
ISSN : 2335 - 1357

Mediterranean Journal of Modeling and
Simulation

Med. J. Model. Simul. 04 (2015) 060-072

M J

M S

New exact bound states solutions for (C.F.P.S.)
potential in the case of non commutative three
dimensional non relativistic quantum mechanics

Abdelmadjid MAIRECHE a �,
a Physics department, Sciences Faculty, University of M�sila-Algeria.

ARTICLE INFO

Article history :
Received March 2015
Accepted June 2015

Keywords :
Schrödinger equation ;
Hydrogen atom ;
Star product ;
Noncommutative space ;
Central fraction power singular po-
tential.

ABSTRACT

We obtain here the modi�ed bound-states solutions for central fraction
power singular potential (C.F.P.S.) in noncommutative 3-dimensional non
relativistic quantum mechanics (NC-3D NRQM). It has been observed
that the commutative energy spectra was changed, and replaced degene-
rate new states, depending on four quantum numbers : j, l and sz = �1=2
corresponding to the two spins states of electron by (up and down) and
the deformed Hamiltonian formed by two new operators : the �rst des-
cribes the spin-orbit interaction , while the second obtained Hamiltonian
describes the modi�ed Zeeman e¤ect (containing ordinary Zeeman e¤ect)
in addition to the usual commutative Hamiltonian. We showed that the
isotropic commutative Hamiltonian HCFPS will be in non commutative
space anisotropic Hamiltonian HNC�CFPS .

c2015 LESI. All right reserved.

1. Introduction

Recently a considerable e¤ort has been devoted to the study of physics phenomena on
commutative and noncommutative space-times ; the study of central physical problems
has attracted much attention. The fraction power singular potential and fraction power
potential are two exactly solvable like the Columbian and harmonic oscillator in quantum
mechanics in two and three dimensional space [1-31]. The central fraction power singular
potential has been successfully used in particle physics phenomenology and may be useful
in other physics problems [30, 31]. A new concept of space-time, known by noncommuta-
tive spaces, represents a hope to obtain a new and profound interpretation at microscopic
scales. In this noncommutative space, we extend the standard rules of quantum mecha-
nics to the generalized Heisenberg relation of uncertainty. The formalism of star product,
Boopp�s shift method and the Seiberg-Witten map were played fundamental roles in this
new theory.
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The rich mathematical structure of the noncommutative theory will lead to get a better
understanding of physics phenomena at small distances and hopefully will solve above
mentioned problems. The physical idea of a noncommutative space will be satis�ed by new
mathematical product which replaces the old ordinary product by star product between
two arbitrary functions f(x) and g(x) noted by (�), the e¤ect of star product change the
ordinary product by � (f (x) :g (x)) [9- 27] :

� (f (x) :g (x)) = � i
2
�ij (@if (x)) (@jg (x)) (1)

The parameters �ij are an antisymmetric real matrix of dimension square length in the
noncommutative canonical-type space. This paper is organized as follows : in the next
section we present the central fraction power singular potential in the commutative three
dimensional spaces. In section 3 we study the Hydrogen atom with central fraction power
singular potential in (NC-3D NRQM) ; we apply the perturbation theory to deduce the
energy levels of electron with two polarizations up and down, also we derive the deformed
Hamiltonian of Hydrogen atom with studied potential (C.F.P.S.). The conclusions are
given in the last section.

2. The (C.F.P.S.) potential in commutative three dimensional NRQM

The stationary reduced Schrödinger equation with central fraction power singular po-
tential depending only on the distance r leads to the following equation for the radial part
of wave equation [31] :

1

r2
d

dr

�
r2
dR (r)

dr

�
� l (l + 1)

r2
R (r) +

�
E � �r 23 � �r� 2

3 � r� 4
3

�
R (r) = 0 (2)

Where E and (�, � and ) are the energy spectra and three real numbers, respectively.
The wave equation R (r) has the following ansatz [31] :

R (r) = exp

�
3

4
ar

4
3 +

3

2
br

2
3

� X
n=0

anr
2n=3�� (3)

Where a, b and v are three constants :

a = �
p
�

b = E
2
p
�

� = l

(4)

The values v = l assure �nite values of R(r) at r = 0, the energy eigenvalues Elp which
corresponded ap 6= 0 and ap+1 = ap+2 = � � � = 0 is given by [31] :

Elp = �
p
4�

��
4p

3
+ 2l +

7

3

� p
�+ �

� 1
2

(5)
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The various solutions generalized for p = 0 and p = 1 are determined from the projection
of two equations, respectively [31] :

	0l;m (r; �; �) = exp
�
�3
4

p
�r

4
3 + 3

4

El0p
�
r
2
3

�
a0r

lYl;m (�; �)

El0 = �
p
4�
��
2l + 7

3

� p
�+ �

	 1
2

	1l;m (r; �; �) = exp
�
�3
4

p
�r

4
3 + 3

4

El1p
�
r
2
3

�
rl
�
a0 + a1r

2
3

�
Yl;m (�; �)

El1 = �
p
4�
��
2l + 11

3

� p
�+ �

	 1
2

(6)

The natural unites (c = ~ = 2m = 1) and (� = s) throughout this paper.

3. The (C.F.P.S.) potential in NC 3D NRQM

3.1. Noncommutative (C.F.P.S.) Hamiltonian
The �rst equation for star-product permits us to deduce the star deformed commutators�
�

x0i; x
0
j

�
:

� �
x0i; x

0
j

�
= i�ij (7)

The deformed Hamiltonian operator HNC�CFPS associated with central fraction power
singular potential in NC space, will be determined by the following equation :

HNC�CFPS =

 !
p
2

2m0

+ VNC�CFPS (r
0) (8)

Where VNC�CFPS (r0) is the operator of the central fraction power singular potential in
NC 3D NRQM. We apply the Boopp�s shift method ; we deduce the deformed Schrödinger
equation with the (central fraction singular power) potential [22-27] :

�
� �

2m0

+ VNC_CFPS (r
0)

�
	( !r ) = ENC�CFPS	( !r ) (9)

Here ENC�CFPS is the energy and VNC_CFPS (r0) is the new potential as a function of
operator :

VNC_CFPS (r
0) = �r0

2
3 + �r0�

2
3 + r0�

4
3 (10)

On based to the formulations of the Boopp�s shift, the scalar function (1
r
) can be written

in the noncommutative three dimensional spaces as [14,21-26] :

1

r0
=
1

r
+
L�

4r3
(11)
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Where L is the angular momentum, which allows to obtaining after a straightforward
calculation :

�r0
2
3 = �r

2
3 � �L�

6r
4
3

�r0�
2
3 = �r�

2
3 + �L�

6r
8
3

r0�
4
3 = r�

4
3 + L�

3r
5
2

(12)

Inserting Eq. (12) into Eq. (10), one obtains :

VNC_CFPS (r
0) = VC_CFPS (r) + VCFPS_P (r) (13)

The term VC_CFPS (r) represents the usual commutative ordinary potential and the
supplementary term VCFPS_P (r) takes the form :

VCFPS_P (r) =

�
� �

6r
4
3

+
�

6r
8
3

+


3r
5
2

�
L� (14)

Where � = 2�
0
S, �

0
is in�nitesimal scalar parameter and s is the spin momentum,

then, the new NC Hamiltonian HNC�CFPS will be written as follows :

HNC_CFPS = HCFPS + VCFPS_P (r) (15)

Where HCFPS represent the usual Hamiltonian in ordinary commutative space :

HCFPS = �
�

2m0

+ �r
2
3 + �r�

2
3 + r�

4
3 (16)

Considering the noncommutativity as a small perturbation on the structure of the
coordinate space, the real parameter � is taken very small and our calculations are taken
up to the �rst order in �. The new added part VCFPS_P (r) is proportional with the small
non-commutative parameter �, which as a perturbative term. Furthermore, we can rewrite
it to the equivalent physical form :

VCFPS_P (r) = 2�
0g (r) SL (17)

Where the scalar function g (r) is given by :

g (r) = � �

6r
4
3

+
�

6r
8
3

+


3r
5
2

(18)

This allows write the perturbative term VCFPS_P (r) as :
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VCFPS_P (r) = �
0g (r)

�
J2 � L2 � S2

�
(19)

Where J denote to the total momentum. The operator g (r) SL traduces physically the
coupling between spin and orbital momentum. Then, the corresponding NC Hamiltonian
HNCCFPS�1 will be :

HNCCFPS�1 = �
r2

2m0

+ VCFPS (r) + �

�
� �

6r
4
3

+
�

6r
8
3

+


3r
5
2

� �
J2 � L2 � S2

�
(20)

After a straightforward calculation, we can show that the radial part R(r) of the Schrö-
dinger equation for a solved quantum bound state problem in NC spaces is given by :

1
r2

d
dr

�
r2 dR(r)

dr

�
� l(l+1)

r2
R (r)+�

E � �r 23 � �r� 2
3 � r� 4

3 �
�
� �

6r
4
3
+ �

6r
8
3
+ 

3r
5
2

�
L�
�
R (r) = 0

(21)

We know in non relativistic quantummechanics the triplets (Lx; Ly; Lz) constructs sym-
metry generators satisfying the Lie algebra and, therefore, ( J2, L2, L2 and Jz) is complete
set of observables. Then the combined operator (J2 � L2 � S2) will have two eigenvalues
LU
�
l; j = l + 1

2
; s
�
and LD

�
l; j = l � 1

2
; s
�
corresponding (spin up : j = l + 1

2
) and (spin

down : j = l � 1
2
), respectively :

LU
�
l; j = l + 1

2
; s
�
=

�
l + 1

2

� �
l + 3

2

�
� l (l + 1)� 3

4

LD
�
l; j = l � 1

2
; s
�
=

�
l � 1

2

� �
l + 1

2

�
� l (l + 1)� 3

4

(22)

Then, we can form a diagonal matrix of order (3 � 3) : HNCCFPS�1 with diagonal
elements (HNC�CFPS)11, (HNC�CFPS)22 and (HNC�CFPS)33 :

(HNC�CFPS)11 = � �
2m0

+ VCFPS (r) + �g (r) LU
�
l; j = l + 1

2
; s
�
for :j = l + 1

2
) spinup

(HNC�CFPS)22 = � �
2m0

+ VCFPS (r) + �g (r))LD
�
l; j = l � 1

2
; s
�
for :j = l � 1

2
) spindown

(HNC�CFPS)33 = 0

(23)

The exact non commutative energies for states : ENU and END of an electron with spin
up and spin down are determined to be, respectively :

ENU = Ep�CFPS + EU
END = Ep�CFPS + ED

(24)

Where EU and ED are the modi�cations to the energy levels, associated with spin up
and spin down. At the �rst order of parameter � and by applying the perturbation theory,
EU and ED became, respectively :
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8><>:
EU = �

0LU
�
l; j = l + 1

2
; s
� Z

	(p)�( !r )g (r) 	(p) ( !r ) d�

ED = �
0LD

�
l; j = l � 1

2
; s
� Z

	(p)� ( !r ) g (r) 	(p) ( !r ) d�
(25)

Where d� = r2 sin(�)d�d'dr denote to the elementary volumes element in spherical
coordinates.

3.2. The noncommutative spectra for p = 0 for NRQM (C.F.P.S.) potential
The non-commutative modi�cations of the energy levels, associated with spin up and

spin down, in the �rst order of corresponding p = 0 (E0U and E0D), are determined using
eqs. (6), (18) and (25) to obtain :

E0U = �0�LU
�
l; j = l � 1

2
; s
� +1Z

0

h
exp

�
�3
4

p
�r

4
3 + 3

4

El0p
�
r
2
3

�
a0r

l
i2
g (r) r2dr

E0D = �0�LD
�
l; j = l � 1

2
; s
� +1Z

0

h
exp

�
�3
4

p
�r

4
3 + 3

4

El0p
�
r
2
3

�
a0r

l
i2
g (r) r2dr

(26)

Which the equations :

E0U = �0�LU
�
l; j = l + 1

2
; s
�
a20

+1Z
0

exp
�
�3
2

p
�r

4
3 + 3

2

El0p
�
r
2
3

�
�
��r2l+2�

4
3

6
+ �r2l+2�

8
3

6
+ r2l+2�

5
2

3

�
dr

E0D = �0�LD
�
l; j = l � 1

2
; s
�
a20

+1Z
0

exp
�
�3
2

p
�r

4
3 + 3

2

El0p
�
r
2
3

�
�
��r2l+2

4
3

6
+ �r2l+2�

8
3

6
+ r2l+2�

5
2

3

�
dr

(27)

The notations ;

A1 = ��
6
; A2 =

�
6

A3 =

3
; � = 3

2

p
� and " = �3

2

El0p
�

(28)

Eq. (27) to the form (the sum with � from 1 to 3) :

E0U = �0�LU (l; j; s) a
2
0A�A

�

E0D = �0�LD (l; j; s) a
2
0A�A

� (29)
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Where :

A1 =

+1Z
0

exp
�
��r 43 � "r 23

�
r2l+2�

4
3dr

A2 =

+1Z
0

exp
�
��r 43 � "r 23

�
r2l+2�

8
3dr

A3 =

+1Z
0

exp
�
��r 43 � "r 23

�
r2l+2�

5
2dr

(30)

Now, we make the changes ; r
4
3 = x

2
=) dr = 3

2
xdx, then the above equation reduce

to the equivalent form :

A1 = 3
2

+1Z
0

exp (��x2 � "x) x(3l+
5
2)�1dx

A2 = 3
2

+1Z
0

exp
�
��r 43 � "r 23

�
x(3l+

1
2)�1dx

A3 = 3
2

+1Z
0

exp
�
��r 43 � "r 23

�
x(3l+

3
4)�1dx

(31)

We use the following form of special integral [32] :

+1Z
0

xv�1 exp
�
��x2 � "x

�
dx = (2")�

v
2� (v) exp

�
"2

8�

�
D�v

�
"p
2�

�
(32)

We obtain :

A1 = 3
2
(2")�

v
2�
�
3l + 5

2

�
exp

�
"2

8�

�
D�(3l+ 5

2)

�
"p
2�

�
A2 = 3

2
(2")�

v
2�
�
3l + 1

2

�
exp

�
"2

8�

�
D�(3l+ 1

2)

�
"p
2�

�
A3 = 3

2
(2")�

v
2�
�
3l + 3

4

�
exp

�
"2

8�

�
D�(3l+ 3

4)

�
"p
2�

� (33)

Inserting eq. (33) in (29) we obtain the noncommutative corrections for energy eigen-
value EOU and EOD.

3.3. The noncommutative spectra for p = 1 for NRQM (C.F.P.S.) potential
Now, the non-commutative �rst-order (in �) modi�cation of the energy levels E1U and

E1D, associated with spin up and spin down, respectively, corresponding to p = 1 excited
states, will be determined from Esq. (7), (18) and (25) :
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E1U = �0�LU
�
l; j = l + 1

2
; s
� +1Z

0

h
exp

�
�3
4

p
�r

4
3 + 3

4

El1p
�
r
2
3

�
rl
�
a0 + a1r

2
3

�i2
g (r) r2dr

E1D = �0�LD
�
l; j = l � 1

2
; s
� +1Z

0

h
exp

�
�3
4

p
�r

4
3 + 3

4

El1p
�
r
2
3

�
rl
�
a0 + a1r

2
3

�i2
g (r) r2dr

(34)

The above relations can be simpli�ed to the following forms :

E1U = �0LU
�
l; j = l + 1

2
; s
� +1Z

0

exp
�
��r 43 � "r 23

� 0@ B1r
2l+ 2

3 +B2r
2l� 2

3 +B3r
2l+ 1

6

B4r
2l+2 +B5r

2l+ 2
3 +B6r

2l+ 5
6

B7r
2l+ 4

3 +B8r
2l� 2

3 +B9r
2l+ 1

6

1A dr

E1D = �0LD
�
l; j = l � 1

2
; s
� +1Z

0

exp
�
��r 43 � "r 23

� 0@ B1r
2l+ 2

3 +B2r
2l� 2

3 +B3r
2l 1
6

B4r
2l+2 +B5r

2l+ 2
3 +B6r

2l+ 5
6

B7r
2l+ 4

3 +B8r
2l� 2

3 +B9r
2l+ 1

6

1A dr

(35)

Where the covariant notations B� with (� = 1; 9) are determined from the relations :

B1 = ��a20
6

B2 =
�a20
6

B3 =
2a0a1
3

B4 = ��a21
6

B5 =
�a21
6

B6 =
a21
3

B7 = ��a0a1
3

B8 =
a0a1�
3

and B9 =
2a0a1
3

(36)

If we use the contra variant notations B� with (� = 1; 9) :

B1 =

+1Z
0

exp
�
��r 43 � "r 23

�
r2l+

2
3dr; B2 =

+1Z
0

exp
�
��r 43 � "r 23

�
r2l�

2
3dr

B3 =

+1Z
0

exp
�
��r 43 � "r 23

�
r2l+

1
6dr; B4 =

+1Z
0

exp
�
��r 43 � "r 23

�
r2l+2dr

B5 =

+1Z
0

exp
�
��r 43 � "r 23

�
r2l+

2
3dr; B6 =

+1Z
0

exp
�
��r 43 � "r 23

�
r2l+

5
6dr

B7 =

+1Z
0

exp
�
��r 43 � "r 23

�
r2l+

4
3dr; B8 =

+1Z
0

exp
�
��r 43 � "r 23

�
r2l�

2
3dr

and B9 =

+1Z
0

exp
�
��r 43 � "r 23

�
r2l+

1
6dr

(37)

67



A. Maireche / Med. J. Model. Simul. 04 (2015) 060-072

Now, the same change, the above equation reduces to the equivalent form :

B1 =

+1Z
0

exp
�
��r 43 � "r 23

�
r2l+

2
3dr B2 =

+1Z
0

exp
�
��r 43 � "r 23

�
r2l�

2
3dr

B3 =

+1Z
0

exp
�
��r 43 � "r 23

�
r2l+

1
6dr B4 =

+1Z
0

exp
�
��r 43 � "r 23

�
r2l+2dr

B5 =

+1Z
0

exp
�
��r 43 � "r 23

�
r2l+

2
3dr B6 =

+1Z
0

exp
�
��r 43 � "r 23

�
r2l+

5
6dr

B7 =

+1Z
0

exp
�
��r 43 � "r 23

�
r2l+

4
3dr B8 =

+1Z
0

exp
�
��r 43 � "r 23

�
r2l�

2
3dr

and B9 =

+1Z
0

exp
�
��r 43 � "r 23

�
r2l+

1
6dr

(38)

The convenient mathematical form :

B1 = 2
3

+1Z
0

exp
�
��r 43 � "r 23

�
x(l+

11
6 )�1dx B2 = 2

3

+1Z
0

exp
�
��r 43 � "r 23

�
x(l+

4
3)�1dx

B3 = 2
3

+1Z
0

exp
�
��r 43 � "r 23

�
x(3l+

19
2 )�1dx B4 = 2

3

+1Z
0

exp
�
��r 43 � "r 23

�
x(3l+

5
2)�1dx

B5 = 2
3

+1Z
0

exp
�
��r 43 � "r 23

�
x3l+

15
4 dx B6 = 2

3

+1Z
0

exp
�
��r 43 � "r 23

�
r(3l+

7
4)�1dx

B7 = 2
3

+1Z
0

exp
�
��r � "r 23

�
r(3l+

7
2)�1dx B8 = 2

3

+1Z
0

exp
�
��r 43 � "r 23

�
r(3l+

1
6)�1dx

and B9 = 2
3

+1Z
0

exp
�
��r 43 � "r 23

�
r(3l+

19
12)�1dx

(39)

The above special integral, after a straightforward calculation :
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B1 = 2
3
(2")�

v
2�
�
l + 11
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�
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�
"2

8�

�
D�(l+ 11

6 )

�
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2�

�
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(2")�
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�
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�
3l + 19

2

�
exp

�
"2

8�

�
D�(3l+ 19

2 )

�
"p
2�
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�
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�
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�
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�
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�
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�
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(2")�

v
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�
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6

�
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�
"2
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D�(3l+ 1
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(2")�
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�
3l + 19
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�
exp

�
"2

8�

�
D�(3l+ 19

12)

�
"p
2�

�

(40)

Then, the obtained corrections for p = 1 excited states :

E1U = �0LU (l; j; s) B�B
�

E1D = �0LD (l; j; s) B�B
� (41)

We have used in the above results the Einstein (sum with indies ). For, the stationary
state, the two values of LU

�
l; j = l + 1

2
; s
�
and LD

�
l; j = l � 1

2
; s
�
are equal to and one,

while the two values in the �rst excited states are reduced to one and (�2), spin up and
spin down, respectively. We summarize the obtained results of energies (E0U , E0D, E1U
and E1D) associated with spin up and spin down in the �rst order perturbation of �, to
the stationary state and the �rst excited states as follows :

E0U = �
p
4�
��
2l + 7

3

� p
�+ �

	 1
2 + �0�LU (l; j; s) a

2
0A�A

�

E0D = �
p
4�
��
2l + 7

3

� p
�+ �

	 1
2 + �0�LD (l; j; s) a

2
0A�A

�

E1U = �
p
4�
��
2l + 11

3

� p
�+ �

	 1
2 + �0LU (l; j; s) B�B

�

E1D = �
p
4�
��
2l + 11

3

� p
�+ �

	 1
2 + �0LD (l; j; s) B�B

�

(42)

We can write the commutative central fraction power singular Hamiltonian HCFPS and
HSO�CFPS the generated new spin-orbital interaction as :

HCFPS =
h
� �
2m0

+ �r
2
3 + �r�

2
3 + r�

4
3

i
I3�3

HSO�CFPS = �g(r)

0@ LU
�
l; j = l + 1

2
; s
�

0 0
0 LD

�
l; j = l � 1

2
; s
�
0

0 0 0

1A (43)

The operator HCFPS represents an electron interacted exactly with the central fraction
power singular potential in ordinary commutative space, while the matrix HSO�CFPS is
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the spin-orbit interaction. The new levels are characterized by the quantum numbers (J; I)
and sz = �1=2, contrary to the old levels (commutative space) which are depended only
on quantum number I and the 3-parameters of central fraction power singular potential
( the studied potential) : �, � and .

3.4. The modi�ed Zeeman e¤ect for NRQM (C.F.P.S.) potential :
On another hand, we can draw another physical interpretation for the results of the

noncommutativity of the spaces for central fraction power singular potential. If we choose
the parameter and the vector of a magnetic �eld as follows [23]

� = "0B and �Lz = "
0JB� "HZ (44)

Where "0 is a real proportionality-constant, HZ is the usual Zeeman �eld. Substituting
two Eqs. (20) and (22) into eq. (15) leads to the second new NC Hamiltonian HNC�2 as :

HNC�2 = �
�

2m0

+ VCFPS (r) +Hmag�cfps (45)

Where the operator Hmag�cfps is given by :

Hmag�cfps = �"0g (r) HZ + "g (r) JB (46)

The above operator Hmag�cfps represents two physical interactions between the polari-
zed electron and external magnetic �eld ; the �rst one is the ordinary Zeeman E¤ect and
the second is the new interaction coupling between the total momentum J and external
magnetic �eld B. It is easy to see that the classical limit is guaranteed by the condi-
tion (� �! 0) in NC 3D NRQM. The �nal expression of (NC-3D NRQM) Hamiltonian
HNC�CFPS for (C.F.P.S.) potential can be resumed in the diagonal matrix of order 3� 3
as :

HNC�CFPS =

0BBBB@
�g(r)LU

�
l; j = l + 1

2
; s
�
+

HCFPS +Hmag�cfps
0 0

0
�g(r)LD

�
l; j = l � 1

2
; s
�
+

HCFPS +Hmag�cfps
0

0 0 HCFPS

1CCCCA
(47)

It�s important to notice that, the noncommutative operator of NC Hamiltonians is
changed ; the homage�s diagonal elements in commutative Hamiltonian are replaced with
di¤erent elements :

(HNC�CFPS)11 6= (HNC�CFPS)22 6= (HNC�CFPS)33 (48)

Then, the isotropic commutative Hamiltonian will be in non commutative space aniso-
tropic Hamiltonian.
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4. Conclusions

We have obtained the modi�ed bound state solutions of the three-dimensional radial
Schrödinger equation for central fraction power singular potential in the case of (NC-
3D NRQM), the old states are changed radically and replaced by degenerated new states,
depending on four quantum numbers (J; l) and sz = �1=2 corresponding spin up and spin
down. The corresponding NC Hamiltonian represented by 3-matrices , HCFPS, HSO�CFPS
and Hmag�cfps : the �rst represents the interaction of an electron with spin (1=2) in central
fraction power singular potential in commutative ordinary space, while the second matrix
represents the spin-orbit interaction, the last part of NC Hamiltonians is the interaction
between an electron and an external magnetic �eld.
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