and Engineering (IJCSE)

ISSN(P): 2278-9960; ISSN(E): 2278-9979 ‘ e) Engineering and Technology
Vol. 4, Issue 4, Jun - Jul 2015, 9-22

© IASET

International J | of C ter Sci
niernational Jourha’ ol ~omputer science A International Academy of Science,

IASET Connecting Researchers; Nurturing Innovations

TRACEABILITY METRICS PREDESTINED FOR TRANSFORMATION REQUIREMENT
TO ARCHITECTURE (DESIGN REENGINEERING TOOL)

RASHMI YADAV *, RAVINDRA PATEL * & ABHAY KOTHARI °
L3acropolis Indore, Department of Computer Sciencgieering and Application,
Rajiv Gandhi Technical University, Bhopal, India
®Department of Computer Science Engineering and idpiidon, Rajiv Gandhi Technical University, Bhopiidia

ABSTRACT

Traceability Metrics are measures describing howl wmceability is performed from original allocate
requirements to software through design, codingtasting. In this paper propose Traceability Metraé Reengineering
Tool for transformation requirement to Architectufer that we will initially frame a requirement 8ieafter need to
transform this requirement into architecture. lfaand very difficult to transform requirement irdwchitecture. When we
map requirements into architecture most of the g information generated during mapping proégssst in the final
architecture representation. In this paper propdsedeability Metrics for measure quality of systamd selection of

traceability metrics at the instance when the negquént method used for transform requirement thiecture.
KEYWORDS: Traceability Metrics, Requirement Set, Software hiecture

1. INTRODUCTION

Traceability metrics ought to consider both direes from individual requirement to test resultsy dom test
results to individual requirements. Requiremengireering only focuses on problem domain and systesponsibilities,
but not design and implementation details. Mostdrtgmt measure of success of a software systeheiddggree to which

it meets the purpose for which it was intenfidSoftware architecture concerned with the shapaesoblution spacp].

When we transform requirement into architectuis difficult to transform requirement into architere, because
there are quite different perspectives in userirequents and software architecture. Requirementaackitecture control
different term and artifacts. Several researchargkwn this and provide different view: a) requiesthand architecture

are different to each other b) they are relateghith other c) There is gap between requiremenaaritecture.

In this paper proposed Traceability Metrics for swea quality of system and selection of traceabitietrics at

the instance when the requirement method useddosform requirement to architecture.

Research paper is organized as follows: Sectionistuslses the literature survey. Section 3 discusses
Reengineering tool requirement. Section 4 presergthods for transforming requirement into archiieet Section 5

presents Selection of methods suitable for proposedgineering tool. Section 6 conclusion and fituork.

2. LITERATURE SURVEY

In reengineering, the authors argue for compledeebility from code through specifications to cobtethe

course of reverse engineering a legacy softwartesysind its subsequent redesign and reimplememntdatiey found

www.iaset.us anti@iaset.us

10 Rashmi Yadav, Ravindra Patel & Abhay Kothari

several cases where traceability provided immediateefits that appear to be specific to reengingetiere we propose
tracing metrics “all around”—from existing code the legacy systems design to its requirements guraverse
engineering, and from the modified requirementhtonew design and the new code during developofahe successor
system. In effect, this means integrating tracésbduring reverse engineering with (more standardgeability during
forward engineering [32Puring the project, developers installed and usadegbility in real time. Here, we describe the
task, the project’s basic reengineering approauath same experiences, focusing exclusively on tigttgaand its benefits

for developers of the new software.

For to find traceability metrics we studies sevditerature at real time conversion of requirememgthod used
for transform requirement to architecture.

The software requirements specification descrihegptoblem, not the solution. It rightly focusestba behavior
of the systemBohem [3]identified the problem that requirement change dynally even SRS (Software Requirement
Specification) is unambiguous, complete, and comsisf requirements change architecture also ohahgs difficult to
transform dynamic change requirement into archirectNicholas May [4] give the survey of architecture viewpoint
modelsand mentionedhat there exist quite different perspectives irrugr customer) requirements and software
architecture.C. Hofmeister, Nord and D. Soni [5]conclude that the concepts, languages, notatiams,t@ols for
architecture are much more closely related to Betalesign and implementation rather than softwageirementghey
use Siemensfour views architecture design approach and tryettuce the gap between requirement and desigrinAga
they also reexamine the global analysis it smaldhp between requirement and architecture butaropletely fill the
gap SEI model, Siemens model and Rational model fohitecture documentation this documentation to ms#iple
concurrent diagrams to describe the entire softveamhitecture of a system using Crowded diagrameorisistent
notation, and mixing of architectural styles, hepgwse the need of separate subsystem those spheifgeparate
requirements.. According tban Calloway[6] global analysis activities help to significant bfinim achieving their goal
and, in some cases, the benefit went beyond wiegt hlad anticipated but, the use of global analgstsiities was not
applied as expecte@. Hall and his colleague [7]identify four differences and relationship betweabase two areas.
Architecture developed formally and requirementsexpressed in the language of customer. requireanerexpressed in
terms of characteristics of system for missionaaitapplication give the equalities such as ségudiependability safety,
reliability, maintainability, and portability, whitcare often in conflict. For such systems, thedrafls between conflicting
requirements are often expressed through the chafideigh-level architecture. Requirements are pFoblspace and
architecture is solution space it is very diffictdt cooperate with these two dimensions. Managimg évolution of
software successfully depends upon the stabilitgrohitecture the system contains the volatile irequents that is work
again stability.

3. CHALLENGES TO MAPPING THE REQUIREMENT INTO ARCHI TECTURE.

The functional requirements are extractor, repogit@nalyzer, visualize. Rick Kazmar [8] indentifi¢he
challenge to mapping requirements he explains thezetwo types of Requirement Functional and Quahat is non
functional requirement. Most customers and devetpave focused on functional requirements whasyiséem does and
how it transforms its input into its output. But dehfunctional requirements are necessary, queditjyirements are critical
to the software architecture and significantly uefhce the shape of the architecture. Choices arddfegent quality

requirements shape the architecture, Kazmar exgl&ach requirement suggests certain architecstmadtures and rules

Impact Factor (JCC): 3.5987 NAAS Rating.89

Traceability Metrics Predestined for Transformation Requirement to Architecture (Design Reengineeringool) 11

other ones out will choose one set of architectstraictures over another because we know thad itjsod architecture for
being able to predict and control end-to-end lagemcthroughput, R. Chitchat et al. [9] identifiie problem that when
we map the requirements into architecture large umin@f important information generated during thepming of

requirements to architecture is lost in the firggresentation of the architecture. He proposedr#oeability schema that
will provide support for recording such informatigenerated during the mapping process. He focusebeo mapping
from requirements to architecture though the schemdd be used for relating other development stagilbe problem
with this schema is that mapping schemas is natnaatied and time-consuming activity it increasedbst and time. We
discuss in details methods to transform from rexnéent to architecture identify the strength andkmeas and which
method is suitable in which particular scenarioefhwe discuss which method is suitable for tramsfour requirement

into architecture and why.

4. METHODS FOR TRANSFORM REQUIREMENTS TO ARCHITECTU RE
Feature Oriented Domain Analysis Method

In 1982, Davis [10] gave Feature oriented Domairalgsis methodwhich identified features as an important
organization mechanism for requirements specificatin 1990 Kyo C. Kang [11]proposed feature-oriented domain
analysis (FODA) method. The merits of feature asialyare intended to capture the end-user’'s (andomes’s)
understanding of the general capabilities of apfitieis in a domain which is the Limitation of Ditéddapping. FORM: A
feature-oriented reuse method with domain-speciierence architectures it extends to FODA Metho@mphasis
software design and implementation phases andniveschow the feature model is used to develop dormzhitectures
and components for reuse. FORM method is quitefofit software development in mature domain wherendsed
terminology, domain experts and up-to-date documeme availableReid Turner [12] puts forward a conceptual
framework for feature engineering in 1999piéfers to look feature as an important organizimigcept within the problem
domain and proposes carrying a feature orientdtimm the problem domain into the solution domatrsHows that it is
feasible and effective to make features explicisaftware development and to take feature oriematis a paradigm
during the software life cycle. Turner’'s framewartmes from software development experience in ¢ahesunication
domain, and is still conceptual and incompleteddes not provide particular solution for mappingjuieements to
Software architecture from software engineeringspective.Dongyun Liu and colleague [13]explore how to apply
feature orientation as a solution for the mappingbfem between requirements and Software archiedtom general
software engineering perspectives, focusing onntla@ping and transformation process. is to orgaréggirements in
problem domain into a feature model, and then hmsearchitectural modeling on the feature modekthwhe goal
maintaining direct and natural mapping between irequents model and architecture models addresgidunat features
and nonfunctional features separately in diffe@chitectural models. It is not replacement of ittadal method it is an
improvement on traditional methods. This approagh integrate closely with OO method. The modelingcepts and

notation adopted in this paper are based on UMt.hbue appropriate extension.

Thefeature-oriented concept is based on the emphasis placed by theothen identifying those features a user
commonly expects in applications in a domain. Timethod, which is based on a study of other domaialysis
approaches, defines both the products and the ggoamedomain analysis. Feature oriented domainyaisabone by
domain analysis based on features. Feature modtasiuced & take a key role to identify commotia$ and to generate
architecture model. FOSD is not a single develognmethod or technique, but a conglomeration ofedéht ideas,

methods, tools, languages, formalisms, and thedNést connects all these developments is the gbrdea feature. Due

www.iaset.us anti@iaset.us

12 Rashmi Yadav, Ravindra Patel & Abhay Kothari

to the diversity of FOSD research, there are sédefmitions of a feature [22], e.g. (ordered fratmstract to technical):

Kang et al. [29]: “a prominent or distinctive usasible aspect, quality, or characteristic of atsafe system or
systems”. Kang et al. [30]: “a distinctively ideff@ble functional abstraction that must be impletedntested, delivered,
and maintained”. Czarnecki and Eisenecker [28]disinguishable characteristic of a concept (esgstem, component,
and so on) that is relevant to some stakeholdéneotoncept”. Bosh [24]: “a logical unit of behavBpecified by a set of
functional and non-functional requirements”. Cheale[25]: “a product characteristic from usercoistomer views, which
essentially consists of a cohesive set of individequirements”. Batory et al. [23]: “a product cheteristic that is used in
distinguishing programs within a family of relatpdograms”. Classen et al. [22]: “a triplet, f = (R/, S), where R
represents the requirements the feature satidheshe assumptions the feature takes about its @mvient and S its
specification”. Zave [31]: “an optional or incremahunit of functionality”. Batory [27]: “an increent of program
functionality”. Apel et al. [26]: “a structure thaktends and modifies the structure of a given ramgin order to satisfy a

stakeholder’s requirement, to implement and endafesa design decision, and to offer a configuratiption”
Object Oriented Transition Method

Dongyun Liu and colleague [13] explore how to apiglgture orientation as a solution for the mapgingblem
between requirements and Software architecture ffeneral software engineering perspectives, fogusinthe mapping
and transformation process. is to organize req@rgsin problem domain into a feature model, arghtbase our
architectural modeling on the feature model, wite goal maintaining direct and natural mapping leetwrequirements
model and architecture models address functiorslifes and nonfunctional features separately fierdifit architectural
models. It is not replacement of traditional metlibds an improvement on traditional methods. Thjgproach can
integrate closely with OO method. The modeling epts and notation adopted in this paper are basédiMl, but have

appropriate extension.

Object Oriented Transition method is to transfolma bbject-oriented output of the Requirements ergging
phase (analysis) into an object-oriented architeati@sign phase.

Hermann kaindl [14] object oriented analysis ansigie are different. Developers have to perform difficult OOD tasks

concurrently: they have to specify architecture tloe software and build a model of the domain toubed by that
software. Merits of this method the Traceabilitgss to be possible in object-oriented models. @ghod not provides
a complete solution for mapping requirements imthigectures. This is due to the fact that intestalictures of a system
are described from developer’s point of view in tiesign; object-oriented analysis describes the vis&. Both stages
present different information or lack informatidrat is of interest to the developer or the custokhereover, a transition
from analysis objects to design objects implies thal world objects become software objects aatltthe object-oriented
analysis model deals with internal design. Follgnihis, objects at different stages have diffeadtractions levels and
different purposes. As a consequence object otientdoes provide similar models but does not altoapping between
the requirement and architecture stage. It is genyeric approach it can be used in most of the centiad application

where object and classes can be identified.
Use Case Maps
Use case mapsmethod are scenario based software engineerifitpee most useful at the early stage of

software development. The notation is applicablege case capturing and elicitation use case validas well as high

Impact Factor (JCC): 3.5987 NAAS Rating.89

Traceability Metrics Predestined for Transformation Requirement to Architecture (Design Reengineeringool) 13

level architecture design and test case generati@Ms provide a behavioral framework for evaluatiawgd making
architectural decisions at a high level of designvisual behavior structures, manipulated, reused| understood as
architectural entities. The primary objective ise@se understanding in all phases of developmemebiecting details.
UCMs can also be used to describe how organizdtginactures of complex systems and behavior aextimined[15].
UCMs show causal paths directly between respoitgisilin organizational structures of abstract congnts. They
combine behavior and structure into one view afetate responsibilities to architectural componeRislated use cases
are shown in map-like diagrams. The Use Case Maatino was developed to capture scenario descniptas causal

flows of responsibilities for object-oriented desafrreal-time systems
Use Case Maps (UCMs) represent scenarios exeathogs a system:
» show the emerging behavior of the system
» The basic UCM constructs are paths, componentstespibnsibilities
* use them to reason about design and performance

UCM (Use Case Map) R. J. A. Buhr [33] describeimbook “a high level scenario modeling technigeéireed
for concurrent and real-time system design. Itdasda on a simple and expressive visual notationaif@vs describing
scenarios at an abstract level in terms of seqeeniceesponsibilities1 over a set of componentg ptimary objective of
the UCM modeling technique is to capture and arabystem behavior at an abstract level; UCM dessrdizenarios at an
abstraction level that is above both inter-comporeemmunication and detailed level component bearavt allows
focusing on individual scenario description, scenamteraction, and responsibility allocation, befdntroducing inter-
component communication”. As is, UCM models canvimved as a specification for the modeling of intemponent

communication.
UCM also provides important features:

e Superimposition of scenarios on system structunés &nables designers to visualize scenarios iedhéext of a

system structure. It also provides a mechanismtighwesponsibilities can be allocated to systempmmnents.

e Combination of sets of scenarios in a single diagrahis enables designers to express scenarioS@Thrio
interactions in a graphical manner. It also progsidemechanism that can be used by designers tgzantile

overall system behavior that emerges from scermanmabinations.

» Description of system dynamics both at the compblearel, where components may be created, destr@aret!
moved from one location to another in the systend at the scenario level, where the a scenario bmay

dynamically modified as the system evolve.

Weaving together requirements and Architecture metld [16] weaving together requirement into architecture
it gives flexibility to change requirement by usifigin speak model whenever require changing inthiggcture. It does
not freeze the requirement at early stage but mi$hod provides a high level-process framework anddetailed
description on how to perform the transition. Aduiglly, it does not provide information on whafts@re architectures

are stable when dealing with changing requirements

Problem frames methodallows the classification of software problems #meldecomposition of a large problem

www.iaset.us anti@iaset.us

14 Rashmi Yadav, Ravindra Patel & Abhay Kothari

into sub-problems. The developer can focus on thelpm domain instead of inventing solutions beedhe idea is to
delay solution space decisions until a good undedihg of the problem is gained. These sub-probleanshen be solved
and combined into a solution of the original prohl®roblem frames can express the relationship betwnemgrirements,
domain properties, and machine descriptions. Whielging requirements and architecture, problem &sitan model the
organization of requirements in the architecturbisTallows us to deal with undesired effects, exgrlapping event
reactions.Jon G. Hall Michael Jackson and Colleagud17] proposed twins peak model that illustrates theaitee
nature of the development process. This is a psodasing which both problem structures and solgtistructures are
detailed and enriched. They also give the extensioproblem frame they identified that most reablgems are too
complex to fit within a problem identification/sdion description model. They require a third les€tescription. That of
structuring the problem as a collection of interagsubs problems, each of which is smaller angnthan the original,
with clear and understandable interactions. Proldlame are give the notation for the third levelislgood in problem
frame method is it use hierarchical solution suitetensures scalability of the system and tradeatuf architecture
decisions. Problem frames describes architecturaktsres, services, and artifacts as part of theblpm domain.
A drawback rotationally the extension is slightthat it is not clear that the notation coversaalbects for creating proper
architectures. It is use where the development teqgeire short because developers to describerti®gm domain more

abstractly, closer to business logic that operatbé domain.

Goal Based Transitionapproach performs a transition from requirementarahitecture to meet functional and
non-functional requirements. It can be regardea esmbination of qualitative and formal reasoniagdd on KAOS (it is
goal oriented requirement specification Languad®rry’s [18] use the Prescript tprocess which is a prescriptive
architecture specification language that providdsgh-level architectureThe process starts with analyzing the global
impact of goals on architectures. The software ifipation is created based on underlying systemiggbg deriving
requirements. Functional specifications are comsitlén the architectural draft that is built inecend step. This draft is
then refined to fulfill the domain constraints. Thmal architecture which complies with all non-fitional requirements is
achieved using recursive refinement. This appraagiports intertwinement of requirements and archite creation and
allows the extraction of different views (e.g. séguview, fault tolerance view).goal based traiosit method is the
qualitative reasoning in there refinement procéss should be more formal to allow extended togpsut. Also, when
architectural features need to be propagated batipihis approach is limited as it focuses on egfient. A combination
of bottom-up and top-down might help. If the redatibetween global architecture decisions at edages of the process
and meet all nonfunctional requirement at firsgstéhen we use the Goal Based transition. Aftdly eiage when we do
final refinements to meet all non-functional reguirents should be more difficult. Recursive Refinehseveral time are

time consuming.

Rule Based Decision Making method describe by W. ui and S. Easterbrook [19]that the making
architectural decision based on requirements, amgjycost benefit analysis tradeoff and keepindgiesptions open is a
difficult task. Existing work on classification @frchitectural styles and features reusable compgsraard derivation of
relevant architectural styles provides useful hetiarito the task but it is highly labor intensivepresents dramework is
based on the assumption design options that actinité decisionsare labor-intensive and difficult to mak&he
framework supports automated reasoning for eligitarchitectural decisions based on requirementstula based
framework consists of two main modules, a reasoninglule and presentation module. The reasoning laartuntains a

mapping process which allows the generation ofsi@titrees. These trees provide guidance througllecision making

Impact Factor (JCC): 3.5987 NAAS Rating.89

Traceability Metrics Predestined for Transformation Requirement to Architecture (Design Reengineeringool) 15

process. They are used to manually map each reggins specification into architectural propertiés. addition to the
actual transition process is the capturing of maggiand the process of mapping to study how desissme made. This
supports later architectural decisions. this metleoglores the applicability of a unified descriptidanguage for
requirement specifications architecturally sigrafic properties. Rule Based decision making needifignt human
interaction is required to perform the transitiooni requirements to Architecture. Framework carciigomized for any

application domain. The rule base can be easilatgudas new mapping are required.

Architecting requirement method [20], provide a systematic approach to produce desigmaf consistent
quality reduce human labor and error train new giesis effectively and relate the design more cjogel the
requirements. Managing changes effectively can aediost and effort during maintaince. The methaglproposed
implicit analysis in a separate phase as partefélguirement realm thus architecting requiremieait the end products of
requirement analysis have a structure that repretben logical view of the system. This structurasocalenable the
incremental analysis of change request at the meaeint level before propagating to the design amplémentation.
Architecting requirements replaces the architettaiesign phase and fit in the development procestsvden the
requirement elicitation / modeling phase and theigfeimplementation phase. This structure also lesaincremental
analysis it uses hierarchies to structure requirgsneand provides analysis techniques for designersefractor
requirements in order to identify the right formhig is not only the gives rise to the system deamsitjpn but also
provides a foundation for further design and chamgeagement. Compared to the approaches mentiorfad, shis work
uses new ideas to solve the problem of transittomfrequirements to architecture. This method nodeitities and
relationships, it allows managing change requelts hethod reduces the manual work but tool supigomandatory.
This methods is suitable where we are not veryident for frozen the requirement or we developntbig type of

software first time.

Patterns method [21]give the answer of research question of transfogntihe dependability requirements into

corresponding software architecture constructsrbpgsing first that dependability needs can besdias into three types

of requirementsand second an architectural pattern that allowsireaents engineers and architects to map the three
types of dependability requirements into three esponding types of architectural components. Thiipaproposed by
Lihua Xu allows the modeling of dependability NoarEtional Requirements as first class requiremelesients during
software development, followed by explicit mappiofj such NFRs into software architectures, all whalmbracing
traditional architectural design principles for riieg the stated Functional requirements. Previoiislyas said that NFRs
are considered to be an integral part of the systednused them tdrive the development process and according théurt
research it is considered that both FRs and NFRset@arts of the requirements elements that willntsgped into

architectural design elements to be implementext.|at

In the previous approachéise design model does not require particular sppetgthniques to be used by the
designer and presently it can be used togetheramhtraditional design technique, including aretiitiral styles, design
patterns, UML and so forthThis method emphasis on non-functional requiremiensupport early and explicit
specification of non-functional requirements durieguirement gathering followed by design of cqumesling software
architectures. The problem with this method Tradgpffware requirements to architecture level initigddependability
and other non-functional requirements for whicts tisi often difficult. It is used where the non-ftinoal requirement

highly required.

www.iaset.us anti@iaset.us

16 Rashmi Yadav, Ravindra Patel & Abhay Kothari

5. TRACEABILITY METRICS FOR SELECTION METHOD

Once requirement set for proposed reengineerinfisoprepared we need to transform this requirenietot
architecture. Researchers and Methodology mentitimedthere is no clear way to select one methodh® transforming
requirement into architecture. We read the almdsinathods individually and try to find out whichethod give the
appropriate architecture. We analyze the detaitgzhct of each and every method of proposed reeagitetool. Identify
Traceability metrics is pedestal on following feas of traceability concept according to our regmient: Functional
Requirement, Non function Requirement, Support gkanin Requirement, Design Technique Used, Supfoort

Traceability, Principal underlying the method, 8bie Environment, Traceability in Context with Pospd tool.

The Feature oriented methodl1][12][13]. It support the user view but it use in mature domand where
standard terminology, Domain expert and up-to-dauments are available we cannot use this. Objémtted transition
[14] give the Traceability which is desirable in ounltbut in object oriented method emphasis the dhgeaniform it can
be use anywhere but object at different stages kidfferent abstraction level and different purposes can use this
method for proposed tool. Use case Maps meffidfisocus on the dynamic picture ucm are useful fer réquirements
exploration and architectural design details cafubther added when required by using UML, ADL. U@dmbine with
formal description such as user requirements Nota(URN)and the goal requirement oriented languaBej although
this method have lack of well defined syntax amgdanumbers of human involvement required this rmake methods
slower but the GUI interface provide the good supfar map requirement into architecture. If we usethod weaving
together requirement into architectfeg] for our tool it gives flexibility to change regaiment by using Twin speak
model whenever require changing into architectitreloes not freeze the requirement at early stagettis method
provides a high level-process framework and noiléetalescription on how to perform the transitidwlditionally, it does
not provide information on what software architeetuare stable when dealing with changing requirgsnaVe cannot
use this method. If we use problem frame methbdsthis is very good method it give the scalabilitydamnaceability
which is the requirement of our reengineering to@sal based transition method[18]. Generates thhitacture by
recursive refinement and fulfils all functional andn-functional requirements. This method is suéaior proposed
reengineering tool although the recursive refineimeme time consuming. rule based mefh®fare applicable for our
reengineering tool this method using two main medukasoning module contains a mapping processhvetiow the
generation of decision trees these tress providttagae through the decision making process. Bthistmethod need to
manually map the requirements specification intchié@ectural properties. This methods need large druimvolvement
this makes method slow. Architecting requirementhods [20] are faster it using automated tool it also modeldhtity
and relationship. It allows managing the changaiesjand incorporating the change into the Architec This method
more suitable for anticipated reengineering toalttétn method21]emphasize on the non-functional requirements, this
method allows the modeling of dependability of fanetional requirements as first class requiremehsnents during
software development while other method emphagiziioctional requirements but traceability betwdendependability
non functional requirement into architecture itdificult so this method not suitable for proposextngineering tool.
Using the recommended methods we have come out tvaiteability Metrics Table: 1 show “Requirementt $ad

function supported by Reverse Engineering tool”.

Impact Factor (JCC): 3.5987 NAAS Rating.89

Traceability Metrics Predestined for Transformation Requirement to Architecture (Design Reengineeringool) 17

6. CONCLUSION AND FUTURE WORK

There is no straight forward way to select a singkthod to transform requirement into architectiordead a
better architecture of proposed reengineering tdée. conclude that according to requirement set,aree using some
selected methods. We can use Object Oriented Ti@msis it supports the traceability, which is tegquirement of our
proposed tool. We can also use Use-Case methad@uses on the dynamic picture and give GUI suppbich lead
better architecture. We can also use the Twin Pad#tel because it gives the flexibility to changer auchitecture if
needed. Although it is little bit time consuming.eWan use Architecting Requirement by using auti@zntaol as it is a
faster method to lead to architecture. In my opinibe selection of methods depends on the reqaeineset. Even though,
we are giving some features and environment whigk the aptness of the methods. We cannot say eature and
environment are sufficient for developing Reengiimgetool architecture. But it is just one way tecitle the suitable
method to transform requirement into architectimeuture we will take some different requiremeatssof reengineering
tool and find out some more features which can fyglyaon the chosen methods in a limited mannereta Ibetter

architecture.
7. CONCLUSIONS

There is no straight forward way to select a singkthod to transform requirement into architectiordead a
better architecture of proposed reengineering té¢é. conclude that according to requirement set,aree using some
selected methods. We can use Object Oriented Ti@msis it supports the traceability, which is teguirement of our
proposed tool. We can also use Use-Case methad@suses on the dynamic picture and give GUI suppbich lead
better architecture. We can also use the Twin Rdaftel because it gives the flexibility to change auchitecture if
needed. Although it is little bit time consumingeWan use Architecting Requirement by using autmntaol as it is a
faster method to lead to architecture. In my opintbe selection of methods depends on the reqaineset. Even though,
we are giving some features and environment whigk the aptness of the methods. We cannot say eature and
environment are sufficient for developing Reengiimgetool architecture. But it is just one way tecible the suitable
method to transform requirement into architectimefuture we will take some different requiremeatssof reengineering
tool and find out some more features which can y@yaon the chosen methods in a limited manneretw Ibetter
architecture.

REFERENCES

1 Nuseideh, V. and Easter brook S., “Requirement #g®ing: a Roadmap” Proceedings of the Internaltiona
conference on Software Engineering (ICSE2000), 360k 35-46.

2 Perry D. E. and Wolf A. L., “Foundations for theudy of software architecture” SIGSOFT Soft. Eng.tééo
1992, 17 (4), pp. 40-52.

3 Boehm B. W.,”"Requirements that handle IKIWISI, CQE®d rapid change” Computer, 2000 33, (7), pp- 99—
102.

4 Nicholas May, “A Survey of Software Architectureévipoint Models” 6th Australasian Workshop on Sofeva
and System Architectures (2004).

5 C. Hofmeister, R. L. Nord and D. Soni, “Global Agsik: moving from software requirements specifmatto

www.iaset.us anti@iaset.us

18 Rashmi Yadav, Ravindra Patel & Abhay Kothari

structural views of the software architecture” IEEc.-Soft., Vol. 152, No. 4, August 2005.

6 Dan Calloway, “Critique of Global Analysis: Movirfgpm software requirements specification to streatviews
of the software architecture”. THE CHRONICLER'S WEBG, 6 June 2010.

7 Jon G. Halllvan Mistrik Balshar Nuseibh Dr. Andi®#va, “Relating Software Requirements and Architees”
IEEE Proceeding Software Volume 152 no. 4 Augu$520

8 Rick Kazmar, “Meeting the challenges of Requireradgrigineering” news at SEI on 1 March 1999.

9 Chitchyan, Pinto, Fuentes, Rashid, “Relating AO tRexgnents to AO Architecture, Early Aspects” 2005 a
OOPSLA.

10 Davis, A. M., “The design of a family of applicati@riented requirements languages.” Computer 151(882)
21-28.

11 Kang, Kyo C.“Feature-Oriented Domain Analysis Feiity Study “(CMU/SEI-90-TR-21, ADA235785) CMU-
SEI 1990.

12 C. Reid Turner, “A conceptual basis for featureiregring”, The Journal of Systems and Software14®9) 3-
15.

13 Dongyun Liu Hong Mei, “Mapping requirements to sadte architecture by feature-orientation” Volumé, 2
Issue: 2, Pages: 69-76 Requirements Engineerir@j20

14 H. Kaindl, “Difficulties in the Transition from O@nalysis to Design," IEEE Software, vol.16, pp.2211999

15 J. A. Buhr,"Use Case Maps as Architectural Entifims Complex Systems,” IEEE Transactions on Softwar
Engineering, vol. 24, pp. 1131-1155, 1998.

16 Nuseibeh, "Weaving together requirements and actites," IEEE Software, vol. 34, pp. 115-11, 2001.

17 J. G. Hall, M. Jackson, R. C. Laney, B. Nuseibeaig &. Rapanotti, "Relating Software Requirementd an
Architectures using Problem Frames," IEEE Joinermational Requirements Engineering ConferenceO&E'
Essen, Germany, 2002.

18 M. Bradozzi and D. E. Perry, "From Goal-OrientedjReements to Architectural Prescriptions: The Rrigsor
Process," The Second International Workshop onwdo# Requirements and architectures (STRAW '03) at
ICSE'03, Portland, OR, 2003.

19 W. Liu and S. Easterbrook, "Eliciting Architectuaécisions from Requirements sing a Rule-based &naork,"
The Second International Workshop on Software requénts and Architectures (STRAW '03) at ICSE'03,
Portland, OR, 2003.

20 W. Liu, "Architecting Requirements," Doctoral Conigom at RE'04, Kyoto, Japan, 2004.
21 Lihua Xu, Hadar Ziv, “An Architectural Pattern fdlon Functional Requirements “Elsevier Science RQig806.

22 A. Classen, P. Heymans, and P. Schobbens, Wha#sHeature: A Requirements Engineering Perspedtive.

Impact Factor (JCC): 3.5987 NAAS Rating.89

Traceability Metrics Predestined for Transformation Requirement to Architecture (Design Reengineeringool) 19

23

24

25

26

27

28

29

30

31

32

33

Proceedings of the International Conference on &omahtal Approaches to Software Engineering (FASE),

volume 4961 of Lecture Notes in Computer Scienegep 16—30. Springer-Verlag, 2008.

D. Batory, J. Sarvela, and A. Rauschmayer, ScaBitep-Wise Refinement. IEEE Transactions on Software
Engineering (TSE), 30(6):355-371, 2004.

J. Bosch, Design and Use of Software Architectupefopting and Evolving a Product-Line Approach. ACM
Press / Addison-Wesley, 2000.

K. Chen, W. Zhang, H. Zhao, and H. Mei, An ApproaaiConstructing Feature Models Based on Requiré&nen
Clustering. In Proceedings of the International feoence on Requirements Engineering (RE), pagegd®1—
IEEE CS Press, 2005.

S. Apel, C. Lengauer, B. Moller, and C. K'astnAn Algebra for Features and Feature Composition. In
Proceedings of the International Conference on Bgie Methodology and Software Technology (AMAST),
volume 5140 of Lecture Notes in Computer Scienegep 36—50. Springer-Verlag, 2008.

D. Batory, Feature Models, Grammars, and Propasitiéormulas. In Proceedings of the Internatioredtvigare
Product Line Conference (SPLC), volume 3714 of uectNotes in Computer Science, pages 7—20. Springer
Verlag, 2005.

K. Czarnecki and U. Eisenecker, Generative PrograiginMethods, Tools and Applications. Addison-Wegsle
2000.

K. Kang, S. Cohen, J. Hess, W. Novak, and A. PeterBeature-Oriented Domain Analysis (FODA) Fediybi
Study. Technical Report CMU/SEI-90-TR-21, Softwkrggineering Institute, Carnegie Mellon Universit§90.

K. Kang, S. Kim, J. Lee, K. Kim, G. Kim, and E. ShFORM: A Feature-Oriented ReuseMethod with Domain
Specific Reference Architectures. Annals of Sofevangineering, 5(1):143-168, 1998.

P. Zave, An Experiment in Feature Engineering. rogPamming Methodology,pages 353—-377. Springeragger|
2003.

Ebner, G. ; Kaindl, H., Tracing all around in regwgring, Software, IEEE (Volume: 19, Issue:)02.

R. J. A. Buhr, R. S. Casselmasse Case Maps for Object-Oriented Systems. Prentice Hall, 1996.

APPENDICES

Table 1: Traceability Metrics for Transformation Requirement to Architecture in Reengineering Domain

www.iaset.us anti@iaset.us

20

Rashmi Yadav, Ravindra Patel & Abhay Kothari

. . Principal S
Functi Non Support Design . . Traceability in
Methods onal Functional Changes in Technique .f:’ upport_f_o 7| e i S_unable Context with
. raceability g the | Environment
Req. Req. Requirement Used Method Proposed Tool
Feature Yes, Yes. It emphasizes | Architecture Feature Feature | Itis usedin Reengineering
oriented Separat| Separate on users model is based | model oriented | mature tool have four
Domain e architecture | understanding| on feature domain basic
Analysis archite | model of how the model standard components
[10][11][12] | cture application Has some terminology extractor,
model will works on | resemblance to domain expert| repository,
than live domain so| object oriented and up-to-date| analyzer and
nonfun requirement techniques. documentation| visualize out of
ctional are and available which extractor
support & analyzer are
separation of relatively
concern then it complex and
easy to change All together
there is need fol
numerous
quality or
nonfunctional
requirements,
so here method
are
recommended
keeping these
facts in view
Object Yes Yes Yes Object & class| Yes Convert | Commercial N
oriented related diagram Object Application
transition oriented
[14] Analysis
model to
object
oriented
Design
Model
Use Case Yes Yes ,as Yes Related use Yes Scenario| Object N
Maps [15] behavioral cases are show based oriented and
frameworks in map like ,behavio | commercial
are used to diagrams, this ral application
evaluate and notation is framewo
make useful for rk is
architectural capturing, used to
decision at elicitation and evaluatin
higher level validations of g and
of design use case this make
helps in architect
architecture ure
design and test decision.
case
generations
Weaving yes Yes, Very Implicitl-y Twins This methods
together Yes flexible yes Peak is suitable
requirement model is | where we are
into used not very
architecture which confident for
[16] supports | frozen the
changing| requirement or
requirem | we
ents development
this type of
software first
time
Problem Yes Yes They work on| Real problems | yes A Need Early N
frame [17] frame formats | can be modeled problem | delivery
and short as problem is
delivery so it | frames which collectio
is unlikely as | describes n of
problem architectura-| many
frames. structures, simple
services and sub-
artifacts as a problem

Impact Factor (JCC): 3.5987

NAAS Rating.89

Traceability Metrics Predestined for Transformation Requirement to Architecture (Design Reengineeringool)

21

part of problem S.
domain.
Goal based | Yes Same Yes Goal based yes Require | Non
transition[1 functional transition method ment functional
8] architecture uses architectural architect | requirement
is recursively specification ural highly
refined to language. from required
accommodat system
e non goals.
functional
requirements
Rule Based | Yes - Rule base can| Reasoning and | yes Automat | Application
decision be easily organization ed rule domain need
making[19] updated so, module based flexibility
yes, reasonin
9
Architectrin | Yes Yes, as Yes Requirements | Implicitly Implicit Requirement
g refactoring elicitation, implemented | analysis | set not
Requiremen of architecturi-g , as architect- confidently
t[20] requirements requirement ring design
is there design requirements software
implementatior phase design first
phase replaces time
architecture
design phase
Patterns[21]| yes Yes on yes Design pattern§ ~ Poor Non Highly
priority function | desirable for
al non functional
requirem | requirement
ents then
function
al

www.iaset.us

anti@iaset.us

