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A Review of Dynamic Models Used in Simulation of 
Gear Transmissions 

The investigation of relevant scientific literature regarding gear model-
ing enabled us to discover a significant number of papers dating back 
several decades and continuing to the present. The purpose of the dy-
namic models was quite diverse, but all modeling efforts share the goal 
of replicating the complex physics of power transmission through gear 
interaction. This paper investigates the relevant aspects regarding the 
dynamic modeling of gear transmissions, starting with the simplest 
model (1DOF), then developing it into a model with three degrees of 
freedom (3DOF) and finishing with six degrees of freedom model 
(6DOF). 
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1. Introduction 

Because the gears are critical components of any rotating machine, they have 
received a considerable amount of attention regarding their dynamic modeling, 
being published a significant number of papers concerning this problem [1], [2]. 
The objectives of dynamic modeling of gear transmissions varied past five dec-
ades, from vibration controlling and noise analysis, to the study of transmission 
error and stability analyses [3], [4]. The final scopes of dynamic modeling of gears 
could be summarized as follows: 

- Analysis of contact and bending stress; 
- Reduction of superficial wear as for example pitting; 
- Study of transmission efficiency; 
- Study of noise radiation; 
- Influence on other parts of the transmission, particularly bearings; 
- Natural frequencies of the system; 
- Studies regarding the vibratory motion of the system; 
- Studies of reliability and life cycle. 
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2. Dynamic Model with One Degree of Freedom (1DOF) 

Figure 1 show a typical dynamic model with one degree of freedom (1DOF) 
used for the mesh investigation of a gear pair system. The gear transmission is 
modeled as a pair of discs, connected along the mesh line by a spring and a 
damper. 

The model takes into account influences of the static transmission error which 
is simulated by a displacement excitation e(t) at the mesh. This transmissions error 
arises from several sources, such as tooth deflection under load, non-uniform tooth 
spacing, tooth profile errors caused by machining errors as well as pitting, scuffing 
of teeth flanks. The mesh stiffness cz(t) is expressed as a time-varying function. 
The gear pair is assumed to operate under high torque condition with zero back-
lash. Effects of friction forces at the meshing interface are neglected on the basis 
that in particular, the coefficient of friction is low (approx. 6%, according to [5]). 
Furthermore, the viscous damping coefficient of the gear mesh dz is assumed to be 
constant. 

 
 

Figure 1. 1DOF dynamic model for a gear pair system 
 

The differential equations of motion for this system can be expressed in the 
form: 

)()]([)]()[( 1221112211111 tMterrdrterrtcrJ bbzbbbzb =++++++ &&&&& ϕϕϕϕϕ ,  (1) 

)()]([)]()[( 2221122211222 tMterrdrterrtcrJ bbzbbbzb =++++++ &&&&& ϕϕϕϕϕ , (2) 

where iϕ  , iϕ&  , iϕ&&  (i= 1, 2 ) are rotation angle, angular velocity, angular 
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acceleration of the input pinion and the output wheel respectively. J
1 
and J

2 
are the 

mass moments of inertia of the gears. M
1
(t) and M

2
(t) denote the external torques 

load applied on the system. r
b1 
and r

b2 
represent the base radii of the gears. 

By introducing the composite coordinate 

2211 ϕϕ bb rrq += ,      (3) 

equations. (1), (2) yield a single differential equation in the following form: 

)()()()()( tedtetctFqdqtcqm zzzzred &&&& −−=++ ,  (4) 

where: 
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For a specific gear-pair, the mesh stiffness c
z
(t) can be approximately repre-

sented by a truncated Fourier series: 

)tkcos(cc)t(c k

K

k
zkz γω ++= ∑

=1
0 ,    (6) 

where zω  is the gear meshing angular frequency and K is the number of terms of 

the series. 
Generally, the components of the meshing error are not identical to each gear 

tooth and consequentially, they will produce excitation movements periodical to 
the rotation speed of the wheel (repeated every time the respective tooth is in 
contact). Therefore, the excitation function e(t) can be represented by a Fourier 
series with the mains frequency corresponding to the rotation speed of the wheel. 
If it is considered that the errors are located only at teeth of the pinion, e(t) can be 
written as: 

)ticos(e)t(e i

I

i
i αω +=∑

=1
1 ,      (7) 

where ω1 is the angular speed (rotation frequency) of the pinion. 
When it is assumed that: 

const== 11 ωϕ& , const== 22 ωϕ& , dz= 0, cz(t)= c0, the dynamic transmission er-

ror of the gear pair q is equal to the static deformation of the teeth under the con-
stant load qo. 

Therefore: 

02211 qrrq bb =+= ϕϕ ,       (8) 

So that, Eq. (4) becomes: 

0=−++ )t(fqdq)t(cqm zzred
&&&  .    (9) 

Based on the above, the vibration of a gear pair can be written as a differen-
tial equation of the form: 

0=−++ )t(fqdq)t(cqm zzred
&&& ,    (10) 
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where: 

)t(ed)t(e]c)t(c[qc)t(f zz
&−−−= 000 .   (11) 

 
Taking into account four dominant coefficients c0, c1, c2, c3 in the Fourier se-

ries of the mesh stiffness, Eq. (6) can be written as: 

)tksinŝtkcosĉ(c)tkcos(cc)t(c zk
k

zkk
k
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==
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0

3

1
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where 11ωω zz =  . 

If the excitation function e(t) is expressed by its first two terms of the Fourier 
series, we have: 

)tkcos(e)t(e k
k

k αω += ∑
=

2

1
1 .     (13) 

 
Substituting the expressions (12) and (13) in equation (11), we obtain: 
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t)kz(cosĉt)kz(sinŝt)kz(scoĉ
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e

)tsin(ed)tsin(edqc)t(f

k

kk
k

k

kkk

k
kzz

, (14) 

 
Based on the analytical form of the functions cz(t), respective f(t) and using 

the harmonic balance method, the solution of the differential equation (10) can be 
approximated by the expression: 

 

[

]t)kzsin(bt)kzcos(at)kzsin(bt)kzcos(a

t)kzsin(bt)kzcos(at)kzsin(bt)kzcos(a

t)kzsin(bt)kzcos(a)tksinbtkcosa(a)t(q

kzkzkzkz

kzkzkzkz

kz
k

kzk
k

k

1121112111111111

11111111111111

112111

3

1
2111

3

1
0

2211

11

22

ωωωω

ωωωω

ωωωω

++++++++

+++−+−+

+−+−+++=

++++

−−

−
=

−
=

∑∑
. (15) 

3. Dynamic Model with Three Degrees of Freedom (3DOF) 

When the stiffness respective the elasticity of the shafts and the bearings 
cannot be neglected, a dynamic model with tree degrees of freedom has to be 
considered. 
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Figure 2. Dynamic model with three degrees of freedom (3DOF) 

 
Such a model is shown in figure 2. Same as at the 1 DOF model, the gear 

mesh is modelled as a pair of discs, connected along the mesh line by a spring and 
a damper. In addition to the 1 DOF model, the shafts and the bearings are consid-
ered elastic, each of the discs being supported by a spring and a damper, having 
elastic constants c1 and c2, respective the viscous damping coefficients d1 and 
d2.Forthermore, the backlash between the teeth of the pinion and the gear is not-
ed with 2b. The gear mesh stiffness cz(t) and the static transmission error e(t) are 
considered time varying, while the viscous damping is noted with dz. 

Dynamic transmission error is defined: 
)t(ry)t(ry)t(y bbd 222111 ϕϕ −−+= .     (16) 

The difference between the dynamic transmission error yd(t)and the static 
transmission error e(t) is given by the relation: 

)t(e)t(ry)t(ry)t(y bb −−−+= 222111 ϕϕ .   (17) 

The meshing force can be written as: 
)t(yd)y(f)t(cF zzy &⋅+⋅= ,     (18) 

where f(y) is a nonlinear function used for the description of the  gear pair with 
backlash. 

Assuming an equal repartition of the gap between teeth, f(y) can be written 
as: 
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The differential equations of motion can be written as follows: 
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where: 
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The system of equations (20) can be written in matrix form as follows: 
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According to [2], a dimensionless form of the Eq. (22) can be obtained, by 
assuming following simplifications. Let: 

)tcos(e)tcos(e)t(e bbaa ϕωϕω +++= ,   (23) 

)tcos(cc)t(c amz ϕω ++=  ,   
m

a
a c

c
c =  ,   (24) 

where ω is the main excitation frequency of the transmission error respective of 
the stiffness of the gear transmission. 
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with the excitation frequency vector   
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So that: 
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)tcos(F)tcos(FFF bbaam ϕωϕω ++++= .   (31) 

Eq. (22) can thus be written in dimensionless form: 
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with: 
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For simplifying reasons, the “-“ sign above the variables in the Eq. (32) and 
(33) will be  neglected and, therefore, the equation (32) becomes: 
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As a first step, the three second order differential equation are converted in 

six first order differential equations by using the Runge-Kutta method. 
For this purpose, q variable is introduced as follows: 

}{ }{ TT y,y,y,y,y,yq,q,q,q,q,qq &&& 2211654321 ==  (35) 

Thus, Eq. (34) can be written in matrix form as follows: 

BA)q(fcqHq +⋅⋅+⋅= 533&      (36) 

whereA is the matrix of the nonlinear coefficients: 

{ }Tccc,,c,,c,A 3323132313 000 −−−−=   (37) 

B is the vector of load (forces): 

{ }TFB 00000=       (38) 

and H is the matrix of the linear coefficients: 
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Eq. (36) can be solved by using the MATLAB software, with which can be al-
so performed a simulation by using the facilities offered by the SIMULINK tool. 
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4. Dynamic Model with Six Degrees of Freedom (6DOF) 

When the influence of the driving, respective driven machine cannot be ne-
glected, it has to be choosing a mathematical model with six degrees of freedom. 

Such a model is shown in figure 3. 

 
Figure 3. Dynamic model with six degrees of freedom (6DOF) 

 
Generalizing those presented in the chapters 2 and 3 of this paper, as well as 

on the theoretical considerations of the forced damped vibration, it can be con-
cluded that the equation of motion of a dynamic system, which includes a gear 
transmission can be written in following form: 

[ ] { } [ ] { } [ ] { } { }FqCqDqM =⋅+⋅+⋅ &&&      (40) 

where:  
[M]- Matrix of masses;  [D]- Matrix of damping’s;   [C]- Matrix of stiffness; 

q - vector of deplacements; F -vector of force. 

For the 6 DOF dynamic model, the elements of Eq. (40) can be written, ac-
cording to [5], as follows: 

Symbols: 
J- moment of inertia; 
φ- rotation angle; 
M (t)- torque moment; 
D- damping constant of connecting shaft; 
C- elastic constant of connecting shaft; 
m- mass 
z- teeth number; 
rb- base radius; 
d- damping constant of the bearing; 
c- elastic constant of the bearing; 
e(t)- displacement excitation; 
cz(t)- gear mesh stiffness; 
dz- damping coefficient of the gear mesh. 
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{ }TMaMo yyq 2121 ϕϕϕϕ= .     (44) 
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5. Conclusions 

Mathematical models attempt to include the essential parameters of natural 
phenomena in systems of equations or in systems of differential equations in order 
to predict the evolution of the observed system.  

The basic principle in formulating a scientific model (modeling) is to reduce 
complexity, by trying to make the truth describable and understandable through 
simplicity. 

The present paper presented relevant aspects regarding the dynamic model-
ing of gear transmissions. Starting with the simplest model (1DOF), developing it 
by considering factors as bearing, shaft, driving and driven machine, until the 
mathematical model with six degrees of freedom (6 DOF) was reached. 
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