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Abstract 
 

With the advent of various data assaying techniques, gene expression time series data have become a 

useful resource to investigate the complex interactions occurring amongst the transcription factors and 

genes. While a number of methodologies  have been de

(GRN), the presence of high noise in gene expression data have made the estimation of non

interactions among the genes an ill

been proposed to efficiently reconstruct the skeletal structure of the biomolecular network using the 

Recurrent Neural Network (RNN) formalism. Moreover, this work presents a second criterion for model 

evaluation to exploit the sparse and scale free nature of GRN. T

adapts the max-min in-degrees to effectively narrow down the search space, which reduces the 

computation time significantly and improves the model accuracy. The two well

measures applied to the experimental studies on synthetic network with expression data having different 

noise-levels. The experimental results clearly demonstrate the suitability of the proposed method in 

capturing gene interactions correctly with high precision even with noisy time

experiments carried out on analyzing well

in Escherichia coli show a significant improvement in reconstructing the network of key regulatory genes.
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With the advent of various data assaying techniques, gene expression time series data have become a 

useful resource to investigate the complex interactions occurring amongst the transcription factors and 

genes. While a number of methodologies  have been developed to describe Gene Regulatory Network 

(GRN), the presence of high noise in gene expression data have made the estimation of non

interactions among the genes an ill-posed one. In this work, a multi-objective evolutionary strategy has 

sed to efficiently reconstruct the skeletal structure of the biomolecular network using the 

Recurrent Neural Network (RNN) formalism. Moreover, this work presents a second criterion for model 

evaluation to exploit the sparse and scale free nature of GRN. This evaluation criterion systematically 

degrees to effectively narrow down the search space, which reduces the 

computation time significantly and improves the model accuracy. The two well-known performance 

rimental studies on synthetic network with expression data having different 

levels. The experimental results clearly demonstrate the suitability of the proposed method in 

capturing gene interactions correctly with high precision even with noisy time

experiments carried out on analyzing well-known real expression data set of the SOS DNA repair system 

in Escherichia coli show a significant improvement in reconstructing the network of key regulatory genes.
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With the advent of various data assaying techniques, gene expression time series data have become a 

useful resource to investigate the complex interactions occurring amongst the transcription factors and 

veloped to describe Gene Regulatory Network 

(GRN), the presence of high noise in gene expression data have made the estimation of non-linear 

objective evolutionary strategy has 

sed to efficiently reconstruct the skeletal structure of the biomolecular network using the 

Recurrent Neural Network (RNN) formalism. Moreover, this work presents a second criterion for model 

his evaluation criterion systematically 

degrees to effectively narrow down the search space, which reduces the 

known performance 

rimental studies on synthetic network with expression data having different 

levels. The experimental results clearly demonstrate the suitability of the proposed method in 

capturing gene interactions correctly with high precision even with noisy time-series data. The 

known real expression data set of the SOS DNA repair system 

in Escherichia coli show a significant improvement in reconstructing the network of key regulatory genes. 

Objective 
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INTRODUCTION 

In recent years, the availability of large scale gene 

expression data has significantly increased the 

study of the relationship among genes. Gene 

expression data, whether in time-course format or 

steady state format open the door to the researchers 

to observe the interaction among thousands of 

genes simultaneously under various environmental 

conditions. Given that large volume of gene 

expression data is available, in principle it is 

possible to reverse engineer the detailed 

quantitative model of the biological network that 

adequately represents the dynamics of the 

underlying system (Noman et al., 2013). 

 

Several common practical issues that make the 

reconstruction process of GRN difficult are small 

sample size compared to the number of genes, the 

presence of biological and experimental noise, lack 

of adequate knowledge of the complex dynamics 

and nonlinear nature of biological systems. In spite 

of many technical advances, the gene array 

technologies are still unable to acquire the quality 

and quantity of data that is required to capture the 

precise mechanism in common regulatory 

pathways (Noman and Iba, 2007, Schena M, 

2013). Two major challenges faced by all 

inference methodologies (Differential Equations, 

Bayesian Network etc.) in terms of representation 

accuracy and computational feasibility while 

reconstructing GRN are 1) detecting the sparse 

topological architecture of biological network and 

2) estimating the regulatory parameters from a 

limited amount of gene expression data corrupted 

with a significant level of noise. Generally, with 

the increase of problem dimension due to large 

number of genes in network, search complexity 

increases very rapidly and locating the global 

optimum solution becomes very difficult.  

 

In order to apply a computational approach to 

reconstruct GRN from experimental time-series 

data, a mathematical model is necessary that will 

adequately formalize the process of gene 

regulation. The analysis of gene expression 

networks and metabolic pathways has resulted in 

various types of GRN models which vary in terms 

of the details of biochemical interaction 

incorporated, discrete or continuous expression 

level used, deterministic of stochastic approach 

applied, and so forth (Noman and Iba, 2007). 

Among the mathematical models of GRN, Boolean 

Network (Sahoo et al., 2013), Linear Model 

(Dhaeseleer et al., 2013), Bayesian Network 

(Mazur and Kaderali, 2013), Neural Network 

(Vohradsky J, 2013), Differential Equations (Chen 

et al., 2013), Linear Time-Variant Model (Kabir et 

al., 2013), S-system Model (Savageau M A, 2013) 

and models including stochastic components on 

the molecular level (McAdams and Arkin, 2013) 

are well known. Boolean Networks and Linear 

Models are simplistic approaches that employ 

pairwise association measures such as conditional 

mutual information for inferring the interactions 

between genes (Chowdhury et al., 2013). Having 

low computational complexity, these methods can 

easily scale up to very large networks of thousands 

of genes (Basso et al., 2013). Bayesian networks 

(BN) are based on the strong foundation of 

probability and statistics where directed edges and 

conditional probability distributions are used to 

represent dependencies between nodes.  

Differential Equation (DE) is a member of 

sophisticated and well established class of models 

that maintains a balance between model 

complexity and mathematical tractability. Several 

linear and non-linear types of DE models such as 

Linear Time-Variant Model, S-system Model, etc. 

have the ability to depict system dynamics in 

continuous time (Chowdhury et al., 2013).  

 

In this work, the Recurrent Neural Network (RNN) 

model (Wahde and Hertz, 2013) along with a 

natural computational method is used to extract 

regulatory interactions among genes from gene 

expression data sets. Among the reconstruction 

approaches applied to infer GRN, the RNN model 

is of particular interest because of its capability to 

adequately discover the nonlinear and dynamic 

interactions among the genes (Noman et al., 2013, 

Wahde and Hertz, 2013, Chiang and Chao, 2013). 

With the network of nonlinear processing 
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elements, the model can reasonably capture 

various dynamics and mechanisms that could be 

present in a complex biological system. However, 

inferring GRN using RNN model demands the 

estimation of large parameter sets that also 

increase with the number of genes present in the 

target network. Thus the method may get stuck on 

some locally optimum solution and fail to predict 

the true skeletal structure in case of larger 

biological networks. To overcome this problem, 

the proposed methodology incorporated another 

objective function that is calculated by summing 

up the number of regulatory inputs of all the genes 

in the system (Ahmed et al., 2013). As the most 

biological systems are sparse (Noman et al., 2013, 

Noman and Iba, 2007), the smaller values of this 

second objective function ensure the biological 

reality in inferred gene regulatory networks.   

 

Applying a mathematical model for inferring GRN 

requires the development of some algorithmic 

techniques that will estimate the values of model 

parameters. Some algorithmic techniques such as 

particle swarm optimizations (Sultana et al., 2013), 

evolutionary algorithms (Noman et al., 2013, 

Noman and Iba, 2007), etc. have already been 

developed in the field of computational 

intelligence and machine learning that help the 

biologists to form new hypothesis about the 

biological systems (Noman et al., 2013) and to 

design new experiments. In this work, an 

Evolutionary Algorithm (EA) based inference 

technique using Recurrent Neural Network (RNN) 

model has been used with the aim of providing a 

method that can fulfill the experimental 

requirements.  

 

As the proposed methodology uses more than one 

fitness function, a natural multi-objective 

computational approach known as elitist 

Differential Evolution for Multi-Objective 

Optimization (DEMO) is used. DEMO, belonging 

to the group of evolutionary algorithms, is proven 

to be very effective in solving different conflicting 

multi-objective optimization problems arising in 

different domains (Ahmed et al., 2013). Among 

the family of multi-objective evolutionary 

algorithms, the proposed methodology has the 

unique feature of self adaptation. Based on its 

objective functions, the algorithm converges 

rapidly without the need of setting any threshold 

values on the interactions of a particular gene.      

 

The inference capability of the proposed method 

has been highlighted in different learning 

experiments using both artificial and real gene 

network data. Artificial network data with varying 

noise levels and characteristics were chosen and 

simulated to obtain synthetic time-series data set 

and the underlying skeletal network architecture. 

The reconstruction results depict the suitability of 

the proposed approach as it correctly identifies all 

the regulatory interactions among genes even with 

noisy time-series data.  

 

The proposed method was applied in the 

reconstruction of well-known SOS DNA repair 

system in Escherichia coli. Among 40 genes of 

SOS network, 6 genes have been considered in this 

work which controls the core repair system (Little 

et al., 2013). The expression values of this gene 

network are measured in a 50-step time-series, and 

documented in Uri Alon Lab
1
. The experimental 

result represents biological plausibility of the 

estimated GRN, which has been validated from 

various aspects, ranging from the activity of 

functionally coherent gene sets, to previous 

experimentally verified interactions among genes. 

 

The rest of the paper is organized as follows. The 

next section explains the RNN model for 

reconstructing gene regulatory network followed 

by the description of the fitness functions used in 

the proposed methodology. Then, elitist DEMO 

algorithm for inferring RNN model based GRN 

has been described which is followed by the 

section presents the experimental results to 

highlight the effectiveness of the proposed method. 

The final section concludes the paper with some 

general discussions.    
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RECURRENT NEURAL NETWORK (RNN) 

MODEL FOR GENE REGULATORY 

NETWORK 

The Recurrent Neural Network (RNN) model 

offers a good compromise between the biological 

proximity and mathematical flexibility while 

reconstructing gene regulatory network. The model 

formulates the interactions among the genes in 

terms of a tightly coupled system (Noman et al., 

2013, Vohradsky J, 2013, Wahde and Hertz, 2013) 

expressed as, 

      zi= 1τi �g �	 wijej
N

j=1
+ βi�  - λiei�                (1) 

where N (i,j ≤ N) is the total number of genes in 

the network, ei represents the total regulatory input 

for i-th gene, wij represents the type and strength of 

the regulatory interaction of gene-j on gene-i 

which is either positive (activation), negative 

(repression) or zero (no regulation). �� denotes the 

basal expression level and �� represents the decay 

rate parameter of gene-i. The non-linearity of GRN 

is introduced by the function g() which is often 

given by the sigmoid function. The reconstruction 

of a gene network using RNN model can be 

described by the set of parameters ���� , �� , �� , ��� 

which can mimic the experimentally observed 

gene expression data.  

(
1 
http://www.weizmann.ac.il/mcb/UriAlon/) 

 

For biological realism, the expression level of 

gene-i at time t + 1, i.e. ei(t+1) is obtained by 

normalizing zi using a sigmoid squashing function:       ei(t+1)= ��  !"#$(%)                      (2)                          

 

The dynamic interactions among genes of a 

network are reflected in the change of the 

magnitude of parameter ���. In particular, 

increased values of ���  indicate strengthened 

interaction between gene i and j, and decreased 

values indicate weakened interaction. Another 

important point is that the interactions between the 

genes have been modeled in this paper based on 

their expression levels which is a common choice 

for many existing methods (Noman et al., 2013, 

Noman and Iba, 2007, Kabir et al., 2013, Ahmed et 

al., 2013).   

 

MODEL EVALUATION CRITERIA 

The large parameter set of recurrent neural 

network model emerges the needs of some 

assessment mechanisms for evaluating the 

alternate gene networks that come across in the 

course of evolutionary process. The most 

commonly used model evaluation process known 

as Mean Squared Error (MSE) is the quantitative 

difference between the response generated by the 

candidate model and the experimentally collected 

response. The smaller the value of MSE, the better 

the match between observed and calculated 

expression dynamics, the better the approximation. 

Like other dynamic systems, the reverse 

engineering of GRN achieves higher accuracy if 

multiple time series for the same gene is used. 

Using M sets of time dynamics, the MSE based 

fitness function can be given by 

   f1= 	 	 	 'ek,ical(t)- ek,iexp(t)ek,iexp(t) .2N
i=1

T
t=1

M
k=1             (3) 

 

Here, 34,�!56(7) represents the experimentally 

observed expression level of gene-i at time t in the 89: data set. Whereas, 34,�;<=(7) is the numerically 

calculated expression level of gene-i, at sampling 

time t in the same data set which is acquired by 

solving Equations (1) and (2). Here M is the 

number of experimental data sets used, T is the 

number of sampling time points and N represents 

the number of genes in the regulatory system. 

 

In a biological system very few genes or proteins 

interact with a particular gene. Because of the high 

degree of freedom of the model, there exist many 

local minima in the search space that can also 

mimic the time courses very closely. Therefore, if 

all possible regulations are allowed, the search 

algorithm may get stuck on some locally optimum 

solution and fail to obtain the true skeletal network 

structure. To overcome this problem another 

fitness function is used similar to that used in 
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(Ahmed et al., 2013) as the second objective in the 

proposed multi-objective inference algorithm. The 

value of this fitness function is calculated by 

summing up the number of regulatory inputs of all 

the genes in the system. The smaller the value of 

this fitness function, the sparser the underlying 

skeletal network structure, closer approximation of 

the biological reality. Thus for each set of 

parameters representing regulation networks in 

recurrent neural network system, the fitness 

function for obtaining globally optimal gene 

network structure is given by 

               f2= 	 Ii             N
i=1                                         (4) 

Here, Ii is the number of regulatory inputs to gene-i 

and N is the number of genes in the regulatory 

system. 

 

PROPOSED INFERENCE METHOD 

In this work, an enhanced Multi-Objective 

Evolutionary Algorithm (MOEA) has been used to 

estimate the model parameters for the target gene 

regulatory network. Elitist version of DEMO is 

used in the core of our algorithm as the optimizer 

that minimizes both f1, f2 given in equations (3) and 

(4) respectively. Like most of the MOEAs, DEMO 

is a population-based search heuristic, where each 

individual of the population represents a candidate 

solution of the problem under consideration. A 

feasible solution, x dominates another feasible 

solution y, if and only if x is better than y for at 

least one objective function value. An optimum 

solution called Pareto optimum is the one which is 

not dominated by any other solution in the search 

spaces. In MOEA, it is impossible to improve a 

Pareto optimum solution with respect to any 

objective without worsening at least another 

objective (Storn and Price, 2013, Robic and 

Filipic, 2013). After random initialization of first 

generation, each successive new generation is 

created as follows: 

 

Let, Pt is the current generation and NP represents 

the population size. A new offspring population Qt 

of size NP is generated by using crossover and 

mutation operator of DE (Storn and Price, 2013). 

Each individual of Qt can be a newly generated 

offspring or it can come from Pt, based on the 

following principles (Robic and Filipic, 2013). 

1) The candidate replaces the parent if it 

dominates it.  

2) If the parent dominates the candidate, the 

candidate is discarded. 

3) Otherwise (when the candidate and parent are 

non-dominated with regard to each other), the 

candidate is added to the population. 

 

A combined population, Rt = Pt  Qt of size 

between NP and 2 × NP, is generated and each 

individual of Rt is evaluated using equations (3) 

and (4). If the population has been enlarged, it is 

truncated to prepare for the next step of the 

algorithm.  

 

The truncation process used in this paper is based 

on NSGA-II (Deb et al., 2013) and comprised of 

two steps. First, the fast non-dominated sorting 

(Deb et al., 2013) is applied and individuals of Rt 

are sorted into non-dominated fronts F0 …Fl, 

where the best non-dominated solutions are stored 

in F0. The members of one front are non-

dominated by each other.  The next generation, 

Pt+1 is filled, firstly with the members of F0 and 

subsequently adding the members of following 

fronts. However, all members of a front may not be 

added, because otherwise NP (number of 

population) would be exceeded. In this case, 

crowding distance (Deb et al., 2013) is used to 

identify diverge non-dominated solutions which 

will be forwarded to next generation.  

 

Because of the high-degree of freedom of the RNN 

model, the search space contains many local 

optimums which may trap the search algorithm and 

global optimum may remain undiscovered (Noman 

et al., 2013). Thus, if the fitness values (i.e., f1 and 

f2) of the best compromised individual does not 

improve for Gm consecutive generations, the 

mutation operation of DEMO is evoked which 

mutates all the other individuals in the current 

generation. The �, β and � parameters of an 

individual are mutated by adding random numbers 
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drawn from Gaussian distribution with mean @A = 0 and standard deviation CD, CE and CF, 

respectively. The � parameter is mutated using 

random numbers drawn from a distribution with 

mean   @< = 0 and standard deviation C<.  

 

After the random start, the algorithm proceeds in 

its regular mode- repeating the above process for 

all genes until the termination criterion is not met. 

The output generated by any MOEA is the non-

dominated set of solutions known as the Pareto-

optimal solutions (Robic and Filipic, 2013, Deb et 

al., 2013). However the decision maker may have 

imprecise or fuzzy goals for each objective 

function. Thus, upon having the Pareto-optimal set, 

a fuzzy based mechanism described in (Abido M, 

2013), has been incorporated in the proposed 

methodology to extract a Pareto-optimal solution 

as the best compromise solution. 

 

EXPERIMENTAL RESULTS 

The suitability of the proposed GRN 

reconstruction methodology using RNN model has 

been primarily validated using a synthetic network 

as the actual structure and parameter values are 

unknown for real networks. The experiments were 

carried out under the ideal noise-free condition and 

with simulated noise corrupted gene expression 

data. Finally, the proposed methodology was 

applied in the reconstruction of SOS DNA repair 

system of Echericha coli using real micro array 

data. 
 

Artificial Network Inference 

At first, this paper investigated whether it is 

possible to infer the regulatory interactions and 

correct parameter values for a small scale 5 gene 

synthetic network that is also studied by (Ahmed et 

al., 2013). The regulatory weight matrix of this 

five genes network is shown in Table 1. The 

network contains both positive and negative 

regulations along with feedback loop.  The initial 

gene expression level was selected randomly. In 

order to simulate the noise experienced in real 

gene expression data, expression profiles have 

been generated by adding 5% and 10% Gaussian 

noise. The experiments were conducted for each 

condition using 10 sets of data where search ranges 

for RNN parameters were set as follows 

: wij∈H-10.0,10.8K, βi∈H-10.0,10K, τi∈[0.0,20.0]. In 

the inference of this small scale synthetic network, �� = 1 is used for all genes. Thus  �� was not been 

included in the search as it is fixed for the target. 

The algorithm was implemented in Java and 

experiments were run in a Intel(R) Core(TM)2 

Duo 2.80 GHz, 2GB RAM - personal computer. 

Each experiment has been repeated 10 times to 

confirm the reliability of the proposed GRN 

reconstruction methodology. This approach 

ensures that even if the significant solutions of one 

run miss a true regulation, the subsequent runs may 

find that. That is, the outputs from all of these run 

are taken into consideration for ensuring the 

validity of the algorithm.  
 

Table 1. Weight Matrix for target synthetic 

network 

Gene 1 2 3 4 5 

1 -1.30 0.0 2.86 0.0 -0.70 

2 0.80 -1.27 0.0 0.0 0.0 

3 0.0 -0.86 -1.70 0.0 0.0 

4 0.0 0.0 1.66 -1.37 -0.70 

5 0.0 0.0 0.0 1.70 -1.70 

 

Table 2. Inferred Weight Matrix for target 

synthetic network using 5% noisy time-series data 

Gene 1 2 3 4 5 

1 -1.29 0.0 3.00 0.20 -0.77 

2 0.85 -1.40 0.0 0.0 0.0 

3 0.0 -0.78 -1.71 0.0 -0.01 

4 0.0 0.0 0.98 -1.65 -0.55 

5 0.0 0.0 0.0 1.57 -1.57 

 

Table 3. Inferred Weight Matrix for target 

synthetic network using 10% noisy time-series 

data 

Gene 1 2 3 4 5 

1 -1.29 -0.11 2.30 -0.40 -0.47 

2 0.72 -1.30 0.18 -0.36 0.0 

3 -0.08 -0.81 -1.72 -0.33 0.0 

4 0.0 0.28 1.34 -1.14 -0.77 

5 -0.13 0.0 0.0 1.22 -1.31 
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Table 4. Average SN, SP of the target network for 

noise-free, 5% and 10% noisy time-series data 

 SN SP 

Noise-free 1.00 1.00 

5% Noisy 1.00 0.60 

10% Noisy 1.00 0.55 

 

In almost every optimization run with noise-free 

expression data, fitness score for models reach to 

zero or very close to zero ( < 10OP) and the 

estimated parameters are exactly the same as the 

target. The performance of the reconstruction 

algorithm is also analyzed using noisy time-series 

data with the same experimental conditions. Table 

2 and 3 shows the estimated network structure and 

parameter values achieved in a sample run for 5% 

and 10% noisy data respectively. From Table 2 and 

3, it is evident that even in the presence of high 

level of noise the proposed method has 

successfully predicted all the regulatory 

interactions among the genes. Some false positive 

regulations are also predicted by the search 

algorithm while working with noisy data. 

However, the magnitudes of these false positives 

were pretty small compared to the real regulations. 

The summary of prediction in terms of sensitivity 

(SN) and specificity (SP) has been presented in 

Table 4 using their standard definition based on 

positive/negative value of wij. This result shows 

that the prediction contains a full 1.00 sensitivity 

and the specificity greater than 0.50 even for 

corrupted GRN data. In the case of 10% noisy data 

the specificity value 0.55 means prediction of 45% 

false positive regulations. In an overall, the 

proposed approach performs a correct prediction of 

the network structure and a good approximation of 

the model parameters.  

 

Analysis of Real Microarray Data 

The proposed methodology has been analyzed in 

the reconstruction of well-known SOS DNA repair 

network in Escherichia coli. It is the longest, most 

complex and best understood DNA damage-

inducible network to be characterized to date. In 

this work, the experiment was carried out by the 

gene expression data set collected in Uri Alon Lab. 

The data set contains expression levels of 8 genes 

namely uvrD, lexA, umuD, recA, uvrA, uvrY, 

ruvA, polB. Four experiments were done using 

various light intensities, in each of which 50 

samples were collected at 6 minutes interval for 

the above 8 genes (Perrin et al., 2013). For 

reconstructing GRN, this paper used the data sets 

from experiment 3 and 4. To meet biological 

reality, data corresponding to each gene was 

normalized within the range (0, 1] against their 

maximum value and very small value (~ 10
-4

) was 

used to replace all the zero expression levels in 

these two data sets. 

 

In this work, 6 key regulators namely uvrD, lexA, 

umuD, recA, uvrA and polB have been considered 

in the reconstruction process. This sub network is 

well studied one and the interactions among 

different genes are known. Being actual microarray 

data, there is unknown amount of noise inherently 

present in these data. These noises in the data may 

have had an influence on the inference method. So, 

the generated results have been much dispersed. 

The results have been generated based on the 

different runs of the algorithm. 

 

The regulations of each gene have been identified 

using the following search ranges of RNN 

parameter:  ��� ∈ [−10.0,10.0], �� ∈ [−10.0,10.0], �� ∈[0.0,15.0]  and �� ∈ [0.0,1.0].  The known 

regulations and the predicted regulations for all the 

6 genes in the SOS repair network identified by the 

proposed algorithm have been summarized in 

Table 5. 

 

In each run, the reconstruction process achieves a 

very small fitness function value which indicates 

that the inferred network model could match the 

target time course data pretty well. The 

comparison between the target dynamics and the 

estimated model generated dynamics for some 

selected genes has been shown in Figure 1. From 

Figure 1, it is evident that the proposed method has 

the ability to mimic the system dynamics 

adequately. 
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Table 5. Estimated regulations for SOS DNA repair system

 uvrD lexA umuD

uvrD - -  

lexA + + + 

umuD  - + 

recA  - + 

uvrA  +  

polB  -  

 

The estimated regulations and parameter values 

were different from run to run in the conducted 

experiments. However, examining all of the 

extracted interactions with regard to known roles 

of selected genes; it is evident that, in most cases, 

the predictions confirm the prior knowledge, which 

(a) lexA 

(c) recA  

Figure 1. Target and estimated dynamics for the SOS DNA repair system

Biojournal of Science and Technology

Estimated regulations for SOS DNA repair system 

umuD recA uvrA polB References

   
(Shuhei et al., 2013, Cho et al., 2013, 

Shuhei et al., 2013)

-   
(Shuhei et al., 2013, Cho et al., 2013, 

Shuhei et al., 2013)

-   
(Noman et al., 2013, Shuhei et al., 2013, 

Bansal et al., 2013, Gardner et al., 2013)

+  + (Shuhei et al., 2013, Bansal et al., 2013)

- -  
(Kabir et al., 2013,  Shuhei et al., 2013, 

Perrin et al., 2013)

 +  
(Noman et al., 2013, Kabir et al., 2013, 

Shuhei et al., 2013)

The estimated regulations and parameter values 

were different from run to run in the conducted 

experiments. However, examining all of the 

extracted interactions with regard to known roles 

of selected genes; it is evident that, in most cases, 

s confirm the prior knowledge, which 

indicates the suitability of the proposed method. 

The algorithm also predicts a number of false 

positives which are either unknown regulations or 

the side effect of noise presented in micro array 

data.  
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DISCUSSION AND CONCLUSION 

Gene regulatory networks are abstract mapping of 

the more complicated biochemical systems and 

inherently nonlinear in nature. The inference of the 

large scale GRN is always impeded by the 

computational requirements imposed by the 

underlying model. In this work, recurrent neural 

network model is used to infer the target gene 

expression profiles and found very effective in 

terms of biological actuality and computational 

feasibility. However, the RNN model contains a 

large number of parameters and because of the 

high-degree of freedom of the model; the search 

becomes very complicated and the global optimum 

solution may remain undiscovered.  To overcome 

this problem, a second objective function based on 

skeletal network architecture, has been 

incorporated in the proposed method which 

ensures the inference of sparser biological 

networks. A natural multi-objective computational 

approach, known as DEMO is used to infer the 

true structure of underlying biological system. 

Among the EA based multi-objective search 

heuristics, elitist version of DEMO is used in the 

proposed methodology because of its reputation of 

fast convergence in complex and conflicting search 

spaces.    

 

Some experimental analysis of the proposed 

method has been performed to investigate the 

different components of the algorithm which are 

necessary for accurate estimation of the regulatory 

parameters.  All of the results are based on 

experimenting with an artificial gene network and 

analyzing a real micro array gene expression 

profile. The performance of a reverse-engineering 

algorithm always affected by the noise levels 

presented in the experimental data and the 

proposed methodology is no exception. Thus, the 

synthetic gene expression data corrupted with 

varying noise levels have been used to highlight 

practicability of the proposed optimization 

algorithm in estimating robust parameter values. 

From the experimental results, it is very evident 

that the proposed method is very efficient in the 

estimation of true network structure even in the 

presence of high levels of noise. Moreover, the two 

performance measures, i.e. SN and SP, showed the 

resistance of the proposed approach in the case of 

identifying the false regulations among genes. In 

the analysis of SOS DNA repair network of E. coli, 

because of the insufficient amount of gene 

expression data with high noise, it was very 

difficult for the proposed method to get any 

consistent result for the target network in the 

different experimental runs. Nonetheless, most of 

the pathways in the reconstructed network were 

consistent with the results reported in the literature. 

Although, the proposed reverse-engineering 

algorithm may not be able to capture the complete 

network architecture in a single run, because of 

insufficient data availability corrupted with 

excessive noise; still, this type of indication can be 

very useful for the biologists to design additional 

experiments that may in turn help to identify new 

interactions among the genes.  

 

With the speedy growth of biological samples 

categorization and characterization, and enhanced 

data collection techniques, it is expected that high-

dimensional and feature-rich data will be collected 

which will represent complex dynamics of 

biological systems. Thus, the development of 

decoupled version of the proposed method will be 

a timely contribution to narrow the gap between 

the imminent methodological needs and the 

available biological data. Moreover, such 

decoupling of the original method not only offers a 

deeper understanding of the mechanisms and 

processes underlying biological networks, but also 

eases the immediate parallelization or distributed 

implementation of the proposed GRN 

reconstruction algorithm.  
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