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Abstract - The 2D semimetal consisting of heavy holes and 
light electrons is studied. The consideration is based on the 
assumption that electrons are quantized by magnetic field 
while holes remain classical. We assume also that the interac-
tion between components is weak and the conversion be-
tween components is absent. The kinetic equation for holes 
colliding with quantized electrons is utilized. It has been stat-
ed that the inter-component friction and corresponding cor-
rection to the dissipative conductivity σxx do not vanish at 
zero temperature due to degeneracy of the Landau levels. 
This correction arises when the Fermi level crosses the Lan-
dau level. The limits of kinetic equation applicability were 
found. We also study the situation of kinetic memory when 
particles repeatedly return to their meeting points. 
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I. INTRODUCTION 

 
ince the discovery of quantum Hall effect, the problem of 
2D electron system in strong magnetic field has attracted 
big attention. It was generally accepted that the most in-

teresting thing is the low-temperature limit when all inelastic 
processes are frozen out and the system can be treated as the 
electron-impurity one. Here we concentrate our consideration 
on the case of semimetal with coexist-ing electrons and holes. 
Such systems based on 2D layers were obtained and have 
been intensively studied for the recent years [1, 2]. The speci-
ficity of semimetal is the presence of electron-hole scattering. 
Due to large density of the second com-ponent this process 
can be comparable with the impurity scattering. Usually, in 
the Fermi system at T=0 the in-terparticle scattering disap-
pears and the friction between components gives temperature 
additions T2 to the transport coefficients [3]. This is not the 
case in the system with a degenerate ground state, in particu-
lar, caused by the Landau quantization. In such a system the 
scattering redistributes particles within the degenerate state 
that needs no energy transfer [4]. 

 
II. PROBLEM FORMULATION 

 
We consider a 2D semimetal with qe equivalent electron 

valleys and qh equivalent hole valleys centered in points pe,i 
and ph,i, correspondingly. The conduction bands with energy 
spectra (p − pe,i)2/2me overlaps with the valence bands Eq− 
εp−ph,i, εp = p2/2mh (Eq > 0). The hole mass mh is assumed to 
be much larger than the electron mass me. The distances be-
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tween electron and hole extrema |ph,i − pe,j | are supposed to 
be large to suppress the electron-hole conversion. At the same 
time, the scattering between electrons and holes changing the 
momenta near extrema are permitted. Without the loss of 
generality, further we shall count the momenta from the band 
extrema and replace p − ph,j → p, p − pe,i → p. 

The system is placed in a moderately strong magnetic 
field, such that the electrons are quantized, while holes stay 
classical. In other words, the number of filled hole Landau 
levels Nh +1 is large, while the analogical electron number Ne 
+ 1 has the order of unity. We shall consider the low-
temperature limit when the electron transitions occur within 
the same Landau level and transitions between different elec-
tron Landau levels are forbidden. The energy conservation 
permits this process only when the Landau level is partially 
filled, i.e. in a state of compressible Landau liquid [5]. 

We shall neglect the rearrangement of the energy spec-
trum caused by the interaction between electrons and elec-
trons with holes. The Landau levels widening will be also 
neglected. The interaction of quantized gas with a classical 
one is an unusual situation. The kinetics of holes can be de-
scribed by a classical kinetic equation, while electrons need a 
quantum description. In accordance with above-mentioned, 
we shall use the states in crossed electric and magnetic fields 
ψn,k (r) = eiky φn((x − Xk )/a) / yaL , where φn are normalized 
oscillator functions, Ly is the normalizing length of the sys-
tem in y-direction, Xk = Xk

(0) − vd/ωe, Xk
(0) = −a2k is the coor-

dinate of the center of cyclotron motion, vd = c[E, H]/H2 is 
the drift velocity, a = c/eH is the magnetic length, ωe = 
eH/mec is the electron cyclotron frequency, −e is the electron 
charge; we set 1=  and will restore the dimensionality in the 
final expressions. The corresponding energy is presented by 
εn,k = ωe (n + 1/2) + eEXk. 

 
III. DISSIPATIVE CONDUCTIVITY 

 
The transmission of the momentum between electrons and 

holes is determined by the scattering processes. The collision 
term in the kinetic equation for holes in the Born approxima-
tion reads [6] 
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Here uq is the Fourier transform of potential of interaction 

between electron and hole, S is the system area 
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is the hole energy (mh is the hole effective mass). Due to the 
uniformity of the space the quantity γϕ  does not depend on 
the wave vector and coincides with the equilibrium distribu-
tion function. At zero temperature all factors ,0)(1 nn ≡−′ ϕϕ  
excluding the contribution with n = n_ = Ne, where Ne is the 
number of the last partially filled Landau level. The quantities 
Ne and νNe ≡ϕ  can be expressed via the electron density ne 
as Ne = [neπa2 /qe], ν = {neπa2 /qe} (square and figure brackets 
mean the integer and fractional parts). We shall expand the 
collision term with respect to weak non-equilibrium, assum-
ing that the electric field and the deviation of distribution 
function from equilibrium are small [7]. 
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Here pδf is linear in E correction to the hole distribution 

function, (0)
n

(0) ,f ϕp  are equilibrium distribution functions of 
holes and electrons, 
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Ln are the Laguerre polynomials. The function Rn(q) has a 
characteristic size in q-space 1/s. The parameter S is deter-
mined by the largest of sizes of potential L and wave func-
tions of electrons a 2(n + 1). In the coordinate space, S corre-
sponds to the typical impact parameter for scattering. Let us 
consider the hole transport. The kinetic equation for the 
nonequlibrium correction to the distribution function 

pδf reads 
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IV. FINITE LANDAU LEVEL WIDTH 

 
The crucial point for the previous consideration, in par-

ticular, for temperature-independent contribution of e-h scat-
tering to the dissipative conductivity is the presence of the 
Landau levels degeneracy. There are different sources of the 
Landau levels broadening. One source is the scattering of 
electrons on holes. The rate of this scattering γeh can be calcu-
lated summing the probability of scattering 

γW ′  over the fi-
nite states. The result is [8] 
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Like eD the width ehγ vanishes with the temperature, while 
the hole damping ehγ vanishes with the temperature, while the 
hole damping heγ stays finite at 0.T →  

The smallness of the Landau level width as compared 
with the temperature is the sufficient condition for the neglect 
of width. Estimations give ).χE/(em~/Tγ hF,

24
heh   The latter 

parameter is small if the holes are weakly interacting; this 
demand is supposed in the present study. In particular, the 
condition 1)Eχ/(em hF,

224
h <<  does not permit to consider 

the limit ∞→hm  when the holes become equivalent to im-
mobile impurities. On the other hand, ehγ  may be omitted at 
a low enough T as compared with temperature independent 
Landau level width iγ caused by the potential fluctuations. 
For a long-range potential iγ is proportional to the amplitude 
of potential. For developed fluctuations the self consistent 
Born approximation gives the width of the Landau levels 
proportional to in ( in is the impurity concentration) and the 
potential of individual impurity. The exception is the short-
range impurities with −δ like potential for which the part of 
the Landau level states i

2 na1/π − remains degenerate if 

,na1/π i
2 > while in states form a band of localized states 

with a finite width. In the case of the Landau level with a 
finite width ,γ i the interparticle scattering depends on the 
radio of the temperature T to the width. If ,γT i<< the e-h 
scattering is suppressed and if ,γT i>> the scattering does not 
notice the width. Thus, all the previous consideration of e-h 
scattering remains valid for intermediate temperature 

T.ω >  In the dissipative conductivity the scattering pro-
cesses affect quantized electrons in a parallel manner. One 
can sum up the contributions to electron xxσ  conductivity 
caused by impurity scattering and electron-hole processes. 
According to [9], the contribution to electron dissipative cur-
rent caused by short-range impurity scattering is 
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The reduced distance between the Fermi level and the Landau 
level with number Ne, ( ) γN,/ω1/2)(Nεμ eeF,e +−= is con-
nected with the quantity ν  by the equation 
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In the case of short-range impurities with small concentration 

,π/1n 2
i α<<  the absence of widening leads to the validity 

of the results obtained in the previous section up to zero tem-
perature. In a wider range 2

i α/π1n < the scattering rate he/τ1  

should be corrected by the factor 2
iπαn1−  reflecting the 

fraction of degenerate states. If the long-range potential fluc-
tuation case is realized the degeneracy disappears. In the ab-
sence of e-h scattering, the model of adiabatic transport is 
valid when electron cyclotron centers are drifting along the 
lines of constant potential. Without the external field only one 
infinite fractal level line of the fluctuating potential corre-
sponding to the percolation threshold exists. In the presence 
of the finite electric field, this level line decays to independ-
ent infinite entangled lines going across the external electric 



field. The drift does not depend on the charge of particles: the 
velocities and trajectories of the cyclotron centers of quan-
tized electrons and classical holes are same [10]. The dissipa-
tive conductivity of electrons vanishes, while the Hall con-
ductivity changes stepwise between quantized /hNe2 values. 
In the lack of degeneracy, the temperature independent e-h 
scattering also disappears. 

 
V. CONCLUSION 

 
We have studied the influence of electron-hole interaction 

on transport in the system where electrons are quantized and 
holes are not. In these conditions, the second type of carriers 
plays its role as an additional (or exceptional) channel of scat-
tering. Weak electron-hole interaction can be considered in 
the Born approximation, despite the degeneracy of the Lan-
dau levels, in contrast to the impurity mechanism which is not 
perturbative in the quantizing magnetic field, even for a weak 
potential. The scattering of holes on quantized non-interacting 
electrons occurs if, and only if, the Landau level is partially 
filled. The chaotization results from the random distribution 
of electrons in the momentum space, and corresponding en-
tropy at zero temperature remains finite. The scattering of 
holes can be considered by means of kinetic equation 
approxima-tion when the Fermi level is near the center of the 
Lan-dau levels; the kinetic approximation loses applicability 
apart from the center; on the far wings the holes become lo-
calized. 
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