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ABSTRACT-Target tracking is one of the key applications of wireless sensor networks (WSNs). Existing work 

mostly requires organizing groups of sensor nodes with measurements of a target’s movements or accurate 

distance measurements from the nodes to the intention, and predicting those activities. These are, however, often 

not easy to precisely achieve in practice, more than ever in the case of impulsive environments, sensor faults, 

etc. To explore efficient use of mobile sensors to address the limitations of static WSNs in target detection, in 

proposed system proposes a data fusion model that enables static and mobile sensors to effectively collaborate 

in target exposure. An optimal sensor movement scheduling algorithm is developed to minimize the total 

moving distance of sensors while achieving a set of spatiotemporal performance requirements including high 

detection probability, low method false alarm rate and enclosed detection delay. The effectiveness of proposed 

approach is validated by extensive simulations based on real data traces collected by 23 sensor nodes. 

 

I. INTRODUCTION 

A wireless sensor network (WSN) consists of spatially distributed autonomous sensors to monitor 

physical or ecological conditions, such as temperature, resonance, vibration, pressure, activity or pollutants and 

together pass their data through the network to a main locality. The more contemporary networks are bi-

directional, enabling also to control the movement of the sensors. The enlargement of wireless sensor networks 

was stimulated by military applications such as battlefield surveillance; today such networks are used in many 

industrial and consumer applications, such as developed process monitor and control 

Deploying wireless sensor networks (WSNs) for mission critical applications (such as intruder 

detection and tracking) often faces the fundamental challenge of meeting stringent spatial and temporal 

performance requirements imposed by users. In case of a surveillance application may require any intruder to be 

detected with a high probability (e.g., > 90%), a low false alarm rate (e.g., < 1%), and a bounded delay (e.g., 

20s). Due to the limited capability and unreliable nature of low-power sensor nodes, over-provisioning of 

sensing coverage seems to be the only choice for a static sensor network to meet such stringent performance 

requirements. However, over-provisioning only works up to the point where the reality meets the original 

expectation about the characteristics of physical phenomena and environments. If a new on-demand task arise 

after deployment and its requirements exceed the statically designed network facility, the task could not be 

accomplished. For instance, in a battlefield monitoring scenario, sensor failures in a small region may lead to a 

perimeter breach and the sensor nodes deployed in other regions become useless.  

Tracking framework, called Face Track, which employ the nodes of a spatial region bordering a target, 

called a face. Instead of predicting the target location separately in a face, estimate the target’s moving toward 

another face. Introduce an edge detection algorithm to generate each face further in such a way that the nodes 

can prepare to the lead of the target’s moving, which greatly helps tracking the goal in a timely fashion and 

recovering from special cases, e.g., sensor fault, loss of tracking. Also, develop an optimal selection algorithm to 

select which sensors of faces to query and to forward the tracking data. The challenge is to determine how to 

perceive the target in a WSN efficiently. the performance of variable brink lengths of the polygon versus 

adjustable transmission power levels in a WSN for target detection and its energy cost in the WSNs; the impact 

of the target’s dynamic movements, brink detection, and real-time polygon forwarding in target tracking. In this, 

propose a data-fusion centric target detection model that features effective collaboration between static and 

mobile sensors.  
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The proposed system derives an optimal sensor movement scheduling algorithm that minimizes the 

total moving distance of sensors under a set of spatiotemporal performance requirements including (1) bounded 

revealing delay, (2) maximum target detection probability, and (3) low conduct extensive simulations based on 

real data traces collected by 23 sensors in the SensIT vehicle detection experiments. The results show that a 

small number of mobile sensors can significan1tlhe detection performance of a network.0 Moreover; the 

proposed movement scheduling algorithm can achieve satisfactory performance in a range of realistic scenarios. 

 II.RELATED WORK 

Poster Abstract: Distributed RSSI Processing for Intrusion Detection in Indoor Environments says that 

this work aims at applying distributed processing of the RSSI signals for indoor observation purposes. Through 

distributed processing, the nodes are able to unconventionally detect and localize moving persons. The 

algorithm low pass filter, pre-defined threshold, RSSIs measurements and TDMA protocol used. The advantage 

of distributed processing of the RSSI measurements, nodes deployed in an unknown indoor environment can 

detect intrusion and possibly help in localizing and tracking moving individuals. Distributed processing of the 

RSSI signals allows minimizing the power consumption of the nodes and the latency at the central base station. 

However,  the disadvantage of two processing algorithms do not weight on the RAM memory of the node, since 

at run time only the previous filtered RSSI value is stored.  

The combination of the two algorithms avoids false alarms in the case of instability of the RSSI signals, and 

simultaneously detects those motions which do not produce violent drops. 

DCTC stands for Dynamic Convoy Tree-Based Collaboration for Target Tracking in Sensor Networks 

says that an optimal solution which achieves 100% coverage and minimizes the energy consumption under 

certain ideal situations. Concrete algorithm and Classification algorithms, Centralized algorithm and DCTC 

algorithm used. Hence, the advantage of using prediction outweighs its negative effects. Due to space limit, they 

do not present the details of the movement prediction technique. However, only nodes located within the 

estimated monitoring region are added to the tree. The proposed system defines an important problem and lays 

out a theoretical foundation. 

DCTC stands for Dynamic Convoy Tree-Based Collaboration for Target Tracking in Sensor Networks 

says that an optimal solution which achieves 100% coverage and minimizes the energy consumption under 

certain ideal situations. Concrete algorithm, Classification algorithms, Centralized algorithm. The advantage of 

using prediction outweighs its negative effects. Due to space limit, it does not present the details of the 

movement prediction technique. When the same tree expansion and pruning design is used, the contained 

reconfiguration performs better when the node concentration is high, and the movement is reversed when the 

node density is low. The proposed system defines an important problem and lays out a theoretical foundation. 

Achieving Real-Time Target Tracking Using Wireless Sensor Networks says that the real-time design 

and analysis of VigilNet, a large-scale sensor network system which tracks, detects and classifies targets in a 

timely and energy efficient manner. Detection algorithm, Sensing algorithms, Classification algorithms. First, to 

guarantee the same sub-deadline, a higher node density is desired in the slow-target case, however a slower duty 

cycle can be tolerated without jeopardizing the detection. Second, it is beneficial to increase the wake-up delay, 

when possible, in exchange for the energy saving. Third, fast detection algorithms are essential. Fourth, a low 

network density increases the group aggregation delay, which indirectly reduces the detection confidence. Fifth, 

theoretically, honeycomb is the optimal base placement strategy to meet the communication sub-deadline. Due 

to the dynamic and unpredictable nature of the sensor networks, it is a long-term research goal for us to achieve 

precise worst-case real-time analysis across the whole system. 

Intensity-based Event Localization in Wireless Sensor Networks proposed a fully distributed 

localization scheme that consists of two algorithms Distributed election-winner notification algorithm. Intensity 

based localization algorithm (ILA). To minimize this complexity, but nevertheless benefit from its advantages it 

redesigned the DFD metric. A main advantage of the DDB protocol architecture is the absence of any states. 

The main disadvantage of these approaches is the increased data traffic.The DENA algorithm causes every node 

in the two-hop neighborhood of the winner node to respond. The possibility to query only a subset of these 

nodes will be considered. The ILA algorithm needs the information of all neighboring nodes.  

Posterior Cramér–Rao Lower Bounds for Target Tracking in Sensor Networks With Quantized Range-

Only Measurements The problem of target tracking in a wireless sensor network (WSN) that consists of 

randomly distributed range-only sensors. Traditional nonlinear filtering algorithms. Tracking algorithms. It is a 

challenging task since each sensor node typically has very limited power budget and communication bandwidth. 

The analysis of posterior CRLB for tracking a target with noisy circular trajectories. Sensor scheduling is 

usually adopted to further reduce the energy consumption and enhance the lifetime of whole network. To 

calculate the posterior CRLB for given scenario, the most important and difficult task is to obtain as stated 

earlier, each sensor node has limited power budget and communication bandwidth.  
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Target Tracking in Wireless Sensor Networks Based on the Combination of KF and MLE Using 

Distance Measurements Propose an improved noise model which incorporates both additive noises and 

multiplicative noises in distance sensing. EKF algorithms Multistep adaptive sensor scheduling algorithm 

(MASS). To use the maximum likelihood estimator initially and switch to the proposed estimator later when the 

target turns, which can be detected using the methods for target maneuver detection. The advantages of the 

proposed approach are demonstrated via experimental and simulation results. The proposed approach is very 

simple and yet effective.  Simulation and experimental results have shown that the proposed approach improve 

the tracking accuracy compared to the commonly used extended Kalman filtering approach. 

Scalable Information-Driven Sensor Querying and Routing for ad hoc Heterogeneous Sensor 

Networks. The key idea is to introduce an information utility measure to select which sensors to query and to 

dynamically guide data routing. Collaborative signal processing (CSP) algorithms. The type of networks can be 

stealthy and is advantageous for security reasons.  It is key to the scalability of large-scale sensor networks 

through selective sensor tasking. It can drastically reduce latency in detection and tracking by application-aware 

optimal routing. The results show that the information-driven sensor queries proposed are more energy efficient. 

Have lower latency, and provide distributed anytime algorithms to mitigate the risk of link/node failures. 

Path Vector Face Routing: Geographic Routing with Local Face Information says that improve routing 

performance by storing a small amount of local face information at each node. Geographic routing algorithms, 

Planarization algorithms. It demonstrates that by storing a small amount of local face information at each node, 

it can achieve better routing performance in terms of reduced path and hop stretch. The extra storage helps 

because the local face information can be exploited by a greedy-face forwarding mode. Using the available face 

information where regular greedy-neighbor forwarding fails to avoid switching to the costly perimeter 

forwarding mode. That while it is possible to guarantee packet delivery with an oblivious algorithm in a network 

where nodes have full face information, it is impossible to do so when nodes are limited to knowing about nodes 

up to a fixed number of hops away on each face. It developed Greedy Path Vector Face Routing (GPVFR), a 

non-oblivious algorithm that guarantees delivery even when nodes do not have complete face information. 

GPSR is built upon graph planarization algorithms that are amenable to distributed implementation. 

Geographic routing algorithms, planarization algorithms. A link in the planar subgraph is removed when it 

should not be partitioned planar sub- graph. The nodes at the two ends of a link disagree on whether or not the 

link belongs in the planar graph unidirectional links. These pathologies, in turn, can result in persistent routing 

failures in the network, where geographic routing fails. Kinds of wireless devices as well, since the failure of the 

unit disk assumption as a result of obstacles or multi pathing are fairly fundamental. As an aside, they note that 

while many of the pathologies it describe above are caused by radio range irregularities, localization errors can 

also cause the same pathologies. It leaves measurement of the effects of localization errors in test bed 

deployments to future work. 

III .PROPOSED SYSTEM 

To explore efficient use of mobile sensors to address the limitations of static WSNs in target detection, 

in proposed, propose a data fusion model that enables static and mobile sensors to effectively collaborate in 

target detection. An optimal sensor movement scheduling algorithm is developed to minimize the total moving 

distance of sensors while achieving a set of spatiotemporal performance requirements including high detection 

probability, low system false alarm rate and bounded detection delay. The effectiveness of approach is validated 

by extensive simulations based on real data traces collected by 23 sensor nodes. The fidelity of final detection 

decision is then improved by a second-phase detection that fuses the measurements of both static and mobile 

sensors. Optimal sensor movement scheduling algorithm that enables mobile sensors to gather the maximum 

amount of target energy under a given moving distance bound. 

 

IV.IMPLEMENTATIONS 

a. knob consumption 
The mobile nodes are designed and configured dynamically, designed to employ across the network, 

the nodes are set according to the X, Y, Z dimension, which the nodes have the direct transmission range to all 

other nodes. All the mobile nodes tend to have a unique id for its identification process, since the mobile nodes 

communicates with other nodes through its own network id. If any mobile node opted out of the network then 

the particular node should surrender its network id to the head node. There are 23 sensor nodes of type both 

dynamic and static. 
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b. Generation of clusters 
Nodes should be organized into clusters to track a mobile target. Initially sensor nodes randomly 

clustered and assumed to have some faulty/damaged nodes. It is randomly set after initialization. If a target is 

detected by a node after a time window, a target is detected by another node. It is assumed to be the same target. 

This assumption is made because the target does not carry any form of classification, nor can any different target 

be distinguished. Once the clusters are generated then for each cluster a cluster head will be created. It is done 

by using optimal node selection algorithm. 

 

c. Multi sensor fusion  

This proposed technique, a decision fusion based detection model in which each mobile sensor makes 

its own detection decision and locally controls its movement. This adopts a value fusion based detection model 

that significantly simplifies the task of mobile sensors. Specifically, each mobile sensor in a detection process is 

only required to move a certain distance and send its measurements to its cluster head. Such a model is more 

suitable for mobile sensors with limited capability of signal processing and motion control. Initially, all sensors 

periodically send the measurements to the cluster head that compares the average energy against a threshold. 

d. Movement schedule 

Once a positive detection decision is made, the cluster head initiates the second phase of detection by 

sending mobile sensors a movement schedule that specifies which sensors should move, the time instances to 

start moving and the distances to move. Mobile sensors then move toward the surveillance location according to 

the schedule. 

 

 e. Two-phase detection  

The performance of detection is characterized by the probability of false alarm (PF) (or false alarm 

rate) and probability of detection (PD). PF is the probability that a target is regarded to be present when the 

target is actually absent. PD is the probability that a target is correctly detected. After a certain delay, all sensors 

send the cluster head the sum of their energy measurements and the final detection decision is then made by 

comparing against another threshold. A key advantage of the above two-phase detection model is the reduced 

total distance of moving as the mobile sensors move in a reactive manner. Moreover, this model facilitates the 

collaboration between static and mobile sensors. As the decision of the first phase is made based on the 

measurements of all sensors in a cluster, the static sensors help filter out false alarms that would trigger 

unnecessary movement of mobile sensors. In addition, the accuracy of the final detection decision is improved 

in the second phase because the signal to noise ratios (SNR) are increased as the mobile sensors move closer to 

the surveillance location. 

f. Multi-sensor Fusion Model 

Assume that the network is organized into clusters. Sensors send their energy measurements to the 

cluster head, which in turn compares the average of all measurements to a threshold η. If the average is greater 

than η (referred to as the detection threshold), the cluster head decides that a target is present. Otherwise, it 

decides there is no target. The performance of detection is characterized by the probability of false alarm (PF) 

(or false alarm rate) and probability of detection (PD). PF is the probability that a target is regarded to be present 

when the target is actually absent. PD is the probability that a target is correctly detected. Suppose there exist n 

sensors and each sensor measures signal energy for duration T .  

The Mobility-assisted Spatiotemporal Detection Problem Overview of the Approach 

The MSD problem is characterized by a 4-tuple (A, α, β,D). For a given set of static and mobile sensors 

and any target that appears at one of the locations in set A, objective is to minimize the total expected moving 

distance of the mobile sensors subject to: 1) PD is no lower than β; 2) PF is no higher than α; and 3) the 

expected detection delay is no greater than D seconds. Assume that the surveillance locations are chosen before 

the deployment or identified by the network autonomously after the deployment. The network is organized into 

clusters around surveillance locations by running a clustering protocol such as the one proposed.  

Proposed system employs the following data-fusion model. Initially, all sensors periodically send the 

measurements to the cluster head that compares the average energy against a threshold λ1. Once a positive 

detection decision is made, the cluster head initiates the second phase of detection by sending mobile sensors a 

movement schedule S that specifies which sensors should move, the time instances to start moving and the 

distances to move.  
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Mobile sensors then move toward the surveillance location according to the schedule. After a certain 

delay, all sensors send the cluster head the sum of their energy measurements and the final detection decision is 

then made by comparing against another threshold λ2. The detection thresholds, λ1, λ2 and the movement 

schedule S are determined under the constraints that the aggregate delay, PD and PF of the two phases must 

satisfy the requirements specified by D, β and α, respectively. A key advantage of the above two-phase detection 

model is the reduced total distance of moving as the mobile sensors move in a reactive manner. Moreover, this 

model facilitates the collaboration between static and mobile sensors. As the decision of the first phase is made 

based on the measurements of all sensors in a cluster, the static sensors help filter out false alarms that would 

trigger unnecessary movement of mobile sensors. In addition, the accuracy of the final detection decision is 

improved in the second phase because the signal to noise ratios (SNR) are increased as the mobile sensors move 

closer to the surveillance location. 

Assumptions 

First, all sensors have synchronized clocks. Second, assume that each mobile node knows its own 

location and can orient its movement in a given direction. In the first phase of detection, all sensors operate in a 

synchronous schedule in which the sample energy at a period of S seconds. Assume the probability that a target 

may appear at any time instance is uniform. Therefore, the expected detection delay is S/2. Suppose S = 2Γd 

where D is the required detection delay bound. Thus the expected delay of the first-phase detection is S/2 = Γd 

where γ ∈ (0, 1) is a constant chosen according to the desirable trade-off between detection delay and power 

consumption. For the convenience of discussion, assume γ = ½ in the rest of discussion. Each sensor samples 

energy for T seconds and sends to the cluster head. For instance, the acoustic data is recorded at a frequency of 

4960 Hz in every 0.75s in the experiments, i.e., T is 0.75s. 

In the second phase of detection, all sensors in the cluster sample energy at a period of T . After a delay 

of D/2, sensors report the sum of their energy measurements to the cluster head. This is necessary to bound the 

total expected detection delay within D as the expected delay of the first phase detection is D/2. The mobile 

sensors belong to multiple clusters and must return to their original locations after the second phase of detection 

as they may be requested to detect targets at other locations. In proposed system assumes that the average 

movement speed of a mobile sensor is v. To simplify the motion control of mobile sensors, assume the moving 

distance of a sensor in the second phase is always multiple of Vt. Furthermore, to simplify problem formulation, 

assume that the distance between a sensor and a surveillance location is also multiple of Vt . Note that this 

assumption has little impact on the system detection performance as both v and T are small in practice. For 

instance, T is 0.75s in the experiments and v is 0.5 ∼ 2m/s for typical mobile sensor systems. Under such 

settings, Vt is at most 1.5 meters. Therefore, the assumption that the real sensor locations are multiple of Vt does 

not introduce significant errors. 

Optimal Sensor Movement Scheduling 

In this section, present an optimal movement scheduling algorithm that enables sensors to gather the 

maximum amount of energy for a given number of moves. Suppose the optimal movement schedule has H 

moves and there is only one sensor i. obviously, the measured energy always decreases with i’s distance to the 

target and increases with the sensing duration.  

 

Fig 2 The procedure of solving the MSD problem 
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Therefore, the optimal schedule for I is to move H steps consecutively from time zero, which allows it 

to sense at the closest location possible at any time instance. Interestingly, this conclusion still holds when there 

are more than one sensors. This is because sensors can move in parallel and hence optimizing the movement of 

each sensor individually maximizes the total amount of energy sensed by all sensors.  

V. CONCLUSION 

This explores the use of mobile sensors to address the limitation of static WSNs for target detection. In 

proposed approach, mobile sensors initially stationary are triggered to move toward possible target locations by 

a detection consensus arrived at by all sensors. The fidelity of final detection decision is then improved by a 

second-phase detection that fuses the measurements of both static and mobile sensors. Develop an optimal 

sensor movement scheduling algorithm that enables mobile sensors to gather the maximum amount of target 

energy under a given moving distance bound. The effectiveness of proposed approach is validated by extensive 

simulations based on real data traces. However, several challenges must be addressed in order to take advantage 

of the mobility of WSNs in target detection. First, due to the higher design complexity and manufacturing cost, 

the number of mobile nodes available in a network is often limited. Therefore, mobile sensors must effectively 

collaborate with static sensors to achieve the maximum utility. Second, mobile sensors are only capable of low-

speed and short-distance movement in practice due to the high power consumption of locomotion. 
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