ON QUASIGROUPS WITH SOME MINIMAL IDENTITIES

Dina CEBAN, Parascovia SYRBU

Moldova State University

Quasigroups with two identities (of types T_1 and T_2) from Belousov-Bennett classification are considered. It is proved that a π -quasigroup of type T_2 is also of type T_1 if and only if it satisfies the identity $\gamma x \cdot x = \gamma$ (the "right keys law"), so π -quasigroups that are of both types T_1 and T_2 are *RLP*-quasigroups. Also, it is proved that π -quasigroups of type T_2 are isotopic to idempotent quasigroups. Necessary and sufficient conditions when a π -quasigroup of type T_2 is isotopic to a group (an abelian group) are found. It is shown that the set of all π -quasigroups of type T_2 isotopic to abelian groups is a subvariety in the variety of all π -quasigroups of type T_2 and that π -T-quasigroups of type T_2 are medial quasigroups. Using the symmetric group on $Q \times Q$, some considerations for the spectrum of finite π -quasigroups (Q_1) of type T_1 are discussed.

Keywords: minimal identities, π -quasigroup, group's isotopes, spectrum.

ASUPRA CVASIGRUPURILOR CU UNELE IDENTITĂȚI MINIMALE

Sunt considerate cvasigrupuri cu două identități (de tipurile T_1 și T_2) din clasificarea Belousov-Bennett. Se demonstrează că un π -cvasigrup de tipul T_2 este un π -cvasigrup de tipul T_1 dacă și numai dacă el verifică identitatea $\mathfrak{M} \circ \mathfrak{X} = \mathfrak{Y}$ (legea "cheilor la dreapta"), deci π -cvasigrupurile care sunt simultan de tipul T_1 și T_2 sunt \mathfrak{MP} -cvasigrupuri. De asemenea, se arată că π -cvasigrupurile de tipul T_2 sunt izotope unor cvasigrupuri idempotente. Sunt determinate condițiile necesare și suficiente ca un π -cvasigrup de tipul T_2 să fie izotop unui grup (grup abelian). Astfel, se obține că π -cvasigrupurile de tipul T_2 și că π -cvasigrupurile de tipul T_2 sunt mediale. Este dată o caracterizare a spectrului π -cvasigrupurilor finite (Q_{τ}) de tipul T_1 în limbajul substituțiilor mulțimii $Q \times Q$.

Cuvinte-cheie: identități minimale, π -cvasigrupuri, izotopi ai grupurilor, spectru.

A binary quasigroup (Q, A) is called a π -quasigroup of type $[\alpha, \beta, \gamma]$, where $\alpha, \beta, \gamma \in S_{a}$, if it satisfies the identity

$${}^{a}A(x, {}^{p}A(x, {}^{r}A(x, y))) = y, \tag{1}$$

where σ denotes the σ -parastrophe of A. A classification of the identities (1) was given by V. Belousov [2] and, independently, by F. Bennett [4]. The corresponding types of the identities from this classification are: $T_1 = [s, s, s], \quad T_2 = [s, s, l], \quad T_4 = [s, s, lr], \quad T_6 = [s, l, lr], \quad T_{10} = [s, lr, l], \quad T_8 = [s, rl, lr],$ $T_{11} = [s, lr, rl], \quad Where l = (13), r = (23).$

Recall that a quasigroup (Q_r) is called: a π -quasigroup of type T_2 if it satisfies the identity:

$$x \cdot (y \cdot yx) = y, \tag{2}$$

and is a π -quasigroup of type T_1 if it satisfies the identity:

$$x \cdot (x \cdot xy) = y. \tag{3}$$

 π -Quasigroups of type T_1 are studied in [2,4,8,9]. The spectrum of the identity (3) was considered in [4]: it is precisely $q \equiv 0$ or $1 \pmod{3}$, except for q = 6. Necessary conditions when a finite π -quasigroup of type T_1 has the order $q \equiv 0 \pmod{3}$ are given in [9]. In particular, it is proved in [9] that a π -quasigroup of type T_1 for which the order of inner mappings group is not divisible by three always has a left unit. Necessary and sufficient conditions when the identity (3) is invariant under the isotopy of quasigroups (loops) and π -quasigroups of type T_1 isotopic to groups, in particular π -T-quasigroups of type T_1 , are considered in [9]. The holomorph of π -quasigroups of type T_1 was studied in [6].

 π -Quasigroups of both types T_1 and T_2 are considered in the present work. It is proved that a π -quasigroup of type T_2 has also the type T_1 if and only if it satisfies the right keys law, so π -quasigroups that are of both types T_1 and T_2 are **RIP**-quasigroups. Also, it is proved that π -quasigroups of type T_2 are isotopic to idempotent quasigroups. Necessary and sufficient conditions when a π -quasigroup of type T_2 is isotopic to a group (an abelian group) are found. It is shown that the set of all π -quasigroups of type T_2 isotopic to abelian groups is a subvariety in the variety of all π -quasigroups of type T_2 and that π -T-quasigroups of type T_2 are medial quasigroups. Also, some considerations for the spectrum of finite π -quasigroups of type T_1 are discussed in present work.

Proposition 1. A π -quasigroup (Q:) of type T_2 is a π -quasigroup of type T_1 if and only if (Q:) satisfies the identity

$$yx \cdot x = y. \tag{4}$$

Proof. If (Q_i) is a π -quasigroup of types T_2 and T_1 then, replacing π by $\gamma \pi$ in (2), we get:

$$y = yx \cdot (y \cdot (y \cdot yx)) = yx \cdot x,$$

 $\forall x, y \in Q$. Conversely, if (Q_r) is a π -quasigroup of type T_2 and satisfies the identity $yx \cdot x = y$ then, replacing x by yx in (2) we have: $yx \cdot (y \cdot (y \cdot yx)) = y = yx \cdot x \Rightarrow y \cdot (y \cdot yx) = x$, $\forall x, y \in Q$, i.e. (Q_r) is a π -quasigroup of type T_1 . \Box

Corollary. π -Quasigroup having both types T_2 and T_1 are RIP-quasigroups.

Example 1. The quasigroup (Q_r) , where $Q = \{1, 2, 3, 4\}$, given by its left translations $L_1 = (234), L_2 = (124), L_3 = (132), L_4 = (143)$ is a π -quasigroup of both types T_1 and T_2 .

Remark 1. π -Loops of type T_2 are trivial. Indeed, if (Q_1) is a π -loop of type T_2 with the unit e then, taking x = e in (2) we get $y \cdot y = y$, so y = e, i.e. |Q| = 1.

Remark 2. π -Quasigroups of both types T_1 and T_2 are anticommutative. Indeed, if (Q_1) is a π -quasigroup of types T_2 and T_1 and $x \cdot y = y \cdot x$, then $x \cdot (y \cdot yx) = y$ and $x \cdot (x \cdot yx) = y$, so $x \cdot (x \cdot yx) = x \cdot (y \cdot yx)$, which implies $x \cdot yx = y \cdot yx$, so x = y.

Proposition 2. A π -quasigroup (Q_i) of type T_2 is isotopic to an abelian group if and only if it satisfies the identity:

$$[\mathbf{y} \cdot (\mathbf{v} \cdot \mathbf{v}\mathbf{u})] \cdot [(\mathbf{y} \cdot (\mathbf{v} \cdot \mathbf{v}\mathbf{u})) \cdot \mathbf{x}] = [\mathbf{y} \cdot (\mathbf{v} \cdot \mathbf{v}\mathbf{x})] \cdot [(\mathbf{y} \cdot (\mathbf{v} \cdot \mathbf{v}\mathbf{x})) \cdot \mathbf{u}].$$
(5)

Proof. It is shown in [1] that a quasigroup (Q_i) is isotopic to an abelian group if and only if it satisfies the identity

$$x \setminus (y \cdot (u \setminus v)) = u \setminus (y \cdot (x \setminus v)), \tag{6}$$

where "\" is the right division in (Q_i) . If (Q_i) is a π -quasigroup of type T_2 then from (2) follows:

$$\mathbf{x} \mathbf{y} = \mathbf{y} \cdot \mathbf{y} \mathbf{x}_{t} \tag{7}$$

 $\forall x, y \in Q$. Using (7) in (6), we get the identity (5). \Box

Corollary 1. π -Quasigroups of type T_1 isotopic to abelian groups are π -quasigroups of type T_2 .

STUDIA UNIVERSITATIS MOLDAVIAE, 2015, nr.2(82) Seria "Stiințe exacte și economice" ISSN 1857-2073 ISSN online 2345-1033 p.47-52

Proof. Let (Q_r) be a π -quasigroup of type T_1 isotopic to an abelian group. Taking u = v = y in (5) and using (3), we get $y \cdot yx = x \cdot xy$, which implies $x = y \cdot (y \cdot yx) = y \cdot (x \cdot xy)$, $\forall x, y \in Q$, i.e (Q_r) is a π -quasigroup of type T_2 . \Box

Corollary 2. The set of all π -quasigroups of type T_2 isotopic to abelian groups is a subvariety in the variety of all π -quasigroups of type T_2 .

Example 2. The quasigroup (Q_1) , where $Q = \{1, 2, 3, 4\}$, given by its left translations $L_1 = (123), L_2 = (243), L_3 = (142), L_4 = (134)$ is a π -quasigroup of both types T_1 and T_2 and satisfies (5), so (Q_1) is isotopic to an abelian group.

Remark 3. π -Quasigroups of type T_1 , isotopic to abelian groups are not always π -quasigroups of type T_2 as shows the following example.

Example 3. The quasigroup (Q_i) , where $Q = \{1, 2, 3, 4\}$, given by its left translations: $L_1 = (123)_r L_2 = (243)_r L_3 = (134)_r L_4 = (142)$ is a π -quasigroup of type T_1 and satisfies the identity $x \setminus (y \cdot (u \setminus v)) = u \setminus (y \cdot (x \setminus v))_r$, so (Q_i) is isotopic to an abelian group. It is easy to verify that (Q_i) is not a π -quasigroup of type T_2 .

Proposition 3. Let (Q_r) be a π -quasigroup of both types T_1 and T_2 . (Q_r) is isotopic to a group if and only if it satisfies the identity

$$x(y \cdot y(zu \cdot v)) = (x(y \cdot yz) \cdot u)v.$$
(8)

Proof. It is known [5] that a quasigroup (Q_r) is isotopic to a group if and only if it satisfies the identity

$$x(y \setminus ((z/u)v)) = ((x(y \setminus z))/u)v, \tag{9}$$

where "\" and "/" are the right and the left division in (Q, \cdot) . If (Q, \cdot) is a π -quasigroup (Q, \cdot) of types T_1 and T_2 then from (4) follows:

$$x/y = x \cdot y.$$

 $\forall x, y \in Q$. Using the last equality in (8), we obtain

$$x(y \setminus ((z \cdot u)v)) = ((x(y \setminus z)) \cdot u)v.$$
⁽¹⁰⁾

(Q:) is a π -quasigroup of type T_1 , so $x \setminus y = x \cdot xy$. Using the last equality in (10), we get (8). Corollary. If (Q:) is a π -quasigroup of types T_1 and T_2 , isotopic to a group, then it satisfies the identity

$$(yz \cdot v)u = (zu \cdot v)(yz \cdot y). \tag{11}$$

Proof. Let (Q, \cdot) be a π -quasigroup of both types T_1 and T_2 , isotopic to a group. Taking $x = zu \cdot v$ and using (2) in (8), we get $y = [(zu \cdot v)(y \cdot yz)]u \cdot v$. Multiplying by v from the right, then by u from the right the last equality and using (4), we get $yv \cdot u = (zu \cdot v)(y \cdot yz)$. Replacing y by yz in the last equality and using (4), we obtain (11). \Box

Example 4. The quasigroup
$$(Q_r)$$
, where $Q = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, given by its left translations:

$$\begin{split} L_1 &= (123)(567)(89), \ L_2 &= (489)(576), \ L_3 &= (132)(498), \ L_4 &= (154)(279)(368), \\ L_5 &= (147)(296)(385), \ L_6 &= (195)(287)(346), \ L_7 &= (186)(245)(697), \\ L_8 &= (178)(264)(359), \ L_9 &= (169)(258)(374) \end{split}$$

is a π -quasigroup of both types T_1 and T_2 and satisfies (8), so (Q.) is isotopic to a group. (Q.) does not satisfy (5), i. e. is not isotopic to an abelian grup.

STUDIA UNIVERSITATIS MOLDAVIAE, 2015, nr.2(82) Seria "Stiințe exacte și economice" ISSN 1857-2073 ISSN online 2345-1033 p.47-52

Proposition 4. If a π -quasigroup (Q_r) of types T_1 and T_2 is principal isotopic to an abelian group (Q_r+) then $(\cdot) = (+)^{(LL_0^{(Q)}, e)}$, where **0** is the neutral element of the group (Q, +) and I is the inversion in (Q, +) $(I: Q \rightarrow Q, I(x) = -x, \forall x \in Q)$.

Proof. Let (Q_r) be a π -quasigroup of types T_1 and T_2 , principal isotopic to an abelian group (Q_r+) , so $(+) = (\cdot)^{(R_{\alpha}^{(2)-4}, L_{\beta}^{(2)-4}, e)}$ or $x + y = R_{\alpha}^{(\cdot)-1}(x) \cdot L_{\beta}^{(\cdot)-1}(y)$. Taking x = 0 in the last equality, we have $y = R_{\alpha}^{(\cdot)-1}(0) \cdot L_{\beta}^{(\cdot)-1}(y)$. Denoting $R_{\alpha}^{(\cdot)-1}(0)$ by c, the last equality takes the form $y = c \cdot L_{\beta}^{(\cdot)-1}(y) = L_{\alpha}^{(\cdot)}L_{\beta}^{(\cdot)-1}(y)$, so $L_{\alpha}^{(\cdot)}L_{\beta}^{(\cdot)-1} = s$ or

$$b = c = R_a^{(\cdot)-1}(0).$$
(12)

The isotopy $(+) = (\cdot)^{(R_{a}^{(\cdot)-4}, L_{b}^{(\cdot)-4}, e)}$ implies

$$x \cdot y = R_a^{(\cdot)}(x) + L_b^{(\cdot)}(y) = xa + by.$$
(13)

So as (Q_i) is a π -quasigroup of types T_1 and T_2 , from Proposition 1 follows that (Q_i) satisfies the identity $yx \cdot x = y$. From (13) and (4) we obtain $R_a^{(i)}(R_a^{(i)}(y) + L_b^{(i)}(x)) + L_b^{(i)}(x) = y$ or $R_a^{(i)}(R_a^{(i)}(y) + x) + x = y$, so $R_a^{(i)}(R_a^{(i)}(y) + x) = y - x$. Taking x = y in the last equality, we have $R_a^{(i)}(R_a^{(i)}(x) + x) = 0 \Rightarrow R_a^{(i)}(x) + x = R_a^{(i)-1}(0)$. Using (12), we obtain

$$R_a^{(j)}(x) = b - x. \tag{14}$$

Using (14) in (13), we get:

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{b} - \mathbf{x} + \mathbf{b}\mathbf{y}. \tag{15}$$

Taking $x = \emptyset$ in (15), we obtain

$$by = -b + 0 \cdot y. \tag{16}$$

From (15) and (16), we have $\mathbf{b} - \mathbf{x} - \mathbf{b} + \mathbf{0} \cdot \mathbf{y} = \mathbf{x} \cdot \mathbf{y}$ or $\mathbf{x} \cdot \mathbf{y} = -\mathbf{x} + \mathbf{0} \cdot \mathbf{y}$. From the last equality we obtain $(\cdot) = (+)^{(\mu \downarrow_0^{(2)}, \epsilon)}$. \Box

Proposition 5. Every π -quasigroup of type T_2 is isotopic to an idempotent quasigroup.

Proof. Let (Q_r) be a π -quasigroup of type T_2 and let $a \in Q$. Then its isotope (Q_r) , given by the isotopy $T = (a, R_a^{(r)}, L_a^{(r)-1})$, where $R_a^{(r)}(x) = x \cdot a$ and $L_a^{(r)}(x) = a \cdot x$, $\forall x \in Q_r$ is idempotent:

 $x \circ x = L_a^{(\cdot)} \left(x \cdot R_a^{(\cdot)}(x) \right) = a \cdot (x \cdot xa) = x, \forall x \in Q. \quad \Box$

Example 5. The quasigroup $(\mathbb{Z}_{\mathbb{B}^{\prime}})$, where $x \cdot y = 3x + 3y \pmod{5}$, $\forall x, y \in \mathbb{Z}_{\mathbb{B}^{\prime}}$ is an idempotent π -quasigroup of type T_2 .

Remark 4. π -Quasigroups of type T_2 are admissible so as

 $x \cdot (y \cdot yx) = y \Rightarrow x \setminus y = y \cdot yx \Rightarrow L_x^{(i)}(y) = y \cdot R_x^{(i)}(y), \forall x, y \in Q$, where $L_x^{(i)}$ is the left translation with x in (Q, \setminus) , so $L_x^{(i)}$ is a complete mapping of (Q, \cdot) . It is known ([1]) that admissible quasigroups are isotopic to idempotent quasigroups.

Recall that a quasigroup (Q, \cdot) is called a *T*-quasigroup if there exists an abelian group (Q, +), its automorphisms $\varphi, \psi \in Aut(Q, +)$ and an element $g \in Q$ such that, for every $x, y \in Q$, the following equality holds:

 $x \cdot \gamma = \varphi(x) + \psi(y) + g.$

The tuple $((Q, +), \varphi, \psi, g)$ is called a *T*-form and the group (Q, +) is called a *T*-group of the *T*-quasigroup (Q, \cdot) .

Proposition 6. A *T*-quasigroup (Q_r) with the *T*-form $((Q, +), \varphi, \psi, g)$ is a π -quasigroup of type T_2 if and only if the following conditions hold: 1) $\psi^2(g) + \psi(g) + g = 0$; 2) $\varphi = I\psi^3$; 3) $\psi^5 + \psi^4 = I$, where 0 is the neutral element of the group (Q, +) and $s: Q \to Q, s(x) = x, \forall x \in Q$.

Proof. So as $((Q, +), \varphi, \psi, g)$ is a *T*-form of (Q, \cdot) we have $x \cdot y = \varphi(x) + \psi(y) + g, \forall x, y \in Q$, so the identity (2) implies:

$$\varphi(x) + \psi(\varphi(y) + \psi(\varphi(y) + \psi(x) + g) + g) + g = y \Leftrightarrow$$

$$\varphi(x) + \psi\varphi(y) + \psi^2\varphi(y) + \psi^3(x) + \psi^2(g) + \psi(g) + g = y, \tag{17}$$

 $\forall x, y \in Q$. Taking x = y = 0 in (17), we have $\psi^2(g) + \psi(g) + g = 0$, so (17) is equivalent to

$$\varphi(x) + \psi\varphi(y) + \psi^2\varphi(y) + \psi^3(x) = y,$$
(18)

 $\forall x, y \in Q$. Now, taking y = 0 and, after this x = 0, in (18) we get $\varphi + \psi^2 = \omega \iff \varphi = I\psi^2$, and respectively, $\psi \varphi + \psi^2 \varphi = s$ or $\psi^2 + \psi = \varphi^{-1} = \psi^{-2}I \iff \psi^2 + \psi^4 = I$, where $\omega: Q \to Q, \omega(x) = 0, \forall x \in Q$.

Conversely, if the conditions 1), 2) and 3) hold, then $y = s(y) + \omega(x) = \psi \varphi(y) + \psi^2 \varphi(y) + \varphi(x) + \psi^3(x) + \psi^2(g) + \psi(g) + g = x \cdot (y \cdot yx)$, so (Q,) is a π -quasigroup of type T_2 . \Box

Corollary. π -*T*-*Quasigroups of type* T_2 *are medial quasigroups.*

Proof. If (Q_i) is a π -*T*-quasigroup of type T_2 then $\varphi = -\psi^3$, so $\varphi \psi = -\psi^4 = \psi(-\psi^3) = \psi \varphi$, i.e. (Q_i) is a medial quasigroup. \Box

Let (Q_r) be a quasigroup and let $Aut(Q_r)$ be its group of automorphisms. Define on $H = Aut(Q_r) \times Q$ the operation " \circ " as follows:

 $(\alpha, x) \circ (\beta, y) = (\alpha \beta, \beta(x) \cdot y),$

 $\forall (\alpha, x), (\beta, y) \in H$. Then (H, \circ) is a quasigroup and is called the holomorph of (Q_i) .

Proposition 7. Let (Q_r) be a π -quasigroup of type T_2 . Then its holomorph (H_r) is a π -quasigroup of type T_2 if and only if $Aut(Q_r) = \{\varepsilon\}$, where ε is the identical mapping on Q.

Proof. The holomorph $(H_{\mathcal{P}})$ of the quasigroup $(Q_{\mathcal{P}})$ is a π -quasigroup of type T_2 if and only if it satisfies the identity:

$$(\alpha, x) \circ \left[(\beta, y) \circ ((\beta, y) \circ (\alpha, x)) \right] = (\beta, y).$$
⁽¹⁹⁾

Using the definition of "•" in (19), we have: $(\alpha\beta^2\alpha,\beta^2\alpha(x)\cdot [\beta\alpha(y)\cdot (\alpha(y)\cdot x)]) = (\beta,y),$

STUDIA UNIVERSITATIS MOLDAVIAE, 2015, nr.2(82) Seria "Stiinte exacte și economice" ISSN 1857-2073 ISSN online 2345-1033 p.47-52

which imply, in particular, the equality $\alpha \beta^2 \alpha = \beta, \forall \alpha, \beta \in Aut(Q_i)$. Taking in the last equality $\alpha = \varepsilon$, we obtain $\beta = \varepsilon, \forall \beta \in Aut(Q_i)$, so $Aut(Q_i) = \{\varepsilon\}$. Conversely, if $Aut(Q_i) = \{\varepsilon\}$, then $(H_i \circ) \cong (Q_i)$, so $(H_i \circ)$ is a π -quasigroup of type T_2 . \Box

Proposition 8. If (Q, A) is a finite π -quasigroup of type T_1 , then $|Q| \equiv 0$ or $1 \pmod{3}$.

Proof. Let (Q, A) be a finite π -quasigroup of type T_1 and let |Q| = q. The quasigroup (Q, A) satisfies the identity

$$A\left(x, A(x, A(x, y))\right) = y.$$
⁽²⁰⁾

Denoting the binary selectors, defined on the set Q, by F and E, i.e.

 $F(x, y) = x, E(x, y) = y, \forall x, y \in Q, \text{ the equality (20) implies:}$ $E = A(F, A(F, A)) = A(F(F, A), A(F, A)) = A(F, A)^2 \Rightarrow E(F, A) = A(F, A)^3 \Rightarrow A(F, E) = A = A(F, A)^3 \Rightarrow (F, E) = (F, A)^3$ so

$$(F,A)^3 = s_{\rho^3},\tag{21}$$

where a_{0} is the identical mapping on Q^{2} and

 $(F,A): Q^2 \to Q^2, (F,A)(x,y) = (F(x,y), A(x,y)) = (x, A(x,y)).$ Denoting $(F,A) = \alpha$ and using (21), we get

(21), we get

$$\alpha^{\mathbf{a}} = s_{Q^{\mathbf{a}}}.$$
(22)

So as (Q, A) is a quasigroup, $F \perp A_r$ so $\alpha = (F, A)$ is a bijection. Remark that, for $(t, j) \in Q^2$, we have $\alpha(t, f) = (t, f) \Leftrightarrow (F, A)(t, f) = (t, f) \Leftrightarrow (t, A(t, f)) = (t, f) \Leftrightarrow A(t, f) = f \Leftrightarrow t$ is the local left unit of j. Denoting the left local unit of j by f_j , we obtain the set U of all elements from Q^2 , which are invariant under α : $U = \{(f_{jr}, j) \mid j = 1, 2, ..., q\}$. Hence, exactly q elements from Q^2 are invariant, under $\alpha = (F, A)$, i.e. the rest of $q^2 - q$ elements are not invariant. Now, using (22) we obtain that α is a product of cycles of length 3 on a set of $q^2 - q = q(q - 1)$ elements, i.e. q = 0 or $1 \pmod{3}$.

Bibliography:

- 1. BELOUSOV, V. Foundations of the theory of quasigroups and loops. Moscow: Nauka, 1967. 223 p. (Russian)
- 2. BELOUSOV, V. Parastrophic-orthogonal quasigroups. Quasigroups and Related Systems, 2005, 14, p.3-51.
- 3. BELOUSOV, V. Balanced identities in quasigroups. In: Mat. Sb., 1966, no70(112), no.1, p.55-97. (Russian)
- BENNETT, F.E. The spectra of a variety of quasigroups and related combinatorial designs. In: *Discrete Math.* 1989, no77, p.29-50.
- 5. BELYAVSKAYA, G., TABAROV, A. The characteristics of linear and alinear quasigroups. In: *Discretnaya Matematica*, vol.4, 1992, no 2, p.142-147. (Russian)
- 6. CEBAN D., SYRBU P. On the holomorph of π -quasigroups of type T_1 . In: *Proceedings IMCS-50*. The 3rd Conference of Math. Society of the Republic of Moldova. Chisinau, August 19-23, 2014, p.34-37.
- 7. PFLUGFELDER, H.O. Quasigroups and loops: introduction. In: Sigma Series in Pure Math., 1990.
- SYRBU, P. On π-quasigroups isotopic to abelian groups. In: Buletinul Academiei de Ştiinţe a Moldovei. Seria "Matematică", 2009, nr.3(61), p.109-117.
- SYRBU, P., CEBAN, D. On π-quasigroups of type T₁. In: Buletinul Academiei de Ştiinţe a Moldovei. Seria "Matematică", 2014, nr.2(75).

Acknowledgements: The work was partially supported by CSSDT ASM grant 15.817.02.26F.

Prezentat la 27.02.2015