Downlink
Packet Access) 3.5G cellular system,
channel-dependent scheduling may be used
to take advantage of channel state information.
If the channel conditions are favorable, the
throughput and system spectral efficiency may
be increased. In even more advanced systems
such as LTE, the scheduling is combined by
channel-dependent packet-by-packet dynamic
channel allocation, or by assigning OFDMA
multi-carriers or other frequency-domain
equalization components to the users that best
can utilize them.
� First in first out:
Also known as First Come, First Served
(FCFS), is the simplest scheduling algorithm,
FIFO simply queues processes in the order
that they arrive in the ready queue.
• Since context switches only occur upon

process termination, and no reorganization
of the process queue is required,
scheduling overhead is minimal.

• Throughput can be low, since long
processes can hold the CPU

• Turnaround time, waiting time and
response time can be high for the same
reasons above

 Yadav N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 45-53

 www.johronline.com 49 | P a g e

• No prioritization occurs, thus this system
has trouble meeting process deadlines.

• The lack of prioritization means that as
long as every process eventually

completes, there is no starvation. In an
environment where some processes might
not complete, there can be starvation.

• It is based on Queuing

� Shortest remaining time:
Similar to Shortest Job First (SJF). With this
strategy the scheduler arranges processes with
the least estimated processing time remaining
to be next in the queue. This requires
advanced knowledge or estimations about the
time required for a process to complete.
• If a shorter process arrives during another

process' execution, the currently running
process may be interrupted (known as
preemption), dividing that process into
two separate computing blocks. This
creates excess overhead through additional
context switching. The scheduler must
also place each incoming process into a
specific place in the queue, creating
additional overhead.

• This algorithm is designed for maximum
throughput in most scenarios.

• Waiting time and response time increase
as the process's computational
requirements increase. Since turnaround
time is based on waiting time plus
processing time, longer processes are
significantly affected by this. Overall
waiting time is smaller than FIFO,
however since no process has to wait for
the termination of the longest process.

• No particular attention is given to
deadlines, the programmer can only
attempt to make processes with deadlines
as short as possible.

• Starvation is possible, especially in a busy
system with many small processes being
run.

• This policy is no more in use.
• To use this policy we should have at least

two processes of different priority

� Fixed priority pre-emptive scheduling:
The OS assigns a fixed priority rank to every
process, and the scheduler arranges the
processes in the ready queue in order of their
priority. Lower priority processes get
interrupted by incoming higher priority
processes.

• Overhead is not minimal, nor is it
significant.

• FPPS has no particular advantage in terms
of throughput over FIFO scheduling.

• If the number of rankings is limited it can
be characterized as a collection of FIFO
queues, one for each priority ranking.

 Yadav N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 45-53

 www.johronline.com 50 | P a g e

Processes in lower-priority queues are
selected only when all of the higher-
priority queues are empty.

• Waiting time and response time depend on
the priority of the process. Higher priority
processes have smaller waiting and
response times.

• Deadlines can be met by giving processes
with deadlines a higher priority.

• Starvation of lower priority processes is
possible with large amounts of high
priority processes.

� Round-robin scheduling:
The scheduler assigns a fixed time unit per
process, and cycles through them.
• RR scheduling involves extensive

overhead, especially with a small time
unit.

• Balanced throughput between FCFS and
SJF, shorter jobs are completed faster than
in FCFS and longer processes are
completed faster than in SJF.

• Poor average response time, waiting time
is dependent on number of processes, and
not average process length.

• Because of high waiting times, deadlines
are rarely met in a pure RR system.

• Starvation can never occur, since no
priority is given. Order of time unit
allocation is based upon process arrival
time, similar to FCFS.

 Yadav N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 45-53

 www.johronline.com 51 | P a g e

� Multilevel queue scheduling:
This is used for situations in which processes
are easily divided into different groups. For
example, a common division is made between
foreground (interactive) processes and
background (batch) processes. These two
types of processes have different response-
time requirements and so may have different
scheduling needs. It is very useful for shared
memory problems.
MQS is similar to PRI, except that the jobs
arrive sorted by their priority. For example, all
system jobs may have a higher priority than
interactive jobs, which enjoy a higher priority

than batch jobs. Jobs of different priorities are
placed into different queues.
In some implementations, jobs in all higher
priority queues must be executed before jobs
in any lower priority queue. This absolute
approach can lead to starvation in the same
way as its simplier cousin, PRI. In some
preemptive implementations, a lower-priority
process will be returned to its ready queue, if a
higher-priority process arrives.
Another approach is to time-slice among the
queues. Higher priority queues can be given
longer or more frequent time slices. This
approach prevents absolute starvation.

� Manual scheduling:
A very common method in embedded systems
is to manually schedule jobs. This can for
example be done in a time-multiplexed
fashion. Sometimes the kernel is divided in
three or more parts: Manual scheduling,
preemptive and interrupt level. Exact methods
for scheduling jobs are often proprietary.

• No resource starvation problems.
• Very high predictability; allows

implementation of hard real-time systems.
• Almost no overhead.
• May not be optimal for all applications.
• Effectiveness is completely dependent on

the implementation.

 Yadav N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 45-53

 www.johronline.com 52 | P a g e

.

Uses:
In real-time environments, such as embedded
systems for automatic control in industry (for
example robotics), the scheduler also must
ensure that processes can meet deadlines; this
is crucial for keeping the system stable.
Scheduled tasks are sent to mobile devices and
managed through an administrative back end.
Conclusion:
In practice, these objectives often conflict like
throughput versus latency, thus a scheduler
will implement a suitable negotiation.
Preference is always given to any one of the
above stated concerns depending upon the
user's needs and purposes. While designing an
operating system, a programmer must
consider which scheduling algorithm will
achieve the target in best way for the use
which the system is going to see. There is no
collective or we can say universal “best”
scheduling algorithm, and many operating
systems use extended or combinations of the
scheduling algorithms stated above. For
example, Windows NT/XP/Vista uses a
multilevel feedback queue, a combination of
fixed priority preemptive scheduling, round-
robin, and first in first out. In this system,
threads can dynamically increase or decrease

in priority depending on if it has been serviced
already, or if it has been waiting generally.
Every priority stage is characterized by its
own queue, with round-robin scheduling
amongst the high priority threads and FIFO
among the lower ones. In this common sense,
response time is short for most threads, and
short but critical system threads get completed
very quickly. Since threads can only use one
time unit of the round robin in the highest
priority queue, starvation can be a problem for
longer high priority threads
References:
1. Effect of Job Size Characteristics on Job

Scheduling Performance
2. Brief discussion of Job Scheduling

algorithms
3. Sriram Krishnan. "A Tale of Two

Schedulers Windows NT and Windows
CE"

4. Jump up to: a b "Technical Note TN2028 -
Threading Architectures"

5. "Mach Scheduling and Thread Interfaces"
6. Molnár, Ingo (2007-04-13). "[patch]

Modular Scheduler Core and Completely
Fair Scheduler [CFS]"

 Yadav N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 45-53

 www.johronline.com 53 | P a g e

7. Efficient and Scalable Multiprocessor Fair
Scheduling Using Distributed Weighted
Round-Robin

8. Błażewicz, Jacek; Ecker, K.H.; Pesch, E.;
Schmidt, G.; Weglarz, J. (2001).
Scheduling computer and manufacturing

processes (2 ed.). Berlin [u.a.]: Springer.
ISBN 3-540-41931-4.

9. Stallings, William (2004). Operating
Systems Internals and Design Principles
(fifth international edition). Prentice Hall

