SINTEZA ȘI CARACTERIZAREA STRUCTURALĂ A COMPUSULUI TRINUCLEAR ÎN BAZA N¹,N⁴-BIS(SALICILIDEN)-S-METIL-IZOTIOSEMICARBAZIDEI

Mihail SECU, Oleg PALAMARCIUC, Pierre DECHAMBENOIT^{*}, Rodolphe CLÉRAC^{*}

Universitatea de Stat din Moldova *Centrul de Cercetări "Paul Pascal", CRPP-CNRS, Pessac, Franța

Un nou compus coordinativ $[{Mn^{III}(L) \cdot (CH_3OH)_2}_2 {Fe^{II}(CN)_5(NO)}] \cdot 2CH_3OH$ a fost sintetizat și caracterizat structural prin metoda difracției cu raze X pe monoristal. Analiza structurală arată că complexul constă dintr-o unitate trinucleară lineară $[{Mn^{III}(L) \cdot (CH_3OH)_2}_2 {Fe^{II}(CN)_5(NO)}]$, unde anionul de nitroprusiat de Fe(II) coordinează prin doi atomi de azot ai cianurilor *trans* la pozițiile axiale a două entități de $[Mn^{III}(L)]^+$ (H₂L = N¹,N⁴-bis(saliciliden)-S-metilizotiosemicarbazida). Analiza elementală și spectrul IR confirmă puritatea produsului final.

Cuvinte-cheie: N^l , N^4 -bis(saliciliden)-S-metil-izotiosemicarbazida, compus coordinativ de mangan(III), nitroprusiat fe Fe(II), structură cristalină, IR.

SYNTHESIS AND STRUCTURAL CHARACTERIZATION OF TRINUCLEAR COMPOUND BASED ON $\rm N^{1}, \rm N^{4}-BIS$ (SALICILIDEN)-S-METIL-IZOTHIOSEMICARBAZIDE

New coordination compounds $[\{Mn^{III}(L)\cdot(CH_3OH)_2\}_2\{Fe^{II}(CN)_5(NO)\}]\cdot 2CH_3OH$ was synthesized and structurally characterized by X-ray single-crystal diffraction. The structural analyse shows that complex consist of the discrete linear trinuclear $[\{Mn^{III}(L)\cdot(CH_3OH)_2\}_2\{Fe^{II}(CN)_5(NO)\}]$ unit, where the nitroprusside Fe(II) anion coordinates to the axial sites of the two $[Mn^{III}(L)]^+$ ($H_2L = N^1, N^4$ -bis(salicylidene)-S-methylisothiosemicarbazide) entities through its two *trans*-cyanido nitrogen atoms. Elemental analysis and IR confirms the purity of the final product.

Keywords: N^{l} , N^{4} -bis(salicylidene)-S-methylisothiosemicarbazide, managanese(III) complex, nitroprusside, crystal structure, IR.

Dedicat memoriei prof. Mihail REVENCO

Introducere

Sistemele supramoleculare au o importanță deosebită în chimia coordinativă grație proprietăților magnetice sau fotomagnetice nontriviale pe care le posedă și care condiționează aplicarea lor în calitate de materiale pentru stocarea informației [1,2]. Elaborarea metodelor de sinteză și organizarea unităților fotomagnetice în sisteme supramoleculare devine o prioritate științifică, cu repercusiuni de aplicare în tehnologiile informaționale.

Ansamblul de idei cunoscute până astăzi permit trasarea căilor generale de rezolvare a diferitelor aspecte de sinteză a materialelor fotomagnetice. În acest sens este importantă selectarea corectă a *componentelor fotosensibile* și *magnetice*, care prin "asamblare" vor forma un material cu o anumită structură chimică ce determină proprietățile propriu-zise.

Una dintre modalitățile folosite pe scară largă pentru sinteza acestor materiale magnetice este utilizarea liganzilor organici capabili de a bloca site-urile de coordinare ecuatoriale. Pentru acest scop sunt utilizați liganzii de tip *salen*, iar în studiul dat ligandul tetradentat $H_2L = N^1, N^4$ -bis(saliciliden)S-metil-izotiosemicarbazida (Fig.1). Cele două poziții axiale accesibile în compușii octaedrici pot fi ocupate de către unități punte, care leagă centrele de metal paramagnetic adiacente. Compușii manganului(III) cu liganzii tetradentați de tip *salen*, care se află în stare fundamentală cu spinul sumar (S = 2) și o anizotropie magnetică a centrului de Mn(III) hexacoordinat datorată distorsiunii *Jahn–Teller*, sunt candidații preferențiali în calitate de building block-uri paramagnetice pentru asamblarea de structuri noi cu proprietăți magnetice originale [3].

În calitate de componentă fotosensibilă este frecvent folosit ionul nitroprusiat $[Fe^{II}(CN)_5NO]^{2^-}$. Astfel, la iradierea nitroprusiatului de Fe(II) în intervalul lungimelor de undă 400-530 nm, la temperatură joasă, are loc un transfer de electron de pe orbitalul *d* al ionului de Fe²⁺ pe orbitalul π al grupării nitrosil NO⁺ (transfer de electron *metal-ligand*). În rezultat, Fe²⁺ se oxidează la Fe³⁺, iar NO⁺ se reduce la NO⁺ formând complexul [Fe³⁺-NO⁺] cu o durată de viață la temperatura de 80 K de 20-80 µs [4,5]. În acest context, prezintă interes "conectarea" nitroprusiatului cu diferiți compuși ce manifestă proprietăți magnetice relevante (componentă magnetică). Astfel, se pot obține noi materiale heterometalice cu proprietăți fotomagnetice originale.

Fig.1. Schema ligandului $H_2L = N^1, N^4$ -bis(saliciliden)S-metil-izotiosemicarbazida.

În lucrarea de față este raportată sinteza și studiul cristalografic al unui nou compus trinuclear de tip Mn_2Fe obținut prin asocierea componentelor $[Mn^{III}(L)]^+$ ($H_2L = N^1, N^4$ -bis(saliciliden)-S-metil-izotiosemicarbazida) cu nitroprusiatul de tetrabutilamoniu. Acesta este primul compus întâlnit în literatura de specialitate în care s-a reușit asocierea compușilor coordinativi ai mangan(III) cu N^1, N^4 -bis(saliciliden)-S-metil-izotiosemicarbazida cu un cianocomplex.

I. Partea experimentală

I.1. Reactivi și metode de cercetare

Reactivii organici și anorganici de calitate superioară (97-99.99%) au fost procurați de la companiile: "Sigma-Aldrich", "Acros Organics" sau "Alfa Aesar", fiind folosiți în sinteză fără o purificare prealabilă. Sinteza (NBu₄)₂[Fe^{II}(CN)₅(NO)]·2H₂O (NBu₄⁺ = tetrabutilamonium) a fost realizată conform [6], iar [Mn^{III}(L)(CH₃OH)(Cl)] conform metodei descrise în [7].

Determinarea elementelor C, H, N, S

Pentru analiza elementală a substanțelor studiate s-a utilizat analizatorul de elemente automat FlashEATM 1112 de la Institutul de Chimie a Materiei Condensate (Bordeaux, Franța).

Principiul de bază al analizei cantitative C,H,N,S este combustia probei solide. Gazele de combustie sunt purificate, separate pe componente și analizate cu un detector corespunzător. Analizorul utilizează Heliul ca gaz portant și oxigenul – gaz de combustie. Cu ajutorul unei balanțe analitice au fost cântărite 1-2 mg din probele supuse analizei. Probele au fost supuse combustiei (arderea probei la componentele elementare: N_2 , CO_2 , H_2O și SO_2) în reactorul de combustie la o temperatura de până la 1700-1800°C.

Gazele rezultate în urma procesului de ardere au fost transportate cu ajutorul gazului portant (He) în coloana cromatografică de separare, unde au fost separate și detectate secvențial de detectorul de conductivitate termică (TCD). Detectorul TCD generează un semnal proporțional cu cantitatea elementului în proba respectivă. Software-ul dedicat (Eager 300) compară intensitățile elementare cu cele ale unui standard cunoscut (Acetanilidă etc.) cu care s-a făcut în prealabil calibrarea și generează un raport pentru fiecare element detectat, pe baza greutății sale.

Spectroscopia IR

Spectrele IR au fost înregistrate în Laboratorul "Centrul de Cercetări "Paul Pascal", CRPP, CNRS (Bordeaux, Franța), la aparatul NICOLET 6700 FT-IR, în domeniul $550 \div 4000 \text{ cm}^{-1}$.

Analiza cu raze X

Investigația cristalografică prin difracție cu raze X pe monocristal a fost efectuată la difractometrul Bruker Apex II în Laboratorul "Centrul de Cercetări "Paul Pascal"". Probele au fost supuse iradierii cu o sursă de Mo-K α pe monocromator de grafit ($\lambda = 0.71073$ Å). Pentru integrarea datelor a fost utilizat programul SAITN, iar pentru omiterea efectelor de polarizare Lorentz – programul SADABS [8]. Structurile au fost determinate și confirmate prin metoda directă, apoi rafinate prin metoda semipătratică F² utilizând programul SHELXTL-97 [9]. Toți atomii, cu excepția celor de hidrogen, au fost rafinați anizotropic. Atomii de hidrogen au fost atribuiți în pozițiile ideale cu ajutorul comenzii HFIX din programul SHELXL-97. Datele cristalografice sunt prezentate în Tabelul 1.

Tabelul 1

Datele clista	Datele clistalogi altee				
Formula empirică	$C_{41}H_{42}FeMn_2N_{12}O_9S_2$				
Masa moleculară	1076.70				
Temperatura, K	120				
Sistemul cristalin	Triclinic				
Grupul de spațiu	P-1				
Parametrii celulei elementare					
<i>a</i> , Å	10.036(5)				
b, Å	11.093(5)				
<i>c,</i> Å	11.390(5)				
a, deg	76.441(5)				
β	70.728(5)				
γ	83.675(5)				
<i>V</i> , Å ³	1162.9(9)				
Ζ,	1				
$\rho calc, g/cm^3$	1.538				
μ_{Mo}, mm^{-1}	0.999				
<i>F</i> (000)	552.0				
Dimensiunea cristalului, mm	0.08 x 0.1 x 0.12				
θ, grade	1.89 - 25.65				
Index de colectare a datelor	$-12 \le h \le 12$,				
	$-13 \le k \le 13$,				
	$-13 \le l \le 13$				
Reflecții colectate/unice	12012 / 4290				
Integralitatea $\theta = 25.65, \%$	97.3				
Reflecții cu $I > 2\sigma(I)$	3685				
Numărul de parametri reînnoiți	320				
GOOF	1.233				
<i>R</i> (pentru $I > 2\sigma(I)$)	$R_1 = 0.0480$				
	$wR_2 = 0.1208$				
<i>R</i> (pentru toate reflecțiile)	$R_1 = 0.0592$				
	$wR_2 = 0.135$				
Δρmax / Δρmin, e·Å-3	0.863/ -0.996				

Datele cristalografice

I.2. Metode de sinteză

La o soluție metanolică (10 ml) de $(NBu_4)_2[Fe^{II}(CN)_5(NO)]$ (0.368 g, 0.5 mmol) se adaugă, prin picurare o soluție metanolică (20 ml) de $[Mn^{III}(L)(CH_3OH)(CI)]$ (0.218 g, 0.5 mmol). Soluția brună rezultată se agită timp de 15 minute, apoi se filtrează. După filtrare soluția rezultată se supune unei cristalizări prin difuzie lentă cu vapori de eter dietilic. Cristalele brune care se obțin după câteva zile se spală pe filtru cu un amestec de metanol - eter dietilic și se usucă la aer. Randament 70%. Anal. Element. Calc. pentru $C_{41}H_{42}FeMn_2N_{12}O_9S_2$ (M= 1076.70 g/mol): C, 45.74; H, 3.93; N, 15.61; S, 5.96%. Găsit: C, 45.67; H, 4.02; N, 15.56; S, 5.88%.

II. Rezultate și discuții

II.1. Sinteza și caracterizarea structurală

Compusul $[Mn^{III}(L)(CH_3OH)(Cl)]$ interacționează cu ionul nitroprusiat de Fe(II) prin intermediul punților *CN* (Fig.2) în urma unui schimb ionic, formând astfel un sistem trinuclear cu geometrie liniară, structură confirmată prin metoda de difracție cu raze X pe monocristal (DRX).

Fig.2. Schema de sinteză a compusului trinuclear $[{Mn^{III}(L) \cdot (CH_3OH)_2}_2 {Fe^{II}(CN)_5(NO)}] \cdot 2CH_3OH.$

Compusul coordinativ $[\{Mn^{III}(L)\cdot(CH_3OH)_2\}_2\{Fe^{II}(CN)_5(NO)\}]\cdot 2CH_3OH cristalizează în sistemul cri$ stalin*triclinic*, grupul spațial centrosimetric*P-1*, și conține o moleculă în celula elementară. Acesta este $compus dintr-o unitate trinucleară neutră <math>[\{Mn^{III}(L)\cdot(CH_3OH)_2\}_2\{Fe^{II}(CN)_5(NO)]$ (Fig.3) și două molecule de metanol de cristalizare. Principalele distanțe și unghiuri sunt prezentate în Tabelul 2. Unitatea trinucleară prezentată în Figura 3 este formată din două fragmente de $[Mn^{III}(L)]^+$ conectate la cianocomplexul anionic $[Fe^{II}(CN)_5(NO)]^2$. Ambele centre de Mn(III) sunt hexa-coordinate, fiind conectate în planul ecuatorial cu doi atomi de azot și doi de oxigen ai ligandului N¹,N⁴-bis(saliciliden)S-metil-izotiosemicarbazida, iar în pozițiile axiale având atașate câte o moleculă de metanol și câte un ligand cianură derivat de la cianocomplexul anionic $[Fe^{II}(CN)_5(NO)]^2$. Distanțele legăturilor în pozițiile axiale [Mn-N(4) = 2.279(3) Å, Mn-O(3) = 2.292(3) Å] sunt mult mai lungi decât cele din planul ecuatorial (variind între 1.869 și 1.988 Å). Această mărire a distanțelor axiale se poate datora unui efect *Jahn-Teller* de alungire în octaedrul ionilor de mangan(III).

Fig.3. Structura cristalină a complexului trinuclear [$\{Mn^{III}(L) \cdot (CH_3OH)_2\}_2 \{Fe^{II}(CN)_5(NO)\}$].

Tabelul 2

Legături	Valoarea (Å)	Legături	Valoarea (Å)
Mn—O(1)	1.869 (3)	$FeC(19)^{i}$	1.810 (4)
Mn—O(2)	1.875 (3)	Fe—C(19)	1.810 (4)
Mn—N(1)	1.976 (3)	$FeC(18)^{i}$	1.935 (4)
Mn—N(2)	1.988 (3)	Fe—C(18)	1.935 (4)
Mn—N(4)	2.279 (3)	Fe—C(20)i	1.945 (4)
Mn—O(3)	2.292 (3)	Fe—C(20)	1.945 (4)
$Fe - N(7)^{i}$	1.810 (4)		

Valorile lungimilor legăturilor (Å) și a unghiurilor (°)

STUDIA UNIVERSITATIS MOLDAVIAE, 2014, nr.6(76) Seria "Științe reale și ale naturii" ISSN 1814-3237 ISSN online 1857-498X p.130-136

Unghiuri	Valaaraa (°)	Unghiuri	Valoaroa (º)
Ungmutt	valuarea ()	Unginutt	valuarea ()
O(1)—Mn— $O(2)$	95.68 (11)	$N(7)^{i}$ —Fe—C(18) ⁱ	90.74 (16)
O(1)— Mn — $N(1)$	92.85 (12)	$C(19)^{i}$ —Fe— $C(18)^{i}$	90.74 (16)
O(2)— Mn — $N(1)$	170.74 (12)	$C(19)$ —Fe— $C(18)^{i}$	89.26 (16)
O(1)—Mn—N(2)	170.54 (12)	$N(7)^{i}$ —Fe—C(18)	89.26 (16)
O(2)— Mn — $N(2)$	92.36 (12)	$C(19)^{i}$ —Fe—C(18)	89.26 (16)
N(1)—Mn—N(2)	78.83 (13)	C(19)—Fe—C(18)	90.74 (16)
O(1)—Mn—N(4)	88.95 (12)	$C(18)^{i}$ —Fe—C(18)	180
O(2)—Mn—N(4)	98.18 (12)	$N(7)^{i}$ —Fe—C(20) ⁱ	87.83 (17)
N(1)—Mn—N(4)	85.54 (12)	$C(19)^{i}$ —Fe— $C(20)^{i}$	87.83 (17)
N(2)—Mn—N(4)	94.83 (12)	$C(19)$ —Fe— $C(20)^{i}$	92.17 (17)
O(1)—Mn—O(3)	90.48 (11)	$C(18)^{i}$ —Fe— $C(20)^{i}$	88.74 (16)
O(2)—Mn—O(3)	90.51 (11)	$C(18)$ —Fe— $C(20)^{i}$	91.26 (16)
N(1)—Mn—O(3)	85.83 (11)	N(7)i—Fe—C(20)	92.17 (17)
N(2)—Mn—O(3)	84.47 (11)	$C(19)^{i}$ —Fe—C(20)	92.17 (17)
N(4)—Mn—O(3)	171.31 (11)	C(19)—Fe—C(20)	87.83 (17)
$N(7)^{i}$ —Fe—C(19) ⁱ	0.0 (3)	$C(18)^{i}$ —Fe—C(20)	91.26 (16)
$N(7)^{i}$ —Fe—C(19)	180	C(18)—Fe—C(20)	88.74 (16)
$C(19)^{i}$ —Fe—C(19)	180	$C(20)^{i}$ —Fe— $C(20)$	180.0 (2)
Simetria: (i) $-x+1, -y+1, -z$.			

Ca urmare a împachetării a două forme de enantiomeri, fragmentul S-metil-izotiosemicarbazidic s-a dovedit a fi dezordonat în două poziții cu factorii de ocupare 0.86 și 0.14 pentru atomii S(1A) și, respectiv, S(1B) (Fig.3). Această stare este caracteristică fragmentului S-alchil-izotiosemicarbazidic, fiind observată la un număr mare de complecși [7,10,11]. Anionul de $[Fe^{II}(CN)_5(NO)]^{2^-}$ este prins între perechea de cationi $[Mn^{III}(L)\cdot(CH_3OH)_2]^+$; două grupe CN^- din pozițiile *trans* ale cianocomplexului anionic $[Fe^{II}(CN)_5(NO)]^{2^-}$ acționează în calitate de punte între cei doi ioni de mangan(III), rezultând construcția unui compus trinuclear unic $CH_3OH(L)Mn^{III}(\mu-NC)$ -Fe(CN)₃NO-($CN-\mu$)Mn^{III}(L) CH_3OH }. Anionul de nitroprusiat adoptă o geometrie liniară, având unghiul Fe-C(18)-N(4) de 178.4(4)°, în timp ce unghiul Mn-N(4)-C(18) este de 155.0(3)°, ceea ce reflectă natura coordinării puțin distorsionată a ionilor de mangan(III). Separarea intramoleculară între ionii de Mn(III) este de 10.473(4) Å. Atomul de Fe din nitroprusiat ocupă un centru de inversiune, dând naștere la o dezordine a grupării nitrozil între două poziții *trans*. Lungimea legăturilor Fe-N(7)ⁱ/C(19)ⁱ (1.810 Å) are o valoare intermediară între Fe-N și Fe-C, tipic anionilor de $[Fe^{II}(CN)_5(NO)]^{2^-}$ [12]. În Figura 4 este reprezentată împachetarea unităților trinucleare [$\{Mn^{III}(L)\cdot(CH_3OH)_2\}_2$ { $Fe^{II}(CN)_5(NO)$],

In Figura 4 este reprezentată împachetarea unităților trinucleare [$\{Mn^{in}(L)\cdot(CH_3OH)_2\}_2\{Fe^{in}(CN)_5(NO)\},$ unde se observă aranjarea moleculelor în lungul aceleiași direcții. Mai mult decât atât, la nivel supramolecular se observă prezența unei rețele de legături de hidrogen care implică atomii de oxigen de la metanolul de coordinare și moleculele de metanol de rețea (O(3)-H(3W)···O(4)ⁱ = 1.76(7) Åⁱ = 1-x,1-y,1-z), precum și moleculele de metanol de rețea și atomii de azot de la grupările CN (O(4)ⁱ-H(4A) ···N(6)ⁱ = 1.951(4) Åⁱ = 1-x,1-y,1-z) cu formarea unui sistem 1D.

STUDIA UNIVERSITATIS MOLDAVIAE, 2014, nr.6(76) Seria "Științe reale și ale naturii" ISSN 1814-3237 ISSN online 1857-498X p.130-136

II.2. Spectrul Ir

Spectrul în domeniul IR al complexului $[{Mn^{III}(L) \cdot (CH_3OH)_2}_2 {Fe^{II}(CN)_5(NO)}] \cdot 2CH_3OH este ilustrat în Figura 5. Prezența moleculelor de metanol este demonstrată de apariția benzii de la 3201.06 cm⁻¹, caracteristică vibrației de întindere a legăturii OH, v(OH). Banda intensă localizată la 2151.30 cm⁻¹ poate fi atribuită vibrațiilor de întindere ale grupărilor cianură v(C=N). Această bandă este totuși mai puțin intensă decât cea a precursorului (NBu₄)₂[Fe^{II}(CN)₅(NO)] observată în [6], ceea ce sugerează coordinarea unor grupări de cianură din cadrul nitroprusiatului.$

Fig.5. Spectrul de vibrație IR al compusului $[{Mn^{III}(L) \cdot (CH_3OH)_2}_2{Fe^{II}(CN)_5(NO)}] \cdot 2CH_3OH.$

Banda caracteristică vibrației de întindere a grupării nitrozil v(N=O) apare la valoarea 1897.47 cm⁻¹, care este ușor deplasată către valori mai mari decât în precursor (1887.4 cm⁻¹) [6]. Valori asemănătoare ale spectrului infraroșu pentru v(N=O) au putut fi observate în sisteme analoage, precum: $[Mn^{III}(5-Br-salpn)(H_2O)]_2$ [Fe^{II}(CN)₅NO]·2H₂O (1908.6 cm⁻¹) (5-Br-salpnH₂= N,N'-bis(5-Br-saliciliden)-1,3-diaminopropan) sau [Mn^{III}(salen)(H₂O)]₂[Fe^{II}(CN)₅NO] (1923 cm⁻¹) (salenH₂= N,N'-etilenbis(salicilimină)) [13,14].

Benzile caracteristice bazei Schiff N¹,N⁴-bis(saliciliden)S-metil-izotiosemicarbazida coordinate la ionii de mangan(III) se situează în jurul valorilor 1601.53 cm⁻¹ v(C=N), 2927.34 și 2822.01 cm⁻¹ v(C-H) și 755.38 cm⁻¹ v(C-S).

Concluzii

În studiul dat se descrie un nou compus coordinativ care are la bază *building block-urile* de $[Mn^{III}(L)]^+$ ($L = N^1, N^4$ -bis(saliciliden)-S-metil-izotiosemicarbazida) și $[Fe^{II}(CN)_5NO]^{2-}$. Acesta este primul compus obținut prin asocierea complecșilor de mangan(III) ai N^1, N^4 -bis(saliciliden)-S-metil-izotiosemicarbazidei cu un cianocomplex. Structura acestui compus a fost confirmată prin metoda de difracție cu raze X pe monocristal (DRX). Analiza structurală a arătat că compusul coordinativ constă dintr-o unitate lineară trinucleară având formula generală [$\{Mn^{III}(L)\cdot(CH_3OH)_2\}_2$ { $Fe^{II}(CN)_5(NO)$ }]. Prezența aceleiași forme de compus în proba policristalină a fost demonstrată prin analiza elementelor și prin spectroscopia IR.

Bibliografie:

- 1. WERNSDORFER, W., SESSOLI, R. Quantum phase interference and parity effects in magnetic molecular clusters. In: *Science*, 1999, vol.284, no.5411, p.133-135.
- 2. LEUENBERGER, M.N., LOSS, D. Quantum computing in molecular magnets. In: *Nature*, 2001, vol.410, p.789-793.
- FERBINTEANU, M., MIYASAKA, H., WERNSDORFER, W., NAKATA, K., SUGIURA, K.I., YAMASHITA, M., COULON, C., CLÉRAC, R. Single-chain magnet (NEt₄)[Mn₂(5-MeOsalen)₂Fe(CN)₆] made of Mn(III)-Fe(III)-Mn(III) trinuclear single-molecule magnet with an S(T) = 9/2 spin ground state. In: J. Am. Chem. Soc., 2005, vol.127, p.3090-3099.

STUDIA UNIVERSITATIS MOLDAVIAE, 2014, nr.6(76)

Seria "Științe reale și ale naturii" ISSN 1814-3237 ISSN online 1857-498X p.130-136

- 4. CARDUCCI, M.D., PRESSPRICH, M.R., COPPENS, P., Diffraction studies of photoexcited crystals: metastable nitrosyl-linkage isomers of sodium nitroprusside. In: *J. Am. Chem. Soc.*, 1997, vol.119, p.2669-2678.
- VILLALBA, C.M.E., GÜIDA, J.A., VARETTI, E.L., AYMONINO, P.J. The structure of the FeNO group in two metastable states (MS1 and MS2) of the nitroprusside anion in Na₂[Fe(CN)₅NO]·2H₂O. Infrared spectra and quantum chemistry calculations for the normal and the 15NO and N18O isotopic substituted substance. In: *Inorg. Chem.*, 2003, vol.42, p.2622-2627.
- 6. VILLALBA, M.E.C., GÜIDA, J.A., PIRO, O.E., CASTELLANO, E.E., AYMONINO, P.J. Crystal structure of tetrabutylammonium nitroprusside dihydrate, [(C₄H₉)₄N]₂[Fe(CN)₅NO]·2H₂O, and vibrational spectra of ground and metastable excited states of the dihydrate and the anhydrate. In: *Journal of Chemical Crystallography*, 2001, vol.31, p.155-166.
- РЕВЕНКО, М.Д., ГЭРБЭЛЭУ, Н.В., РУСУ, В.Г., ШОВА, С.Г., СИМОНОВ, Ю.А., Координационные соединения марганца с S-алкил- N1, N4-ди(салицилиден) изотиосемисарбазидами; кристаллическая структура метанольного аддукта S-алкил- N1, N4-ди(салицилиден) изотиосемисарбазидато хлоромарганца (III). В: Ж. неорг. химии, 1986, том 31, с.1737-1743.
- 8. SHELDRICK, G.M., SADABS, Version 2.03, Bruker Analytical X-Ray Systems, Madison, WI, 2000.
- 9. SHELDRICK, G.M. A short history of SHELX. In: Acta Cryst. Sec. A, 2008, vol.64, p.112-122.
- ARION, V.B., KRAVTSOV, V.C., GRADINARU, J.I., SIMONOV, YU.A., GERBELEU, N.V., LIPKOWSKI, J., WIGNACOURT, J.-P., VEZIN, H., MENTRE, O. Potassium-controlled synthesis of heterotopic macrocycles based on isothiosemicarbazide. In: *Inorg. Chim. Acta*, 2002, vol.328, p.123-133.
- 11. ARION, V.B., KRAVTSOV, V.C., GODDARD, R., BILL, E., GRADINARU, J.I., GERBELEU, N.V., LEVITSCHI, V., VEZIN, H., SIMONOV, Y.A., LIPKOWSKI, J., BELSKII, V.K. Oxovanadium(IV) and oxovanadium(IV)-barium(II) complexes with heterotopic macrocyclic ligands based on isothiosemicarbazide. In: *Inorg. Chim. Acta*, 2001, vol.317, p.33-44.
- CLEMENTE-LEÓN, M., CORONADO, E., GALÁN-MASCARÓS, J.R., GÓMEZ-GARCÍA, C.J., WOIKE, T.H., CLEMENTE-JUAN, J.M. Bimetallic cyanide-bridged complexes based on the photochromic nitroprusside anion and paramagnetic metal complexes. Syntheses, structures, and physical characterization of the coordination compounds [Ni(en)₂]₄[Fe(CN)₅NO]₂[Fe(CN)₆]·5H₂O, [Ni(en)₂][Fe(CN)₅. In: *Inorg. Chem.*, 2001, vol.40, p.87-94.
- ABABEI, R., LI, Y-G., ROUBEAU, O., KALISZ, M., BRÉFUEL, N., COULON, C., HARTÉ, E., LIU, X., MATHONIÈRE, C., CLÉRAC, R. Bimetallic cyanido-bridged magnetic materials derived from manganese(III) Schiff-base complexes and pentacyanidonitrosylferrate(II) precursor. In: *New J. Chem.*, 2009, vol.33, p.1237-1248.
- SHAIKH, N., PANJA, A., GOSWAMI, S., BANERJEE, P., KUBIAK, M., CIUNIK, Z., PUCHALSKA, M., LEGENDZIEWICZ, J. Synthesis, crystal structure and magnetic properties of cyanide bridged 2D coordination polymers [Mn(salen)]₂[Fe(CN)₅NO] and [Mn(salen)]2[Ni(CN)4]. In: *Indian Journal of Chemistry*, 2004, vol.43A, p.1403-1408.

Notă: Lucrarea a fost realizată în cadrul Proiectului 14.518.02.01.A din Programul de Stat Design-ul substanțelor chimice și dirijarea arhitecturii materialelor pentru diverse aplicații.

Prezentat la 11.11.2014