

www.iaset.us editor@iaset.us

TRACEABILITY METRICS PREDESTINED FOR TRANSFORMATION REQUIREMENT

TO ARCHITECTURE (DESIGN REENGINEERING TOOL)

RASHMI YADAV 1, RAVINDRA PATEL 2 & ABHAY KOTHARI 3

1,3Acropolis Indore, Department of Computer Science Engineering and Application,

Rajiv Gandhi Technical University, Bhopal, India
3Department of Computer Science Engineering and Application, Rajiv Gandhi Technical University, Bhopal, India

ABSTRACT

Traceability Metrics are measures describing how well traceability is performed from original allocated

requirements to software through design, coding and testing. In this paper propose Traceability Metrics of Reengineering

Tool for transformation requirement to Architecture. For that we will initially frame a requirement Thereafter need to

transform this requirement into architecture. It is found very difficult to transform requirement into architecture. When we

map requirements into architecture most of the important information generated during mapping process is lost in the final

architecture representation. In this paper proposed Traceability Metrics for measure quality of system and selection of

traceability metrics at the instance when the requirement method used for transform requirement to architecture.

KEYWORDS: Traceability Metrics, Requirement Set, Software Architecture

1. INTRODUCTION

Traceability metrics ought to consider both directions from individual requirement to test results, and from test

results to individual requirements. Requirements engineering only focuses on problem domain and system responsibilities,

but not design and implementation details. Most important measure of success of a software system is the degree to which

it meets the purpose for which it was intended [1] Software architecture concerned with the shape of the solution space [2].

When we transform requirement into architecture it is difficult to transform requirement into architecture, because

there are quite different perspectives in user requirements and software architecture. Requirement and architecture control

different term and artifacts. Several researchers work on this and provide different view: a) requirement and architecture

are different to each other b) they are related to each other c) There is gap between requirement and architecture.

In this paper proposed Traceability Metrics for measure quality of system and selection of traceability metrics at

the instance when the requirement method used for transform requirement to architecture.

Research paper is organized as follows: Section 2 discusses the literature survey. Section 3 discusses

Reengineering tool requirement. Section 4 presents methods for transforming requirement into architecture. Section 5

presents Selection of methods suitable for proposed reengineering tool. Section 6 conclusion and future work.

2. LITERATURE SURVEY

In reengineering, the authors argue for complete traceability from code through specifications to code. In the

course of reverse engineering a legacy software system and its subsequent redesign and reimplementation, they found

International Journal of Computer Science
and Engineering (IJCSE)
ISSN(P): 2278-9960; ISSN(E): 2278-9979
Vol. 4, Issue 4, Jun - Jul 2015, 9-22
© IASET

10 Rashmi Yadav, Ravindra Patel & Abhay Kothari

Impact Factor (JCC): 3.5987 NAAS Rating: 1.89

several cases where traceability provided immediate benefits that appear to be specific to reengineering, Here we propose

tracing metrics “all around”—from existing code to the legacy systems design to its requirements during reverse

engineering, and from the modified requirements to the new design and the new code during development of the successor

system. In effect, this means integrating traceability during reverse engineering with (more standard) traceability during

forward engineering [32]. During the project, developers installed and used traceability in real time. Here, we describe the

task, the project’s basic reengineering approach, and some experiences, focusing exclusively on traceability and its benefits

for developers of the new software.

For to find traceability metrics we studies several literature at real time conversion of requirement method used

for transform requirement to architecture.

The software requirements specification describes the problem, not the solution. It rightly focuses on the behavior

of the system. Bohem [3] identified the problem that requirement change dynamically even SRS (Software Requirement

Specification) is unambiguous, complete, and consistent if requirements change architecture also change. It is difficult to

transform dynamic change requirement into architecture. Nicholas May [4] give the survey of architecture viewpoint

models and mentioned that there exist quite different perspectives in user (or customer) requirements and software

architecture. C. Hofmeister, Nord and D. Soni [5] conclude that the concepts, languages, notations, and tools for

architecture are much more closely related to detailed design and implementation rather than software requirements they

use Siemens four views architecture design approach and try to reduce the gap between requirement and design. Again

they also reexamine the global analysis it small the gap between requirement and architecture but not completely fill the

gap. SEI model, Siemens model and Rational model for architecture documentation this documentation to use multiple

concurrent diagrams to describe the entire software architecture of a system using Crowded diagrams, inconsistent

notation, and mixing of architectural styles, he propose the need of separate subsystem those specify the separate

requirements.. According to Dan Calloway[6] global analysis activities help to significant benefit in achieving their goal

and, in some cases, the benefit went beyond what they had anticipated but, the use of global analysis activities was not

applied as expected. G. Hall and his colleague [7] identify four differences and relationship between these two areas.

Architecture developed formally and requirements are expressed in the language of customer. requirement are expressed in

terms of characteristics of system for mission critical application give the equalities such as security, dependability safety,

reliability, maintainability, and portability, which are often in conflict. For such systems, the trade-offs between conflicting

requirements are often expressed through the choice of high-level architecture. Requirements are problem space and

architecture is solution space it is very difficult to cooperate with these two dimensions. Managing the evolution of

software successfully depends upon the stability of architecture the system contains the volatile requirements that is work

again stability.

3. CHALLENGES TO MAPPING THE REQUIREMENT INTO ARCHI TECTURE .

The functional requirements are extractor, repository, analyzer, visualize. Rick Kazmar [8] indentifies the

challenge to mapping requirements he explains there are two types of Requirement Functional and Quality that is non

functional requirement. Most customers and developers have focused on functional requirements what the system does and

how it transforms its input into its output. But while functional requirements are necessary, quality requirements are critical

to the software architecture and significantly influence the shape of the architecture. Choices among different quality

requirements shape the architecture, Kazmar explains. Each requirement suggests certain architectural structures and rules

Traceability Metrics Predestined for Transformation Requirement to Architecture (Design Reengineering Tool) 11

www.iaset.us editor@iaset.us

other ones out will choose one set of architectural structures over another because we know that it’s a good architecture for

being able to predict and control end-to-end latency or throughput, R. Chitchat et al. [9] identified the problem that when

we map the requirements into architecture large amount of important information generated during the mapping of

requirements to architecture is lost in the final representation of the architecture. He proposed the traceability schema that

will provide support for recording such information generated during the mapping process. He focuses on the mapping

from requirements to architecture though the schema could be used for relating other development stages. The problem

with this schema is that mapping schemas is not automated and time-consuming activity it increase the cost and time. We

discuss in details methods to transform from requirement to architecture identify the strength and weakness and which

method is suitable in which particular scenario. Then we discuss which method is suitable for transform our requirement

into architecture and why.

4. METHODS FOR TRANSFORM REQUIREMENTS TO ARCHITECTU RE

Feature Oriented Domain Analysis Method

In 1982, Davis [10] gave Feature oriented Domain Analysis method which identified features as an important

organization mechanism for requirements specification. In 1990 Kyo C. Kang [11] proposed feature-oriented domain

analysis (FODA) method. The merits of feature analysis are intended to capture the end-user’s (and customer’s)

understanding of the general capabilities of applications in a domain which is the Limitation of Direct Mapping. FORM: A

feature-oriented reuse method with domain-specific reference architectures it extends to FODA Method it emphasis

software design and implementation phases and prescribes how the feature model is used to develop domain architectures

and components for reuse. FORM method is quite fit for software development in mature domain where standard

terminology, domain experts and up-to-date documents are available. Reid Turner [12] puts forward a conceptual

framework for feature engineering in 1999. It prefers to look feature as an important organizing concept within the problem

domain and proposes carrying a feature orientation from the problem domain into the solution domain. It shows that it is

feasible and effective to make features explicit in software development and to take feature orientation as a paradigm

during the software life cycle. Turner’s framework comes from software development experience in telecommunication

domain, and is still conceptual and incomplete. It does not provide particular solution for mapping requirements to

Software architecture from software engineering perspective. Dongyun Liu and colleague [13] explore how to apply

feature orientation as a solution for the mapping problem between requirements and Software architecture from general

software engineering perspectives, focusing on the mapping and transformation process. is to organize requirements in

problem domain into a feature model, and then base our architectural modeling on the feature model, with the goal

maintaining direct and natural mapping between requirements model and architecture models address functional features

and nonfunctional features separately in different architectural models. It is not replacement of traditional method it is an

improvement on traditional methods. This approach can integrate closely with OO method. The modeling concepts and

notation adopted in this paper are based on UML, but have appropriate extension.

The feature-oriented concept is based on the emphasis placed by the method on identifying those features a user

commonly expects in applications in a domain. This method, which is based on a study of other domain analysis

approaches, defines both the products and the process of domain analysis. Feature oriented domain analysis done by

domain analysis based on features. Feature model is introduced & take a key role to identify commonalities and to generate

architecture model. FOSD is not a single development method or technique, but a conglomeration of different ideas,

methods, tools, languages, formalisms, and theories. What connects all these developments is the concept of a feature. Due

12 Rashmi Yadav, Ravindra Patel & Abhay Kothari

Impact Factor (JCC): 3.5987 NAAS Rating: 1.89

to the diversity of FOSD research, there are several definitions of a feature [22], e.g. (ordered from abstract to technical):

Kang et al. [29]: “a prominent or distinctive user-visible aspect, quality, or characteristic of a software system or

systems”. Kang et al. [30]: “a distinctively identifiable functional abstraction that must be implemented, tested, delivered,

and maintained”. Czarnecki and Eisenecker [28]: “a distinguishable characteristic of a concept (e.g., system, component,

and so on) that is relevant to some stakeholder of the concept”. Bosh [24]: “a logical unit of behavior specified by a set of

functional and non-functional requirements”. Chen et al. [25]: “a product characteristic from user or customer views, which

essentially consists of a cohesive set of individual requirements”. Batory et al. [23]: “a product characteristic that is used in

distinguishing programs within a family of related programs”. Classen et al. [22]: “a triplet, f = (R, W, S), where R

represents the requirements the feature satisfies, W the assumptions the feature takes about its environment and S its

specification”. Zave [31]: “an optional or incremental unit of functionality”. Batory [27]: “an increment of program

functionality”. Apel et al. [26]: “a structure that extends and modifies the structure of a given program in order to satisfy a

stakeholder’s requirement, to implement and encapsulate a design decision, and to offer a configuration option”

Object Oriented Transition Method

Dongyun Liu and colleague [13] explore how to apply feature orientation as a solution for the mapping problem

between requirements and Software architecture from general software engineering perspectives, focusing on the mapping

and transformation process. is to organize requirements in problem domain into a feature model, and then base our

architectural modeling on the feature model, with the goal maintaining direct and natural mapping between requirements

model and architecture models address functional features and nonfunctional features separately in different architectural

models. It is not replacement of traditional method it is an improvement on traditional methods. This approach can

integrate closely with OO method. The modeling concepts and notation adopted in this paper are based on UML, but have

appropriate extension.

Object Oriented Transition method is to transform the object-oriented output of the Requirements engineering

phase (analysis) into an object-oriented architecture design phase.

Hermann kaindl [14] object oriented analysis and design are different. Developers have to perform two difficult OOD tasks

concurrently: they have to specify architecture for the software and build a model of the domain to be used by that

software. Merits of this method the Traceability seems to be possible in object-oriented models. This method not provides

a complete solution for mapping requirements into architectures. This is due to the fact that internal structures of a system

are described from developer’s point of view in the design; object-oriented analysis describes the user view. Both stages

present different information or lack information that is of interest to the developer or the customer Moreover, a transition

from analysis objects to design objects implies that real world objects become software objects and that the object-oriented

analysis model deals with internal design. Following this, objects at different stages have different abstractions levels and

different purposes. As a consequence object orientation does provide similar models but does not allow mapping between

the requirement and architecture stage. It is very generic approach it can be used in most of the commercial application

where object and classes can be identified.

Use Case Maps

Use case maps method are scenario based software engineering technique most useful at the early stage of

software development. The notation is applicable to use case capturing and elicitation use case validation as well as high

Traceability Metrics Predestined for Transformation Requirement to Architecture (Design Reengineering Tool) 13

www.iaset.us editor@iaset.us

level architecture design and test case generation. UCMs provide a behavioral framework for evaluating and making

architectural decisions at a high level of design. A visual behavior structures, manipulated, reused, and understood as

architectural entities. The primary objective is to ease understanding in all phases of development by neglecting details.

UCMs can also be used to describe how organizational structures of complex systems and behavior are intertwined [15].

UCMs show causal paths directly between responsibilities in organizational structures of abstract components. They

combine behavior and structure into one view and allocate responsibilities to architectural components. Related use cases

are shown in map-like diagrams. The Use Case Map notation was developed to capture scenario descriptions as causal

flows of responsibilities for object-oriented design of real-time systems

Use Case Maps (UCMs) represent scenarios executing across a system:

• show the emerging behavior of the system

• The basic UCM constructs are paths, components, and responsibilities

• use them to reason about design and performance

UCM (Use Case Map) R. J. A. Buhr [33] describe in his book “a high level scenario modeling technique defined

for concurrent and real-time system design. It is based on a simple and expressive visual notation that allows describing

scenarios at an abstract level in terms of sequences of responsibilities1 over a set of components. The primary objective of

the UCM modeling technique is to capture and analyze system behavior at an abstract level; UCM describes scenarios at an

abstraction level that is above both inter-component communication and detailed level component behavior. It allows

focusing on individual scenario description, scenario interaction, and responsibility allocation, before introducing inter-

component communication”. As is, UCM models can be viewed as a specification for the modeling of inter-component

communication.

UCM also provides important features:

• Superimposition of scenarios on system structure. This enables designers to visualize scenarios in the context of a

system structure. It also provides a mechanism by which responsibilities can be allocated to system components.

• Combination of sets of scenarios in a single diagram. This enables designers to express scenarios and scenario

interactions in a graphical manner. It also provides a mechanism that can be used by designers to analyze the

overall system behavior that emerges from scenario combinations.

• Description of system dynamics both at the component level, where components may be created, destroyed, and

moved from one location to another in the system, and at the scenario level, where the a scenario may be

dynamically modified as the system evolve.

Weaving together requirements and Architecture method [16] weaving together requirement into architecture

it gives flexibility to change requirement by using Twin speak model whenever require changing into architecture. It does

not freeze the requirement at early stage but this method provides a high level-process framework and no detailed

description on how to perform the transition. Additionally, it does not provide information on what software architectures

are stable when dealing with changing requirements

Problem frames method allows the classification of software problems and the decomposition of a large problem

14 Rashmi Yadav, Ravindra Patel & Abhay Kothari

Impact Factor (JCC): 3.5987 NAAS Rating: 1.89

into sub-problems. The developer can focus on the problem domain instead of inventing solutions because the idea is to

delay solution space decisions until a good understanding of the problem is gained. These sub-problems can then be solved

and combined into a solution of the original problem. Problem frames can express the relationship between requirements,

domain properties, and machine descriptions. When bridging requirements and architecture, problem frames can model the

organization of requirements in the architecture. This allows us to deal with undesired effects, e.g. overlapping event

reactions. Jon G. Hall Michael Jackson and Colleague [17] proposed twins peak model that illustrates the iterative

nature of the development process. This is a process during which both problem structures and solutions structures are

detailed and enriched. They also give the extension of problem frame they identified that most real problems are too

complex to fit within a problem identification/solution description model. They require a third level of description. That of

structuring the problem as a collection of interacting subs problems, each of which is smaller and simpler than the original,

with clear and understandable interactions. Problem frame are give the notation for the third level. It is good in problem

frame method is it use hierarchical solution structure ensures scalability of the system and traceability of architecture

decisions. Problem frames describes architectural structures, services, and artifacts as part of the problem domain.

A drawback rotationally the extension is slight, is that it is not clear that the notation covers all aspects for creating proper

architectures. It is use where the development time require short because developers to describe the problem domain more

abstractly, closer to business logic that operate in the domain.

Goal Based Transition approach performs a transition from requirements to architecture to meet functional and

non-functional requirements. It can be regarded as a combination of qualitative and formal reasoning based on KAOS (it is

goal oriented requirement specification Language), Perry’s [18] use the Prescript to process which is a prescriptive

architecture specification language that provides a high-level architecture. The process starts with analyzing the global

impact of goals on architectures. The software specification is created based on underlying system goals by deriving

requirements. Functional specifications are considered in the architectural draft that is built in a second step. This draft is

then refined to fulfill the domain constraints. The final architecture which complies with all non-functional requirements is

achieved using recursive refinement. This approach supports intertwinement of requirements and architecture creation and

allows the extraction of different views (e.g. security view, fault tolerance view).goal based transition method is the

qualitative reasoning in there refinement process that should be more formal to allow extended tool support. Also, when

architectural features need to be propagated bottom-up this approach is limited as it focuses on refinement. A combination

of bottom-up and top-down might help. If the relation between global architecture decisions at early stages of the process

and meet all nonfunctional requirement at first stage then we use the Goal Based transition. After early stage when we do

final refinements to meet all non-functional requirements should be more difficult. Recursive Refinement several time are

time consuming.

Rule Based Decision Making method describe by W. Liu and S. Easterbrook [19] that the making

architectural decision based on requirements, analyzing cost benefit analysis tradeoff and keeping design options open is a

difficult task. Existing work on classification of architectural styles and features reusable components and derivation of

relevant architectural styles provides useful heuristic to the task but it is highly labor intensive. It presents a framework is

based on the assumption design options that architectural decisions are labor-intensive and difficult to make. The

framework supports automated reasoning for eliciting architectural decisions based on requirements. In rule based

framework consists of two main modules, a reasoning module and presentation module. The reasoning module contains a

mapping process which allows the generation of decision trees. These trees provide guidance through the decision making

Traceability Metrics Predestined for Transformation Requirement to Architecture (Design Reengineering Tool) 15

www.iaset.us editor@iaset.us

process. They are used to manually map each requirements specification into architectural properties. An addition to the

actual transition process is the capturing of mappings and the process of mapping to study how decisions are made. This

supports later architectural decisions. this method explores the applicability of a unified description language for

requirement specifications architecturally significant properties. Rule Based decision making need significant human

interaction is required to perform the transition from requirements to Architecture. Framework can be customized for any

application domain. The rule base can be easily updated as new mapping are required.

Architecting requirement method [20], provide a systematic approach to produce design of more consistent

quality reduce human labor and error train new designers effectively and relate the design more closely to the

requirements. Managing changes effectively can reduce cost and effort during maintaince. The methodology proposed

implicit analysis in a separate phase as part of the requirement realm thus architecting requirement that the end products of

requirement analysis have a structure that represent the logical view of the system. This structure also enable the

incremental analysis of change request at the requirement level before propagating to the design and implementation.

Architecting requirements replaces the architectural design phase and fit in the development process between the

requirement elicitation / modeling phase and the design implementation phase. This structure also enables incremental

analysis it uses hierarchies to structure requirements and provides analysis techniques for designers to refractor

requirements in order to identify the right form. This is not only the gives rise to the system decomposition but also

provides a foundation for further design and change management. Compared to the approaches mentioned so far, this work

uses new ideas to solve the problem of transition from requirements to architecture. This method models entities and

relationships, it allows managing change request. This method reduces the manual work but tool support is mandatory.

This methods is suitable where we are not very confident for frozen the requirement or we development this type of

software first time.

Patterns method [21] give the answer of research question of transforming the dependability requirements into

corresponding software architecture constructs by proposing first that dependability needs can be classified into three types

of requirements and second an architectural pattern that allows requirements engineers and architects to map the three

types of dependability requirements into three corresponding types of architectural components. The pattern proposed by

Lihua Xu allows the modeling of dependability Non Functional Requirements as first class requirements elements during

software development, followed by explicit mapping of such NFRs into software architectures, all while embracing

traditional architectural design principles for meeting the stated Functional requirements. Previously it was said that NFRs

are considered to be an integral part of the system and used them to drive the development process and according to further

research it is considered that both FRs and NFRs to be parts of the requirements elements that will be mapped into

architectural design elements to be implemented later.

In the previous approaches the design model does not require particular specific techniques to be used by the

designer and presently it can be used together with any traditional design technique, including architectural styles, design

patterns, UML and so forth. This method emphasis on non-functional requirement it support early and explicit

specification of non-functional requirements during requirement gathering followed by design of corresponding software

architectures. The problem with this method Tracing software requirements to architecture level including dependability

and other non-functional requirements for which this is often difficult. It is used where the non-functional requirement

highly required.

16 Rashmi Yadav, Ravindra Patel & Abhay Kothari

Impact Factor (JCC): 3.5987 NAAS Rating: 1.89

5. TRACEABILITY METRICS FOR SELECTION METHOD

Once requirement set for proposed reengineering tool is prepared we need to transform this requirement into

architecture. Researchers and Methodology mentioned that there is no clear way to select one method for the transforming

requirement into architecture. We read the almost all methods individually and try to find out which method give the

appropriate architecture. We analyze the detailed impact of each and every method of proposed reengineering tool. Identify

Traceability metrics is pedestal on following features of traceability concept according to our requirement: Functional

Requirement, Non function Requirement, Support changes in Requirement, Design Technique Used, Support for

Traceability, Principal underlying the method, Suitable Environment, Traceability in Context with Proposed tool.

The Feature oriented method [11][12][13]. It support the user view but it use in mature domain and where

standard terminology, Domain expert and up-to-date documents are available we cannot use this. Object oriented transition

[14] give the Traceability which is desirable in our tool but in object oriented method emphasis the object is uniform it can

be use anywhere but object at different stages have different abstraction level and different purposes we can use this

method for proposed tool. Use case Maps methods[15] focus on the dynamic picture ucm are useful for the requirements

exploration and architectural design details can be further added when required by using UML, ADL. UCM combine with

formal description such as user requirements Notations(URN)and the goal requirement oriented language(GRL) although

this method have lack of well defined syntax and large numbers of human involvement required this makes the methods

slower but the GUI interface provide the good support for map requirement into architecture. If we use method weaving

together requirement into architecture [16] for our tool it gives flexibility to change requirement by using Twin speak

model whenever require changing into architecture. It does not freeze the requirement at early stage but this method

provides a high level-process framework and no detailed description on how to perform the transition. Additionally, it does

not provide information on what software architectures are stable when dealing with changing requirements. We cannot

use this method. If we use problem frame methods[17] this is very good method it give the scalability and traceability

which is the requirement of our reengineering tools. Goal based transition method[18]. Generates the architecture by

recursive refinement and fulfils all functional and non-functional requirements. This method is suitable for proposed

reengineering tool although the recursive refinements are time consuming. rule based method[19] are applicable for our

reengineering tool this method using two main modules reasoning module contains a mapping process which allow the

generation of decision trees these tress provide guidance through the decision making process. But in this method need to

manually map the requirements specification into architectural properties. This methods need large human involvement

this makes method slow. Architecting requirement methods [20] are faster it using automated tool it also model the entity

and relationship. It allows managing the change request and incorporating the change into the Architecture. This method

more suitable for anticipated reengineering tool. Pattern methods[21]emphasize on the non-functional requirements, this

method allows the modeling of dependability of non-functional requirements as first class requirements elements during

software development while other method emphasize on functional requirements but traceability between the dependability

non functional requirement into architecture it is difficult so this method not suitable for proposed reengineering tool.

Using the recommended methods we have come out with traceability Metrics Table: 1 show “Requirement Set and

function supported by Reverse Engineering tool”.

Traceability Metrics Predestined for Transformation Requirement to Architecture (Design Reengineering Tool) 17

www.iaset.us editor@iaset.us

6. CONCLUSION AND FUTURE WORK

There is no straight forward way to select a single method to transform requirement into architecture to lead a

better architecture of proposed reengineering tool. We conclude that according to requirement set, we are using some

selected methods. We can use Object Oriented Transition as it supports the traceability, which is the requirement of our

proposed tool. We can also use Use-Case method as it focuses on the dynamic picture and give GUI support which lead

better architecture. We can also use the Twin Peak Model because it gives the flexibility to change our architecture if

needed. Although it is little bit time consuming. We can use Architecting Requirement by using automatic tool as it is a

faster method to lead to architecture. In my opinion, the selection of methods depends on the requirement set. Even though,

we are giving some features and environment which give the aptness of the methods. We cannot say our feature and

environment are sufficient for developing Reengineering tool architecture. But it is just one way to decide the suitable

method to transform requirement into architecture. In future we will take some different requirement sets of reengineering

tool and find out some more features which can be apply on the chosen methods in a limited manner to lead better

architecture.

7. CONCLUSIONS

There is no straight forward way to select a single method to transform requirement into architecture to lead a

better architecture of proposed reengineering tool. We conclude that according to requirement set, we are using some

selected methods. We can use Object Oriented Transition as it supports the traceability, which is the requirement of our

proposed tool. We can also use Use-Case method as it focuses on the dynamic picture and give GUI support which lead

better architecture. We can also use the Twin Peak Model because it gives the flexibility to change our architecture if

needed. Although it is little bit time consuming. We can use Architecting Requirement by using automatic tool as it is a

faster method to lead to architecture. In my opinion, the selection of methods depends on the requirement set. Even though,

we are giving some features and environment which give the aptness of the methods. We cannot say our feature and

environment are sufficient for developing Reengineering tool architecture. But it is just one way to decide the suitable

method to transform requirement into architecture. In future we will take some different requirement sets of reengineering

tool and find out some more features which can be apply on the chosen methods in a limited manner to lead better

architecture.

REFERENCES

1 Nuseideh, V. and Easter brook S., “Requirement Engineering: a Roadmap” Proceedings of the International

conference on Software Engineering (ICSE2000), 2000.page 35-46.

2 Perry D. E. and Wolf A. L., “Foundations for the study of software architecture” SIGSOFT Soft. Eng. Notes,

1992, 17 (4), pp. 40–52.

3 Boehm B. W.,”Requirements that handle IKIWISI, COTS, and rapid change” Computer, 2000 33, (7), pp. 99–

102.

4 Nicholas May, “A Survey of Software Architecture Viewpoint Models” 6th Australasian Workshop on Software

and System Architectures (2004).

5 C. Hofmeister, R. L. Nord and D. Soni, “Global Analysis: moving from software requirements specification to

18 Rashmi Yadav, Ravindra Patel & Abhay Kothari

Impact Factor (JCC): 3.5987 NAAS Rating: 1.89

structural views of the software architecture” IEE Proc.-Soft., Vol. 152, No. 4, August 2005.

6 Dan Calloway, “Critique of Global Analysis: Moving from software requirements specification to structural views

of the software architecture”. THE CHRONICLER'S WEB LOG, 6 June 2010.

7 Jon G. HallIvan Mistrik Balshar Nuseibh Dr. Andres Silva, “Relating Software Requirements and Architectures”

IEEE Proceeding Software Volume 152 no. 4 August 2005.

8 Rick Kazmar, “Meeting the challenges of Requirements Engineering” news at SEI on 1 March 1999.

9 Chitchyan, Pinto, Fuentes, Rashid, “Relating AO Requirements to AO Architecture, Early Aspects” 2005 at

OOPSLA.

10 Davis, A. M., “The design of a family of application-oriented requirements languages.” Computer 15 (5) (1982)

21-28.

11 Kang, Kyo C.“Feature-Oriented Domain Analysis Feasibility Study “(CMU/SEI-90-TR-21, ADA235785) CMU-

SEI 1990.

12 C. Reid Turner, “A conceptual basis for feature engineering”, The Journal of Systems and Software 49 (1999) 3-

15.

13 Dongyun Liu Hong Mei, “Mapping requirements to software architecture by feature-orientation” Volume: 25,

Issue: 2, Pages: 69-76 Requirements Engineering (2003).

14 H. Kaindl, “Difficulties in the Transition from OO Analysis to Design," IEEE Software, vol.16, pp.94-102, 1999

15 J. A. Buhr,"Use Case Maps as Architectural Entities for Complex Systems," IEEE Transactions on Software

Engineering, vol. 24, pp. 1131-1155, 1998.

16 Nuseibeh, "Weaving together requirements and architectures," IEEE Software, vol. 34, pp. 115-11, 2001.

17 J. G. Hall, M. Jackson, R. C. Laney, B. Nuseibeh, and L. Rapanotti, "Relating Software Requirements and

Architectures using Problem Frames," IEEE Joint International Requirements Engineering Conference (RE'02),

Essen, Germany, 2002.

18 M. Bradozzi and D. E. Perry, "From Goal-Oriented Requirements to Architectural Prescriptions: The Preskriptor

Process," The Second International Workshop on Software Requirements and architectures (STRAW '03) at

ICSE'03, Portland, OR, 2003.

19 W. Liu and S. Easterbrook, "Eliciting Architectural Decisions from Requirements sing a Rule-based Framework,"

The Second International Workshop on Software requirements and Architectures (STRAW '03) at ICSE'03,

Portland, OR, 2003.

20 W. Liu, "Architecting Requirements," Doctoral Consortium at RE'04, Kyoto, Japan, 2004.

21 Lihua Xu, Hadar Ziv, “An Architectural Pattern for Non Functional Requirements “Elsevier Science Direct 2006.

22 A. Classen, P. Heymans, and P. Schobbens, What’s in a Feature: A Requirements Engineering Perspective. In

Traceability Metrics Predestined for Transformation Requirement to Architecture (Design Reengineering Tool) 19

www.iaset.us editor@iaset.us

Proceedings of the International Conference on Fundamental Approaches to Software Engineering (FASE),

volume 4961 of Lecture Notes in Computer Science, pages 16–30. Springer-Verlag, 2008.

23 D. Batory, J. Sarvela, and A. Rauschmayer, Scaling Step-Wise Refinement. IEEE Transactions on Software

Engineering (TSE), 30(6):355–371, 2004.

24 J. Bosch, Design and Use of Software Architectures: Adopting and Evolving a Product-Line Approach. ACM

Press / Addison-Wesley, 2000.

25 K. Chen, W. Zhang, H. Zhao, and H. Mei, An Approach to Constructing Feature Models Based on Requirements

Clustering. In Proceedings of the International Conference on Requirements Engineering (RE), pages 31–40.

IEEE CS Press, 2005.

26 S. Apel, C. Lengauer, B. M¨oller, and C. K¨astner, An Algebra for Features and Feature Composition. In

Proceedings of the International Conference on Algebraic Methodology and Software Technology (AMAST),

volume 5140 of Lecture Notes in Computer Science, pages 36–50. Springer-Verlag, 2008.

27 D. Batory, Feature Models, Grammars, and Propositional Formulas. In Proceedings of the International Software

Product Line Conference (SPLC), volume 3714 of Lecture Notes in Computer Science, pages 7–20. Springer-

Verlag, 2005.

28 K. Czarnecki and U. Eisenecker, Generative Programming: Methods, Tools and Applications. Addison-Wesley,

2000.

29 K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, Feature-Oriented Domain Analysis (FODA) Feasibility

Study. Technical Report CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon University, 1990.

30 K. Kang, S. Kim, J. Lee, K. Kim, G. Kim, and E. Shin, FORM: A Feature-Oriented ReuseMethod with Domain-

Specific Reference Architectures. Annals of Software Engineering, 5(1):143–168, 1998.

31 P. Zave, An Experiment in Feature Engineering. In Programming Methodology,pages 353–377. Springer-Verlag,

2003.

32 Ebner, G. ; Kaindl, H., Tracing all around in reengineering, Software, IEEE (Volume: 19, Issue: 3), 2002.

33 R. J. A. Buhr, R. S. Casselman, Use Case Maps for Object-Oriented Systems. Prentice Hall, 1996.

APPENDICES

Table 1: Traceability Metrics for Transformation Requirement to Architecture in Reengineering Domain

20 Rashmi Yadav, Ravindra Patel & Abhay Kothari

Impact Factor (JCC): 3.5987 NAAS Rating: 1.89

Methods
Functi
onal
Req.

Non
Functional

Req.

Support
Changes in

Requirement

Design
Technique

Used

Support for
Traceability

Principal
Underlyin

g the
Method

Suitable
Environment

Traceability in
Context with

Proposed Tool

Feature
oriented
Domain
Analysis
[10][11][12]

Yes,
Separat
e
archite
cture
model
than
nonfun
ctional

Yes.
Separate
architecture
model

It emphasizes
on users
understanding
of how the
application
will works on
live domain so
requirement
are and
support
separation of
concern then it
easy to change

Architecture
model is based
on feature
model
Has some
resemblance to
object oriented
techniques.

Feature
model

Feature
oriented

It is used in
mature
domain
standard
terminology
domain expert
and up-to-date
documentation
available

Reengineering
tool have four
basic
components
extractor,
repository,
analyzer and
visualize out of
which extractor
& analyzer are
relatively
complex and
All together
there is need for
numerous
quality or
nonfunctional
requirements,
so here methods
are
recommended
keeping these
facts in view

Object
oriented
transition
[14]

Yes Yes Yes Object & class
related diagram

Yes Convert
Object
oriented
Analysis
model to
object
oriented
Design
Model

Commercial
Application

√

Use Case
Maps [15]

Yes Yes ,as
behavioral
frameworks
are used to
evaluate and
make
architectural
decision at
higher level
of design

Yes Related use
cases are shown
in map like
diagrams, this
notation is
useful for
capturing,
elicitation and
validations of
use case this
helps in
architecture
design and test
case
generations

Yes Scenario
based
,behavio
ral
framewo
rk is
used to
evaluatin
g and
make
architect
ure
decision.

Object
oriented and
commercial
application

√

Weaving
together
requirement
into
architecture
[16]

Yes

yes Yes, Very
flexible

 Implicitl-y
yes

Twins
Peak
model is
used
which
supports
changing
requirem
ents

This methods
is suitable
where we are
not very
confident for
frozen the
requirement or
we
development
this type of
software first
time

Problem
frame [17]

Yes Yes They work on
frame formats
and short
delivery so it
is unlikely as
problem
frames.

Real problems
can be modeled
as problem
frames which
describes
architectura-l
structures,
services and
artifacts as a

yes A
problem
is
collectio
n of
many
simple
sub-
problem

Need Early
delivery

√

Traceability Metrics Predestined for Transformation Requirement to Architecture (Design Reengineering Tool) 21

www.iaset.us editor@iaset.us

part of problem
domain.

s.

Goal based
transition[1
8]

Yes Same
functional
architecture
is recursively
refined to
accommodat
e non
functional
requirements
.

Yes Goal based
transition method
uses architectural
specification
language.

yes Require
ment
architect
ural
from
system
goals.

Non
functional
requirement
highly
required

√

Rule Based
decision
making[19]

Yes - Rule base can
be easily
updated so,
yes,

Reasoning and
organization
module

yes Automat
ed rule
based
reasonin
g

Application
domain need
flexibility

-

Architectrin
g
Requiremen
t [20]

Yes Yes, as
refactoring
of
requirements
is there

Yes Requirements
elicitation,
architecturin-g
requirement,
design
implementation
phase.

Implicitly
implemented
, as architect-
ring
requirements
phase
replaces
architecture
design phase.

Implicit
analysis

Requirement
set not
confidently
design
software
design first
time

√

Patterns[21] yes Yes on
priority

yes Design patterns Poor Non
function
al
requirem
ents then
function
al

Highly
desirable for
non functional
requirement

