ЭЛЕКТРОНИКА

УДК621.385.6

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ФИЗИЧЕСКИХ ПРОЦЕССОВ МАГНЕТРОННОГО ГЕНЕРАТОРА ПРИ КОНКУРЕНЦИИ ВИДОВ КОЛЕБАНИЙ

ПИСАРЕНКО Д.В.

Разрабатывается математическая модель магнетронного генератора для улучшения его свойств. Предлагается методика расчета спектров анодного тока. Изучаются процессы в электронном потоке.

1. Введение

В настоящее время большое внимание уделяется возможностям генерации хаотических сигналов с эквидистантным спектром. Это направление изменяет подход к разработке таких приборов, поскольку физические процессы при взаимодействии электронного потока с электромагнитной волной отличаются от процессов при генерации детерминированного одночастотного сигнала. Подход к выбору электродинамических характеристик кольцевых замедляющих систем, используемых в магнетронных генераторах, должен быть иным. Поэтому приходится прибегать к моделированию процессов в магнетронах в целях поиска путей решения поставленных задач. В электронике СВЧ приборов использование результатов компьютерного моделирования позволяет сократить время и стоимость разработки приборов, наметить новые пути повышения их эффективности. Большинство теоретических и экспериментальных исследований посвящено изучению работы магнетрона в одночастотном режиме. Однако насыщенность выходного спектра магнетрона свидетельствует о полигармоническом составе выходного сигнала, поскольку возможно возбуждение аксиальных колебаний пространственного заряда, заметно влияющих на генерацию. В работах Галагана А. В. и Терентьева А. А. рассматриваются процессы взаимодействие временных гармоник колебаний ВЧ поля с электронным потоком в предосцилляционном режиме, исследуются условия перескока с р-вида колебаний на N/2-1 – вид при разности частот колебаний около 40%. Однако в них не рассматриваются те физические условия, которые могли бы привести к регулируемым изменениям частоты генерации. При этом остаются проблемы, связанные с выяснением перескока видов колебаний в классических магнетронах и определением возможности двухчастотного режима генерации.

В связи с этим целью работы является выяснение условий возбуждения побочных видов колебаний с частотами, близкими к частоте колебаний р-вида, условий и причин перескока между видами колебаний, рассмотрение процессов в электронном потоке при конкуренции видов колебаний и перескоке между ними. Для реализации поставленной цели необходимо решить следующие задачи:

 построить цилиндрическую многопериодную трехмерную модель магнетронного генератора, позволяющую исследовать основные процессы взаимодействия электронного потока с высокочастотным полем сложного спектрального состава;

 исследовать конкуренцию видов колебаний на фронте модулирующего импульса в многочастотном режиме;

 проанализировать спектры анодного тока и высокочастотного поля для таких режимов.

2. Многопериодная модель магнетронного генератора на основании метода "крупных частиц"

Рассмотрим 3D-цилиндрическую многопериодную модель магнетронного генератора, реализованную методом "крупных частиц". Самосогласованная система модели включает в себя уравнения движения частиц

$$\begin{cases} \frac{\partial \upsilon_{\rm r}}{\partial t} = |\eta| E_{\rm r} + \frac{\upsilon_{\varphi}^2}{r} - \omega \upsilon_{\varphi}; \\ \frac{\partial \upsilon_{\varphi}}{\partial t} = |\eta| E_{\varphi} - 2 \frac{\upsilon_{\rm r} \upsilon_{\varphi}}{r} + \omega \upsilon_{\rm r}; \\ \frac{\partial \upsilon_{z}}{\partial t} = |\eta| E_{z}. \end{cases}$$
(1)

Здесь г, ϕ , z-координаты частицы в цилиндрической системе; υ_r , υ_{ϕ} , υ_z – координатные составляющие скорости; E_r , E_{ϕ} , E_z – компоненты вектора суммарной напряженности ВЧ, кулоновского и статического полей; ω – частота циклотронных колебаний. Уравнения возбуждения для амплитуд и фаз высокочастотных полей представлены в виде системы дифференциальных уравнений первого порядка

$$\frac{dA_n}{dt} - \delta_n A_n \bigg) e^{-\delta_n t} = -\frac{1}{\pi N_n \omega_n \epsilon_0} \int_{t-T_n}^t \int \frac{\partial j}{\partial t} e_n dV \cdot \cos(\omega_n \tau + \psi_n) d\tau,$$

$$\frac{d\psi_n}{dt} = -\frac{1}{\pi N_n \omega_n \varepsilon_0 A_n} \int_{t_n - T_n}^{t_0} \int_{V} \frac{\partial j}{\partial t} e_n dV \cdot \sin(\omega_n t + \psi_n) dt.$$
(2)

где N_n – эквивалентная емкость *n*-го вида колебаний замедляющей системы; T_n – период колебаний с номером n; **j** – плотность возбуждающего тока; **e**_n – структурная функция поля данного вида колебаний; Q_n – нагруженная добротность.

Если же усреднение производится по фундаментальному периоду и частоты сигналов несоизмеримы, амплитуда колебаний быстро увеличивается, запаздывание расчетных значений амплитуд заметно искажает их временные зависимости в переходном процессе, представляется целесообразным непосредственно решать уравнения возбуждения второго порядка для резонансной системы:

$$\frac{d^2 a_n}{dt^2} + \frac{\omega_n}{2Q_n} \frac{da_n}{dt} + \omega_n^2 = \frac{1}{N_n} \int_V \frac{\partial j}{\partial t} e_n dV, \qquad (3)$$

где a_n -значение напряженности электрического поля n-го вида колебаний в плоскости анода (на ламелях замедляющей системы); e_n – структурная функция этого вида единичной амплитуды; **ј** – плотность возбуждающего тока в пространстве взаимодействия.

Особенностью данного метода является то, что в правой части уравнения (3) фигурирует мгновенное значение возбуждающего тока, благодаря чему отпадает необходимость усреднения тока по времени.

Для цилиндрической модели магнетрона типичный вид структурных функций имеет вид

$$\begin{cases} e_{\rm r} = -\frac{N\theta}{\pi} \sum_{\rm m=-\infty}^{\infty} \gamma \left(\frac{\sin\gamma i}{\gamma \theta} \right) \frac{Z_{\gamma}(kr)}{Z'_{\gamma}(kr_{\rm a})} \sin(\gamma \varphi) \sin\left(\frac{\pi}{\rm w}z\right); \\ e_{\rm r} = -\frac{N\theta}{\pi} \sum_{\rm m=-\infty}^{\infty} \left(\frac{\sin\gamma i}{\gamma \theta} \right) \frac{Z_{\gamma}(kr)}{Z'_{\gamma}(kr_{\rm a})} \cos(\gamma \varphi) \sin\left(\frac{\pi}{\rm w}z\right), \end{cases}$$
(4)

где Z_{γ}, Z'_{γ} - комбинация функций Бесселя и Неймана

$$\begin{split} & Z_{\gamma}(kr) = J_{\gamma}(kr) - \frac{J_{\gamma}(kr_{k})}{N_{\gamma}(kr_{k})} N_{\gamma}(kr); \\ & Z_{\gamma}(kr) = J_{\gamma}(kr) - \frac{J_{\gamma}(kr_{k})}{N_{\gamma}(kr_{k})} N_{\gamma}(kr), \end{split}$$

N -количество резонаторов в замедляющей системе; $\gamma = n+mN -$ постоянная распространения; k- волновое число; θ – половинный размер щели резонатора.

3. Определение коэффициента вторичной эмиссии

Плотность тока частиц, эмитируемых с катода, задается в долях тока Ленгмюра цилиндрического диода в магнитном поле [2]

$$j_{L} = 0.44 j_{L}^{*} \left(1 - \sqrt{1 - \left(\frac{B_{\kappa p}}{B}\right)^{2}} \right) \left(\frac{B}{B_{\kappa p}}\right)^{2}, \quad (5)$$

 $j_L^* = 2.33 \times 10^{-6} U_a / \beta r_a -$ плотность тока Ленгмюра без учета магнитного поля; В и В_{кр} – номинальная и критическая индукции магнитного поля; r_a – радиус анода; β – табулированная величина, зависящая от кривизны электродов прибора. В качестве предельного значения используется термоэмиссионная способность катода (формула Ричардсона–Дешмана):

$$j_{m...} = A_R D T_k^2 exp\left(\frac{\overline{\varphi}}{kT_k}\right) exp\left(\frac{|q|^{3/2}}{kT_k}\sqrt{\frac{E_k}{2\pi\pi_0}}\right), \quad (6)$$

где A_R — постоянная Ричардсона; **D** — прозрачность потенциального барьера; T_k — абсолютная температура катода; **q** — заряд частицы; k — постоянная Больцмана,

φ – работа выхода; Е_k – напряженность электрического поля вблизи катода.

Для определения коэффициента вторичной эмиссии обычно используется формула Паньшина:

$$\sigma = 1.57\sigma_{\max} \left(\frac{E_{\kappa u H}}{E_{\max}} \right) exp \left(-0.55 \frac{E_{\kappa u H}}{E_{\max}} \right), \tag{7}$$

здесь σ_{max} – максимальный коэффициент вторичной эмиссии; Е_{кин} – кинетическая энергия первичной частицы; Е_{max} – максимальная кинетическая энергия.

Электронный поток представляется совокупностью заряженных частиц-облаков ("крупных частиц") объемом dV=rdrd φ dz, массой m= Mm_e и зарядом q=Me, где M – коэффициент укрупнения; m_e и е – соответственно масса и заряд электрона. Выбор этого коэффициента влияет на соотношение между точностью расчета и затратами основного ресурса ЭВМ – процессорного времени. Выбирается он таким образом, чтобы суммарный заряд всех частиц Nm_e и средняя плотность пространственного заряда p = Nm_e/V в модели были такими же, как и в моделируемой физической системе. Число частиц N в модели должно

удовлетворять условию N >> n_d >> 1, $n_d = n_0 \lambda^3$ – дебаевское число, т. е. количество перекрытых облаков; λ – дебаевский радиус экранировки; n_0 – концентрация частиц в рассматриваемом объеме. М имеет порядок нескольких миллионов, при этом количество частиц примерно составляет тысячи на одну пару резонаторов магнетрона.

4. Решение уравнений движения электрона

Для решения уравнений движения выбран метод, сочетающий экстраполяционные формулы Адамса для скорости и степенные ряды для радиус-вектора. Этот метод вместо многократного вычисления правых частей предполагает лишь их запоминание на двух предыдущих шагах. Данный метод по точности не уступает методу Рунге-Кутта, однако дает почти двукратный выигрыш по времени за счет уменьшения числа операций, необходимых для вычисления правых частей уравнений движения. Метод решения дифференциальных уравнений используется и для решения уравнений возбуждения. Однако метод Рунге-Кутта применяется на трех первых шагах по времени для нахождения интеграла возбуждения на двух первых шагах интегрирования. С учетом квазистатического

приближения электрические поля в правой части уравнений движения рассматриваются как суперпозиция полей пространственного заряда, электростатического анодного поля и ВЧ поля электромагнитных колебаний. Сумма первых двух составляющих вычисляется дифференцированием потенциала, полученного из уравнения Пуассона для рассматриваемой 3Dцилиндрической области. Цилиндрическая конструкция пространства взаимодействия учитывается с помощью конформного отображения цилиндрической области на прямоугольную. Преобразованная система координат используется только для решения уравнений Лапласа и Пуассона, все остальные вычисления выполняются в цилиндрической системе координат. Выражения, описывающие преобразования координат, имеют следующий вид:

$$r = r_k \exp(k_y Y); \varphi = k_x X; z = k_z Z;$$

$$k_y = \frac{1}{M} ln \left(\frac{r_a}{r_k}\right); k_x = \frac{2\pi}{pN}; k_z = \frac{h}{L}.$$

где X, Y, Z – преобразованные координаты; r_a, r_k, h – размеры рассматриваемой области пространства взаимодействия; M, N, L – числа разбиений сетки по координатам г, ϕ , z соответственно, p – коэффициент, равный отношению углового размера пространства взаимодействия прибора к рассматриваемому фундаментальному периоду. Считая известными кулоновские потенциалы и, следовательно, производные поля в преобразованной системе координат, алгоритм расчета напряженностей электрического поля внутри учитываемой области в цилиндрической системе координат можно разбить на следующие этапы:

– вычисляем координаты X, Y, Z частицы в преобразованной системе координат (исходя из цилиндрической системы координат (р, r, z):

$$X = \frac{\varphi}{k_x}, Y = \frac{\ln(r/\eta_k)}{k_y}, Z = \frac{z}{k_z}.$$
 (8)

 – заряд "размазываем" по 8 узлам; тогда результирующий заряд ячейки с номером т вычисляется как

$$q_{\Sigma} = \sum_{i=1}^{N_m} q_i (1 - |X_i - x_m|) (1 - |Y_i - y_m|) (1 - |Z_i - z_m|)_{,(9)}$$

где N_m – количество частиц, удаленных не более чем на одну ячейку сетки; q – заряд частицы; X ,Y ,Z – преобразованные координаты частицы; x ,y ,z – преобразованные координаты узла m;

заряды в узлах сетки заменяем вычисленными значениями потенциалов;

 – сглаживаем кулоновское поле по 27 узлам методом наименьших квадратов;

 напряженности в цилиндрической системе координат определяем по уравнениям

$$\mathbf{E}_{\mathrm{r}} = \frac{\mathbf{E}_{\mathrm{r}} \mathbf{Y}}{\mathbf{r} \mathbf{k}_{\mathrm{v}}}; \mathbf{E}_{\varphi} = \frac{\mathbf{E}_{\varphi} \mathbf{X}}{\mathbf{k}_{\mathrm{x}}}; \mathbf{E}_{\mathrm{z}} = \frac{\mathbf{E}_{\mathrm{z}} \mathbf{Z}}{\mathbf{k}_{\mathrm{z}}}$$

Для решения уравнений Лапласа и Пуассона используется метод Хокни, сочетающий преобразование Фурье и циклическую редукцию. Рассмотренная модель позволяет изучать широкий круг явлений в магнетронном генераторе, протекающих при взаимодействии электронного потока с высокочастотными волнами, имеющими сложный спектральный состав.

5. Выводы

В результате проведенных исследований построена многопериодная цилиндрическая 3D модель магнетронного генератора и разработана методика расчета спектров анодного тока. Модель позволяет исследовать широкий круг процессов, происходящих в магнетронном генераторе при взаимодействии электронного потока с высокочастотным полем сложного спектрального состава, прогнозировать появление нежелательных видов колебаний на выходе. Практическая ценность работы заключается в том, что разработанная математическая модель взаимодействия электронного потока с полигармоническими сигналами разных видов колебаний позволяет вычислять основные выходные характеристики и спектральный состав выходного сигнала магнетронного генератора, предсказывать дополнительные условия появления низкочастотных составляющих в спектре генерации.

Литература: 1. *Магнетроны* сантиметрового диапазона: В 2 т. / Под ред. *С.А. Зусмановского*. М.: Сов. радио, 1950. Т. 1. 420 с. 2. *Yu S.P., Kooyers G.P., Buneman O.* Time-Dependent Computer Analysis of Electron-Wave Interaction in Crossed Fields // J. Applied Physics. 1965. Vol. 36, No. 8. P.2550–2559.

Поступила в редколлегию 08.12.2014

Рецензент: д-р физ.-мат. наук, проф. Грицунов А.В.

Писаренко Дмитрий Васильевич, аспирант кафедры физических основ электронной техники ХНУРЭ. Научные интересы: математическая физика, методы математического анализа, компьютерное моделирование, схемотехника. Адрес: Украина, 61166, Харьков, пр. Ленина, 14.