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Abstract. In the paper the equations of nonlinear 

electrical circuits derived from Hamilton-Ostrogradsky’s 

action functional are analyzed with the use of Lagrangian 

function modified by two additional components. The 

components consider external and internal energy dissipa-

tion and energy of non-potential forces for the systems 

based on both lumped and distributed parameters. The 

results are presented as graphs.
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Introduction. Equations describing non-linear 

electrical circuits are basis for formulation of the mathe-

matical models of electrical devices described with both 

lumped and distributed parameters [1,4]. These equations 

are used in order to formulate the mathematical models of 

transformers [1], all machines of direct and alternating 

current [1,4], choking coils [3,4], et al. The least action 

principle of Maupertuis is the fundamental law used in 

order to formulate the mathematical models of the 

abovementioned devices. The integral variational princi-

ple of Hamilton-Ostrogradsky [1,2] is the interpretation of 

Maupertuis’ principle. In the paper the interdisciplinary 

method consisting in modification of Hamilton-

Ostrogradsky’s principle by the extension of available 

Lagrangian function based on two additional components 

is proposed. The components consider the external and 

internal energy dissipation as well as the energy of non-

potential forces for the systems with both lumped and 

didtributed parameters [1]. The aforementioned modifica-

tion allowed to use the variational approaches in order to 

solve any tasks of the applied physics.

Mathematical model of the system. The electrical 

circuits are given as the systems based on lumped pa-

rameters with the finite number of degrees of freedom. 
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modified Lagrangian. The electromotive force (emf) 

( )

k k

e t e= , resistors ( )

k k k

R i R= , inductances ( )

k k k

L i L=

and capacitors ( )

k k k

C u C=  are the elements of analyzed 

circuit, where 1,2,...,k n= , n is number of generalized 

coordinates (circuits) in the electric system, ( ), ( )i t u t  are 

the respective currents and voltages. The charges of cir-

cuits ( )

k

Q t  are assumed to be the generalized coordinates 

whereas the derivatives of charges ( )
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i t  are the currents 

in circuits.

The extended functional of electric system is given 

as follows [1,4]:
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where T

�

 is kinetic coenergy of electric circuits.

At initial instant the currents are not flowing in the 

circuits. It means that the electrical energy dissipation is 

equal to zero: 

0

0

t=

Φ ≡ . Variations of extended action 

functional of Hamilton-Ostrogradsky is expressed as fol-

lows:
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The variational and integral procedures are inde-

pendent and their sequence may be replaced. Grouping 

the similar components and taking into account the equal-

ity: 

k

k k

dQ

d

i i

dt dt

δ = δ = δ , it can be obtained:
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For the first term of (3) the integration by parts is 

used, and the following dependency is obtained as a con-

sequence:
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Hence, considering that variations of coordinates 

are equal to zero at instants 

1 2

,t t , it may be written:
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The term kQ  is never equal to zero, thus, the varia-
tion of action functional by Hamilton-Ostrogradsky is 
equal to zero only if the integrand in dependency (5) is 
equal to zero: 

1

1 1 1 1
0

n n n n

k k k k k k k
k k k k

d L i R i e C Q
dt



   

       .      (6) 

where:  k k kL i    is the full magnetic coupling 
(flux) of the k-th circuit,  

k k RkR i u  is voltage across the k-th circuit resistance,  

ke  is EMF of the k-th circuit, 
1

k k CkC Q u   is voltage across the capasitor of the k-th 
circuit. 

Considering, the equation (6) has the following form 
[1,2]: 
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The dependency (7) is fundamental for the applied 
electrical engineering. It allows modelling the electrical 
processes in majority of electrical devices [1,2,4]. 

Simulation calculations. The analysis of transient 
state in nonlinear coils (inductance as function of current) 
was made using the above given equations. The simple 
nonlinear two-way electrical circuit consisted of series 
connections of EMF, nonlinear inductances and resis-
tances, was analyzed. The extended functional based on 
(1) has the form: 
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Transforming the dependencies (2) to (11) it can be 
derived: 
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where: i is current in coil winding, ( )L i  is nonlinear dif-
ferential circuit inductance.  
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
 .                          (10) 

The parameters of electrical circuit are as follows:  
1( ) 4500expsin(30 0,1)e t t  [V],

2 ( ) 1000sin(10 2)e t t  [V],  

1 1 1( ) 12,4arctg0,066i i   [Wb], 

2 2 2( ) 10arctg0,1i i  [Wb], 

1 11, 2 0,002R i   [ ],   2 20,7 0,003R i    .  
The results of simulation are presented as graphs. 

 
 Fig. 1 Current of the first limb of 

analyzed circuit 

 
 

Fig. 2 Current of the second limb of 
analyzed circuit 

The current of the first loop belonging to the nonlin-
ear electrical circuit is shown in Fig. 1. The pattern of 
current depends on: (a) the nonlinear wave of feeding 
voltage of the first loop, (b) the dependency describing 
the magnetization curve of choking coil as well as (c) the 
dependency between voltage across the resistor and cur-
rent. The frequency of current oscillation in steady state is 
equal to 5 Hz and depends on frequency of feeding volt-
age of the first loop. 

The current of the second loop belonging to the 
nonlinear electrical circuit is shown in Fig. 2. There is not 
steady state for the assumed parameters of the circuit. The 
feeding voltage of the second loop is given as harmonic 
function, thus, all functional dependencies describing the 
loop in steady state should be harmonics for linear pa-
rameters of the loop. In the analyzed example the har-
monic process is not possible. 

Conclusions. The equations of nonlinear electrical 
circuits are presented in the paper. These are the most 
fundamental equations of electric theory based on inter-
disciplinary method proposed in [1]. The basic principles 
of variational calculus theory and the modified Hamilton-
Ostrogradsky’s principle were only used in order to derive 
the mathematical dependencies describing the analyzed 
electrical system. On the basis of carried out simulations 
it may be concluded that both methods are consistent, i.e. 
the classical method based on energy conservation low 
and the variational calculus method based on the least 
action principle. 
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