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APPLICATION OF ARTIFICIAL NEURAL NETWORK FOR 
DETERMINATION OF THE ADDITIVES AMOUNT IN THE AUTOMATED 
PROCESS CONTROL SYSTEM OF STEELMAKING IN BASIC OXYGEN 

FURNACE 
 

This paper describes an algorithm of determining the amount of deoxidizing and alloying 
materials that are loaded into the basic oxygen furnace (BOF) and steel ladle on the base 
of information about burdening of melting and chemical composition of the steel using 
artificial neural network (ANN). The analysis of resent researches and publications re-
garding mathematical modeling of BOF melting and application of ANN as such models 
was made. This analysis show that selected topic has novelty and relevance. The sche-
matic of interaction of different kinds of mathematical models in the system of automated 
control of BOF melting is offered. The research of applicability of artificial neural net-
works for determination of quantity of deoxidizing and alloying components is performed. 
The place of the obtained artificial neural network in the overall system of automated 
control of basic oxygen melting is described. The description of the multistep selection 
process of the ANN architecture is given. The correlation coefficients and mean square 
deviations for all parameters are found. The results of performed analysis are considered 
satisfactory. The recommendations for replacement of alloying and deoxidizing compo-
nents in the absence of any of them in stock are given. 
Keywords: modeling, artificial neural network, steel industry. 
 
Сокол С.П., Симкин А.И. Применение искусственной нейронной сети для опре-
деления количества присадок в системе автоматизированного управления вы-
плавкой стали в кислородном конвертере. В статье приводится алгоритм опре-
деления количества раскисляющих и легирующих материалов, загружаемых в ки-
слородно-конвертерную печь и стальковш, на основании информации о шихтовке 
плавки и химическом составе стали с использованием искусственной нейронной 
сети (ИНС). 
Ключевые слова: моделирование, искусственная нейронная сеть, сталеплавильная 
промышленность. 
 
Сокол С.П., Сімкін О.І. Використання штучної нейронної мережі для визначен-
ня кількості присадок в системі автоматизованого управління виплавкою ста-
лі в кисневому конвертері. У статті наводиться алгоритм визначення кількості 
розкислюючих та легуючих матеріалів, що загружаються до киснево-конвертерної 
печі та стальковша, на основі інформації про шихтовку плавки та хімічний склад 
сталі за допомогою штучної нейронної мережі (ШНМ). 
Ключові слова: моделювання, штучна нейронна мережа, сталеплавильна промис-
ловість. 
 
Description of the problem. The most widespread process of steelmaking at the modern steel 

plants is BOF process with the top blowing of the bath with oxygen. Due to the sufficient complexity 
of technological process of melting of quality steel with the given chemical composition and tempera-
ture it is impossible to do without application of an automated control system of melting. Due to the 
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lack of the continuous monitoring of parameters of a melt in the BOF and liquid steel in a ladle the 
software of the system must include a complex of mathematical models which purpose is calculation 
of values of technological parameters for a melting process. Nowadays a large amount of models for 
an assessment of a process of BOF melting is developed, and the majority of them are related to the 
blowing period. However the stage of deoxidizing and alloying of the steel while releasing from the 
BOF has essential impact on steel quality too. Usually the quantity of deoxidizing and alloying com-
ponents is defined from the balance equations or by empirical way that does not always provide 
enough accuracy. Authors considered the possibility of using of ANN for determination of quantity of 
deoxidizing and alloying components. 

Analysis of the last researches and publications. The problem of application of statistic mod-
els on the basis of artificial neural networks in control system of BOF melting was partially considered 
in [1]. The authors developed the complex model consisting of a dynamic model intended for determi-
nation of temperature at the end of a blowing based on a heat balance of melting, and ANN serving for 
setup of coefficients of a dynamic model. In [2] the same authors offered the algorithm of training of 
ANN that allows to slightly increase the accuracy of results. 

In [3], [4] the authors described the process of selection and training of ANN for a prediction of 
temperature of steel at release from the BOF based on information about chemical composition of the 
initial components and a required chemical composition of finished steel. The obtained results 
matched the experimental data with enough high precision. 

In article [5] the authors described the original idea of application of ANN for prediction of end 
time of blowing using the analysis of images of the converter obtained by photographic camera. 

In [6] the authors put forward the idea of determination of amount of components loaded in 
steel on the furnace ladle aggregate. The authors of article also suggest using an artificial neural net-
work for determination of mass of components. The correlation and regression analysis of initial data 
is carried out, the justification for a choice of architecture of ANN which is most suitable for an objec-
tive is given and the analysis of the received results is realized in the article. The obtained accuracy of 
determination of amount of components is satisfactory that allows using the obtained artificial neural 
network in system of automation of the furnace ladle aggregate. 

Among the most known and widely used static models it is possible to mention the models de-
veloped by CRIFM together with CDB [7], B.C. Bogushevsky (VNPP "KIA") [8], A.M. Bigeev 
(Magnitogorsk state metallurgical institute) [9]. The balance method is supposed to be a basis of all 
these models in which the equations of the chemical reactions taking place in the BOF are worked out. 
Quantities of the initial components are defined proceeding the material and heat balance of these re-
actions. Thus these models allow defining a melting burdening knowing a chemical composition and 
temperature of the initial components both a required chemical composition and temperature of ready 
steel. However there is not always an opportunity to define precisely a chemical composition of the 
initial materials because its analysis is not made for all components. So it is usually impossible to de-
fine an exact chemical composition of the scrap covered in the converter, for example. Errors in opera-
tion of static model of calculation of a burdening lead to the need of further blowing that increases du-
ration of melting and reduces BOF productivity. For reduction of influence of unaccounted factors to 
the accuracy of results a number of the correction coefficients determined by an empirical way on the 
basis of experience of the previous melts are used in mathematical models. Thus the last melts are 
considered rather than earlier ones. It allows increasing the accuracy of models but doesn't exclude 
completely a randomness factor. 

The balance equations, allowing calculating quantity of the deoxidizing and alloying materials 
added during draining of metal from the BOF are given in [8] also. First masses of deoxidizing and 
alloying materials are defined on the base of the material balance of chemical components by equa-
tions offered by authors. Then the corrections considering experience of the previous melts are entered 
into them. The developed model allows obtaining saving on account of more exact determination of 
necessary amount of expensive ferroalloys (to 25 kg for melting) according to the authors. 

The objective of the article is describing an algorithm of determining the amount of deoxidiz-
ing and alloying materials using artificial neural network (ANN); pointing the place of the obtained 
ANN in the overall system of automated control of BOF melting; giving the recommendations for re-
placement of alloying and deoxidizing components in the absence of any of them in stock are given. 

Basic material. Application of models in process control system of BOF melting and a prob-



ВІСНИК ПРИАЗОВСЬКОГО ДЕРЖАВНОГО ТЕХНІЧНОГО УНІВЕРСИТЕТУ 
2014р. Серія: Технічні науки Вип. 29 
 ISSN 2225-6733  

 

 190 

lem definition. As it was justified above, the software of the modern process control system of melting 
of steel in the BOF must include implementation of several mathematical models required for calcula-
tion of different parameters based on which the subsystem of melting control works. The diagram of 
interaction of these models is shown in figure 1. 

 

 
 

Fig. 1 – The diagram of interaction of mathematical models 
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Initial data for static model of a burdening of melting are: required chemical composition and 
temperature of finished steel determined by the given steel grade; chemical composition and tempera-
ture of cast iron; chemical composition and properties of the available steel scrap. This model calcu-
lates the summary flow of oxygen required for a blowing and masses of cast iron, scrap, lime and coo-
lers (for example, iron ore, pellets) for a current melting. 

At the same time with burdening model the initial information arrives to model of interim quan-
tity of deoxidizing and alloying materials. It is known that most of them are added on a stream during 
the pouring of steel from the converter in a ladle and only pure metals (for example, nickel, molybde-
num, etc.) are loaded directly into the converter together with steel scrap. 

The blowing begins after required quantity of solid and liquid components are loaded into the 
oxygen converter. Then information dynamic model of a process of a blowing begins operation. It cal-
culates the current temperature of steel, the chemical composition of steel and slag on the base of cur-
rent flow rate of the oxygen moving through a lance, the current position of an oxygen lance relative 
to the level of quiet metal in the BOF, the current chemical composition and the flow rate of flue gases 
and so on. This information is required for operation of a subsystem of melting control and for deter-
mination of the end time of a blowing in case of achievement of the given temperature and a chemical 
composition of steel. 

After the termination of blowing the turning of the converter is executed and selection of probe 
of liquid steel and temperature measurement is made. If results of measurement of temperature and 
chemical composition of steel after blowing meet the requirements the blowing is considered as fin-
ished and steel pours from the converter in a ladle. If not, further blowing is made. 

The static model of a further blowing which is similar to static model of a burdening is used for 
determination of duration of a further blowing, amount of necessary oxygen and mass of added mate-
rials. But this model operates with information about chemical composition of steel after blowing but 
not composition of cast iron and scrap. The turning of the converter and measurement of temperature 
and chemical composition of steel is made again after further blowing. If they are kept within the spe-
cified limits steel is poured. In other case one more further blowing is made. 

After all further blow downs, correction of masses of deoxidizing and alloying materials that are 
loaded into steel during its pouring in a ladle is made. It is based on the known temperature and chem-
ical composition of the steel and the given chemical composition determined by a steel grade by 
means of adjusting static model of a deoxidizing and an alloying of a steel. The same model can con-
sider absence of some materials in a warehouse and their replacement with others that have the same 
influence on a finite chemical composition of steel. 

As it was told above all mathematical models have the correction coefficients allowing consid-
ering the undefined factors which are permanently leading to appearance of an error. 

During their functioning all above-mentioned mathematical models communicate with the cur-
rent database in which information about the current melting gathers from all possible sources: from 
sensors and the transformers situated on object, from the top level of process control system; from 
control systems (mixer section, scrap section, section of furnace ladle, pouring section) or the auto-
mated monitoring system of the BOF department parameters. Mathematical models receive informa-
tion required for their working from a database, and the values calculated by them also are sent to a 
database. Information about last melting moves from the current database to the archive after termina-
tion of melting. Information about previous melts is required for operation of some models (especially 
for static models of a burdening). They receive it from an archive database. 

The subsystem of melting control controls a blowing process based on all information arriving 
from sensors, mathematical models, other subsystems of process control system, results of previous 
blow downs Its task is calculating and setting of all parameters of melting in each moment to receive 
the greatest productivity of the BOF. 

The authors of this article offer to replace two static models of calculation of deoxidizing and 
alloying materials (they are highlighted with gray color in fig. 1) with one statistical model based of 
ANN in addition with the module of calculation of amount of materials depending on their existence 
in a warehouse. The advantage of such approach is that instead of two different mathematical models 
only one is used. And it is developed on a different principle, than calculating of the material balance 
of melting. There are only some linear equations in ANN that replace the difficult balance equations. 
This allows considerably simplifying the software of process control system of melting of steel in the 
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BOF. The following material is devoted to the question of applicability of the offered approach. 
Research of applicability of artificial neural networks for determination of quantity of deoxi-

dizing and alloying components. The authors of this article carried out the researches using real pa-
rameter of more than 2000 melts carried out on one of steelmaking plants of Ukraine from January till 
July, 2012. 

The input parameters obtained from databases of blowing which was first decided to use for 
ANN creation are: the parameter values known before the beginning of a blowing (cast iron mass, 
scrap mass, lime mass, cast iron temperature, chemical composition of cast iron (Mn, Si, S, P) the total 
volume of oxygen for melting, the maintenance of O2 in oxygen, the oxygen temperature, sequence 
number of melting in converter campaign), and the parameter values received after the termination of 
a blowing: temperature and chemical composition of finished steel (C, Si, Mn, S, P, B, N, Al, Ca, Ti, 
V, Cr, Ni, Cu, As, Nb, Mo). Output model parameters are masses of deoxidizing and alloying compo-
nents. 

Before development of a model on the basis of ANN correlation analysis was carried out in 
which correlation coefficients between input and output parameters were defined. The part of output 
values are not practically related to any of input parameters. It turned out that there are those compo-
nents which are used quite seldom (less than in 1% of melts). Before developing the ANN it was de-
cided to exclude those melts in which these components were used, and the components themselves 
from reviewing. As a result the data of 1900 melts was used for development and training of ANN. 
The total quantity of output values thus decreased from 40 to 22. 

Besides, as the result of correlation analysis it was noted that for part of input parameters there 
was no relation to other input and to all output parameters. It was decided to exclude them for simpli-
fication of structure of a network and for avoid of creation of destabilizing factors during training 
ANN. 

As a result the following parameters were left after correlation analysis as input values: 
-  cast iron mass, 
-  lime mass, 
-  cast iron temperature, 
-  chemical composition of cast iron (Mn, Si, P), 
-  pure O2 content in technical oxygen, 
-  oxygen temperature, 
-  number of melt in converter campaign, 
-  chemical composition of steel (C, Si, Mn, P, B, Al, Ti, V, Cr, Ni, Cu, Nb, Mo). 
For creation and training of model on the basis of ANN program Statistica v.8 was used. As the 

exact nature of dependence between input and output parameters is unknown preliminary search of the 
most suitable architecture of an ANN was carried out first. Multi-layer perception (MLP) and net-
works of radial basis functions (RBF) types of ANN took part in reviewing. The quantity of neurons of 
the hidden layer changed from 70 to 100 and functions of activation of neurons of the hidden and out-
put layer for MLP were selected from the list provided in table 1: 

 
Table 1 

Types of activation functions of neurons 
Name of the 

function Identity Logistic Exponential Hyperbolic tangent 

Function look y x  1
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The single available activation function of neurons of the hidden layer for RBF is the normal 

distributions function
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1 exp
22



 
  

 
 

x
y  and the identity function is available for neurons of 

the output layer. 
While creating of ANN 70% of melting passports were used for training, 15% were used for test 

and 15% were used for validation. All parameters of ANN were selected from the above mentioned 
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list in a random way. 50 ANN were trained in total. General parameters of the best ten of which are 
summarized in table 2. 

 
Table 2 

Parameters of the ANN after preliminary search  
In-
dex 

Network 
name 

Training 
perform-

ance 

Test per-
formance 

Validation 
perform-

ance 

Train-
ing 

error 

Test 
error 

Valida-
tion 

error 

Hidden 
activation 

Output 
activa-

tion 

1. MLP 22-52-
22 0.77139 0.72165 0.65486 0.12307 0.15052 0.15487 Logistic Tanh 

2. MLP 22-88-
22 0.77100 0.70938 0.66083 0.12717 0.15912 0.16140 Exponen-

tial Identity 

3. MLP 22-91-
22 0.77046 0.70402 0.65426 0.12518 0.15651 0.15567 Logistic Tanh 

4. MLP 22-75-
22 0.76397 0.71014 0.64726 0.12958 0.15277 0.16747 Tanh Identity 

5. MLP 22-90-
22 0.75402 0.71743 0.65274 0.13285 0.15697 0.15743 Tanh Tanh 

6. MLP 22-81-
22 0.75219 0.70337 0.66188 0.13307 0.15909 0.15605 Logistic Identity 

7. MLP 22-36-
22 0.72803 0.68709 0.65496 0.14143 0.16208 0.15809 Exponen-

tial Tanh 

8. MLP 22-36-
22 0.71627 0.68782 0.64924 0.14516 0.16257 0.15808 Logistic Sine 

9. MLP 22-55-
22 0.69757 0.62998 0.59638 0.11738 0.15532 0.16261 Logistic Logistic 

10.RBF 22-57-
22 -0.02490 -0.0144 -0.0222 25977.8 29173.3 23449.8 Gaussian Iden-

tity 
 
Index is the sequence number of an ANN in the table 2. 
Network name is the name of a neural network. Where MLP or RBF is the network type, the 

first number is the quantity of neurons of an input layer (it is equal to quantity of input variables); the 
second number is quantity of neurons of the hidden layer (it is selected in a random way from the giv-
en range from 70 to 100); the third number is quantity of neurons in an output layer (it is equal to 
quantity of output variables). 

Training performance, Test performance and Validation performance are network performances 
for training, test and validation sets (70%, 15% and 15% from total number of melts, respectively). 
Performance shows the average correlation coefficient of all output variables. Therefore the higher 
performance corresponds to the better quality of an ANN. 

Training error, Test error and Validation error are errors of ANN training for a training, test and 
validation sets, respectively. In this case the error of training is defined as the sum of squares of differ-
ences between the real value of output parameter and the value calculated by ANN. When training an 
artificial neural network all variables are normalized to the range [0; 1] therefore the values of errors 
are not equal to real sum of squares of errors. The less error of training corresponds to the better qual-
ity of an ANN. 

Hidden activation and Output activation are activation functions of neurons for the hidden and 
output layers of neurons, respectively. Tanh is a hyperbolic tangent function, Logistic is logistic func-
tion, Identity is the linear function, Gaussian is a normal distribution function, and Exponential is ex-
ponential function (see table 1). 

As one can see from table 2, neural networks of multi-layer perceptron type better cope with the 
task of determination of additives quantity. The network of radial basis functions having the best in the 
class performance is shown in line 10 for comparing. As it is possible to see, errors of this network 
exceed the errors of networks of multi-layer perceptron type in many times. Those ANN which have 
the greatest performance and the smallest error are highlighted by the gray color in table 2. 

The secondary search was carried out after primary search. MLP networks type were left only 
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with such parameters:  
- activation functions of neurons of the hidden layer are Exponential, Tanh and Logistic, 
- activation functions of neurons of the output layer are Tanh, Logistic and Identity, 
- quantity of neurons of the hidden layer are in range from 50 to 100. 
From results of secondary search it was also left 10 ANN with the best performance which are 

provided in table 3. 
 

Table 3 
Parameters of the ANN after secondary search 

In-
dex 

Network 
name 

Training 
perform-

ance 

Test per-
formance 

Validation 
perform-

ance 

Train-
ing 

error 

Test 
error 

Valida-
tion 

error 

Hidden 
activation 

Output 
activa-

tion 

1. MLP 22-94-
22 0.78003 0.71669 0.65179 0.12354 0.15322 0.16216 Tanh Identity 

2. MLP 22-55-
22 0.77872 0.70120 0.65520 0.12282 0.15793 0.15892 Exponen-

tial Tanh 

3. MLP 22-80-
22 0.77426 0.71977 0.65058 0.12497 0.15290 0.15749 Tanh Tanh 

4. MLP 22-81-
22 0.76319 0.70648 0.65013 0.12990 0.15628 0.16125 Tanh Tanh 

5. MLP 22-64-
22 0.76243 0.69657 0.65402 0.12740 0.15876 0.15630 Logistic Tanh 

6. MLP 22-92-
22 0.74364 0.71093 0.65221 0.13695 0.15950 0.15827 Logistic Identity 

7. MLP 22-61-
22 0.70420 0.63791 0.60608 0.12642 0.16672 0.17377 Exponen-

tial Logistic 

8. MLP 22-93-
22 0.69622 0.64851 0.62385 0.12399 0.15066 0.16298 Logistic Logistic 

9. MLP 22-88-
22 0.64609 0.60249 0.58054 0.12280 0.14871 0.16480 Tanh Logistic 

10.MLP 22-93-
22 0.64493 0.61589 0.60667 0.14611 0.16633 0.16518 Exponen-

tial Logistic 

 
As one can see from tables 2 and 3 all ANN having the smallest error of training and the great-

est performance have different structure but in general their indices do not differ from each other. Fi-
nally it was succeeded to ensure in it after one more search which results aren't given here because of 
their similarity with the results given in tables 2 and 3. Therefore the network at number 1 from table 2 
was selected for further use as having the best indexes in general. Besides it has less quantity of neu-
rons in the hidden layer than another trained ANN that allows to reduce computation time and to re-
duce risk of retraining of a network in case of which the network is set up only for those values on 
which it was trained giving out incorrect results for any other values. As it is possible to see the re-
training didn't occur though productivity and an error for test and validation sets are worse than for a 
training set. 

Analysis of the selected ANN. Let's consider more detailed results of operation of the selected 
network (table 4), estimating correlation coefficients and mean square deviations for all 22 output pa-
rameters. As the materials used in BOF shop for a deoxidizing and an alloying of the steel represent a 
trade secret they will be called simply "Material 1", "Material 2", etc. in the further analysis. As one 
can see from table 4 fourteen of twenty two output parameters have correlation coefficient higher than 
0.7 both for test and for a training set (they are highlighted with gray color in the table 5) that points to 
the strong functional dependence. Remaining eight parameters have correlation coefficient from 0.3 to 
0.7 that points to average functional dependence. Correlation coefficients for a validation set are 
slightly lower than for teaching and test sets in general. This can be explained by small quantity of the 
meltis involved in a validation set and by the principle put in a basis of ANN. 

For example dependences between the experimental data and the results obtained by ANN for 
materials 7 and 9 are given in figures 2 and 3. 
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Table 4 
Analysis of the selected ANN  

Correlation coefficient Mean square deviation Output 
parameter Training set Test set Validation 

set Training set Test set Validation 
set 

Material 1 0.76899 0.77974 0.57209 0.04448 0.04404 0.05343 
Material 2 0.74875 0.68749 0.56797 0.15966 0.18607 0.17500 
Material 3 0.78629 0.75613 0.58742 0.08064 0.07835 0.10963 
Material 4 0.76417 0.77127 —  0.00308 0.00623 0.00317 
Material 5 0.93808 0.85471 0.95292 0.15052 0.14303 0.17500 
Material 6 0.69887 0.60587 0.50969 0.37053 0.35810 0.38568 
Material 7 0.98474 0.98838 0.96793 0.04016 0.03422 0.06393 
Material 8 0.88922 0.88100 0.91720 0.21944 0.24967 0.21936 
Material 9 0.84578 0.78534 0.86580 0.72917 0.78507 0.65370 
Material 
10 0.91181 0.85708 0.90523 0.91931 1.14433 0.97760 

Material 
11 0.88430 0.86943 0.85795 0.33377 0.33916 0.29261 

Material 
12 0.34961 0.29878 0.22091 0.02188 0.00770 0.01103 

Material 
13 0.61470 0.50337 0.36792 0.36267 0.38460 0.45655 

Material 
14 0.71139 0.64810 0.56977 1.20984 1.32512 1.29019 

Material 
15 0.91726 0.83154 0.82987 0.02726 0.03719 0.03995 

Material 
16 0.88491 0.91967 0.84880 4.96193 4.61206 5.78238 

Material 
17 0.37744 0.14388 0.24060 2.38177 2.64120 2.53834 

Material 
18 0.74173 0.70976 0.69574 0.48303 0.52499 0.51263 

Material 
19 0.95469 0.91671 0.79243 0.16262 0.15863 0.19265 

Material 
20 0.59626 0.54415 0.63970 1.20031 1.29421 1.17129 

Material 
21 0.97343 0.97368 0.98060 2.64705 2.38687 2.34316 

Material 
22 0.62811 0.55012 0.51628 2.00322 2.15873 2.35054 

 
As one can see from figure 2, results for a material 7 match the experimental data with high ac-

curacy. For a material 9 (fig. 3) results have more dispersion however it is possible to recognize them 
satisfactory in general. 

The obtained results can be explained as follows. First, the part of components is added quite 
seldom and only for specific steel grades therefore ANN isn't possible to find the functional depend-
ence for determination of their quantity. Secondly, it was clarified by the authors that though some 
materials are added quite frequently but almost unsystematic because of the poor organization of pro-
duction. In that case because of absence of correlation between quantity of this material and input pa-
rameters of ANN also can't find the dependence that allows defining mass of this material. Thirdly, 
basic data for training of ANN could contain erratic parameter values because of signal processing 
errors from sensors and failures of sensors that also could add the share of an error. 

The place of the developed model in process control system of steel melting in BOF. This 
model can be applied before the beginning of blowing using results of operation of the static model of 
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a burdening of melting and also a required chemical composition and steel temperature as input data. 
In this case it calculates preliminary quantities of deoxidizing and alloying materials. The same model 
can be applied after termination of blowing too. Real parameter values of ready steel are used as basic 
data in such case. This allows obtaining the specified masses of added materials. 
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Fig. 2 – Results of calculation of mass of material 7 
 

Trained ANN can be saved as the file written in the C language that allows integrating it into 
any shell program easily. The source code of the program is intended for operation in command line 
therefore the interface of the program should be overworked for more comfortable operation with it. 

The program should be added with the subprogram receiving information about existence of the 
required materials in a warehouse for increasing of functionality. In case of the absence of any mate-
rial calculated by model on the basis of ANN it is possible to recalculate the masses of added materials 
based on the material balance of chemical components considering materials that are available in a 
warehouse. 

For example, the neural network calculated that 1 ton of the material having the following chem-
ical composition is required for melting: 70% of manganese and 30% of iron. But only a material con-
taining 80% of manganese and 20% of iron and the steel scrap containing 95% of iron is available in a 
warehouse. 

Thus it is required of 1000x70/100 = 700 kg of manganese and 1000x30/100 = 300 kg of iron 
for melting. Percentage of manganese in a material containing in a warehouse is 80% then it is re-
quired 700/80x100 = 875 kg of this material. 875x20/100 = 175 kg of iron contains in this mass of a 
material. In order to material balance tally it is necessary to add the steel scrap. The mass of iron ob-
tained from steel scrap must be equal to 300 - 175 = 125 kg. Then there is required of 125/95x100 = 
131.58 kg of steel scrap. So, instead of 1 ton of the ferroalloy calculated by ANN it is possible to take 
875 kg of available ferroalloy and 131.58 kg of steel scrap. 
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Fig. 3 – Results of calculation of mass of material 9 
 
Only one variant of calculation is given here but there can be a great number of them consider-

ing of materials available in a warehouse. In that case calculation of materials should be carried out 
considering economic factor with selecting variant with the smallest cost. This task is comes to search 
of a minimum of the multiple-factor function including cost of materials, the frequency of their use, 
residual of materials in a warehouse. As the result this task represents a subject for separate research. 

 
Conclusions 

The research directed on establishment of possibility of application of ANN for determination 
of mass of deoxidizing and alloying components being used in BOF melting was carried out in this 
work. Correlation analysis of initial data was carried out as a result of which the part of input and out-
put parameters that are not correlated with other parameters was discarded. Then preliminary search of 
the best architecture of ANN for determination of mass of the remained output parameters was carried 
out. As a result networks of radial basis function were excluded from reviewing and multi-layer per-
ceptrons are left. Then secondary search was carried out as a result of which activation functions of 
neurons of the hidden and output layers were defined in case of which ANN has the greatest perform-
ance and the smallest error. Then it was defined that even in case of randomly selected architecture of 
ANN their parameters differ from each other slightly. After that ANN having the best parameters and 
the smallest quantity of neurons was selected in order to avoid retraining. Selected ANN has the fol-
lowing architecture: 

- network type – multi-layer perceptron; 
- quantity of neurons of an input layer – 22; 
- quantity of neurons of the hidden layer – 52; 
- quantity of neurons of an output layer – 22; 
- activation function of neurons of the hidden layer – logistic; 
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- activation function of neurons of an output layer – hyperbolic tangent. 
The correlation coefficients and mean square deviations for all output parameters were found 

for selected ANN. Based on the obtained values a conclusion was made that selected ANN is suitable 
for determination of mass of the most part of added materials. 

For better integration into process control system of steel melting in the BOF the selected ANN 
was saved in the C-language format. As basic data for training of model are based on the equations of 
the material balance, coefficients of a network don't need continuous adaptation. Updating of a net-
work is required only in case of appearance of new deoxidizing or alloying materials which initial 
weren't in a database. 

It is planned to add the module of calculation of quantity of materials considering existence of 
them in a warehouse and economic indexes into the obtained model in the future. Besides it is planned 
to equip model with the intuitive and clear graphic interface for convenience of operation with it. 
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