Biomass and Net Primary Productivity in Three Different Aged Butea Forest Ecosystems in Western India, Rajasthan

¹J.I. Nirmal Kumar, ¹P.R. Sajish, ²Rita N. Kumar and ¹Kanti Patel

¹Department of Environmental Science and Technology, Institute of Science and Technology for Advanced Studies and Research (ISTAR), Vallabh Vidya Nagar, Gujarat-388120, India ²Department of Biological Science and Environmental Science, N.V. Patel College of Pure and Applied Science, Vallabh Vidya Nagar, Gujarat 388-120, India

(Received: December 9, 2010; February 4, 2011)

Abstract: The study was conducted to estimate the biomass and net primary productivity of different age grouped (5, 10 and 15-year-old) *Butea monosperma* forest ecosystems in western India, Rajasthan (located between $23^{\circ}49'$ to $25^{\circ}28'$ N latitudes and $73^{\circ}0'$ to $75^{\circ}49'$ E longitudes) from June 2007 to May 2008. The vegetation biomass, forest floor biomass, tree litter fall and net primary productivity (NPP) of trees and shrubs were estimated and it is found that the tree biomass and net primary productivity increased with increasing age of the forest stand, whereas the herb biomass of trees increased with age from 183.7 ± 3.21 to 298.3 ± 3.57 t haG¹ while shrub biomass ranged from 4.9 ± 1.61 to 6.3 ± 1.38 t haG¹ and the herb biomass fluctuated from 1.7 ± 1.64 to 2.1 ± 1.81 . The tree layer NPP varied from 17.2 to 29.3 t haG¹ yearG¹ where the NPP of the shrub layer was 0.88 to 1.6 t haG¹ yearG¹. The productivity of the herb layer was fluctuating from 2.3 to 3.1 t haG¹ yearG¹. The all values of biomass and NPP of trees, shrubs and herbs were low in 5-year-old, moderate in 10-year-old and high in 15-year-old forest and net primary productivity from 21.1 t haG¹ yearG¹ in the 5-year-old forest and net primary productivity from 21.1 t haG¹ yearG¹ in the 5-year-old forest.

Key words: Butea monosperma Lam % Biomass % Forest floor biomass % Litter fall % Net primary productivity

INTRODUCTION

Butea monosperma Lam. is a small to medium- sized, tropical and sub tropical tree, 5 to 15 (max.20) m tall, up to 45 cm dbh. *B. monosperma* is amongst the principal economic tree species commonly recommended for plantation programmes in dry tropical regions for soil and water conservation as well as for fuel wood and fodder production. Estimation of biomass and productivity are essential for determining the status and flux of biological materials in an ecosystem and for understanding the dynamics of the ecosystem [1]. However, the biomass and productivity of tree species varies from place to place due to variation in climate, soil, temperature and rainfall. Teller [2] pointed out that forest floor biomass plays a significant role in the structure and functioning of forest

ecosystems by acting as a nutrient reservoir and improves the infiltration rate and water holding capacity of soils. The quantity of tree biomass per unit area of land constitutes the primary data needed to understand the flow of materials and water thorough forest ecosystem [3]. Lieth and Whittaker [4] pointed out that if forest biomass is to be measured and analysed in its proper way as a part of production, this gives an overall picture of ecosystem functioning. According to Lodhiyal and Lodhiyal [5], the rising demand of energy from renewable sources has generated new ideas and turn attention to woody biomass production system.

The increasing trends of plantations of an indigenous tree species are widely gaining popularity due to their higher biomass accumulation per unit area, better nutrient conservation efficiency and suitability in nutrient poor

Corresponding Author: J.I. Nirmal Kumar, Department of Environmental Science and Technology, Institute of Science and Technology for Advanced Studies and Research (ISTAR), Vallabh Vidya Nagar, Gujarat- 388120, India. E-mail: istares2005@yahoo.com. sites. Nirmal Kumar *et al.* [6, 7] have been already carried out quantification and decomposition studies in dry tropical teak forests of Rajasthan. Some studies have been made over a long time regarding the biomass production of leguminous indigenous forest in India [8]. But no such studies have been carried out in Butea plantations. Therefore, in the present study an attempt has been made to find out the biomass content and net primary productivity in three different aged Butea forest ecosystems Western India, Rajasthan. Moreover, various works have been carried out by Nirmal Kumar *et al.* [9-12] in field of fuel wood properties, seasonal changes of bio elements and assessment of carbon stock in the Teak and Butea forest ecosystem, Western India, Rajasthan.

Study Area: The study was conducted in Butea plantation forest areas (23° 03" N latitude, 69° 30" E, longitude; altitude 579.4 m above the mean sea level) from June 2007 to May 2008 at the Udaipur district in the state of Rajasthan which is 85 km away from the Udaipur city. The climate of the study area is semi-arid. There are three distinct seasons per year; winter (November to February), summer (April to mid June) and rainy season (mid-June to mid September). The climate is tropical with maximum of 45.3°C and minimum of 28.8°C during summers. Winters are little cold with the maximum temperature rising to 26.8°C and the minimum dropping to 2.5°C. Annual rainfall during the study period was 300 mm and the relative humidity ranged between 21% and 73%. The soil is alluvial, reddish brown, to deep medium black and loamy with rocky beds. The plantation system, where the sampling done, was composed of 5 to 15 years old Butea monosperma forest stands with a few species of Bambusa arundinacea, Lannea coromandelica, Wrightia tinctoria and Annona squamosa. The trees followed by shrubs like Jatropha curcas, Lantana camara and associated herbaceous vegetation mostly dominated by Cassia tora are also found in the study area. Grazing land under Butea forest was dominated by Cassia tora, followed by Achyranthes aspera, Blepharis maderaspatensis, Boerhavia diffusa and Cassia occidentalis. Butea forest was protected from grazing during the study period from June 2007 to May 2008.

MATERIALS AND METHODS

Estimation of Biomass: The total area planted with *B. monosperma* trees was 63 ha. Of this area, 5, 10 and 15- year old stand occupied 26, 17 and 20 ha respectively. The tree density in each Butea forest was 400 trees haG¹, respectively in 5-, 10- and 15 years old forest because of similar spacing (with plant to plant and row to row

distances of 5 m× 5 m in each way). A one hectare plot was sampled in each forest, which includes four replicate sub-plots of 50 m× 50 m (0.25 h). To find out the accurate results, 100 trees in each sub-plot (400 trees in each forest) were measured. The height and diameter (dbh, 1.37 m) of trees were measured by Ravi's multimeter and Tree calipers, respectively, in each forest.

For estimating density, the shrub and herb individuals were sampled in 50 quadrats of $2 \text{ m} \times 2 \text{ m}$ and $1 \text{ m} \times 1 \text{ m}$, respectively. To estimate the biomass of forest, the selective harvest technique was Butea adopted [5, 13]. Two trees (B. monosperma) and two shrubs (J. curcas L.) of average dbh in each forest stand were harvested and separated into bole wood, bole bark, branches, twigs, leaves and reproductive parts, stump root, lateral roots and fine roots. The fresh weight of all components was determined in the field using a heavy weight spring balance or pan balance. Samples of approx. 500 g (fresh weight) of each tree component from each forest stand were taken separately to the laboratory and oven-dried at 60°C to constant weight. Using the fresh/dry weight factor, the dry weight was estimated. Regression equations were developed for each tree components. The data were subjected to the regression in the form Y = a + bX, Where, Y is the biomass of the component (kg), X is the dbh. The mean diameter in each forest stand was used in the regression equation of the different components to obtain an estimate of mean biomass.

This value was then multiplied by tree density in each forest stand to obtain the total tree biomass. Like trees, regression equations were developed for finding the shrub biomass.

For herbaceous biomass, herbs were harvested at their peak season (rainy, September, 2009) from 10, 50 m× 50 m, quadrats. The harvested material was divided into aboveground and belowground components fresh weight and dry weight was determined for each herb component. The total vegetation biomass was obtained by summing biomass values of trees, shrubs and herbs for each forest stand.

Calculation of NPP: After the selecting a permanent sample plot (area: 1 ha) in each forest stand, 50 trees and shrubs in each sub-plot were marked with white paint at breast height in June 2007 to assess diameter increments at annual intervals. The diameters of marked trees and shrubs were measured again in May 2008. The mean diameter increments for each diameter class were then

calculated. The net primary productivity of the different tree components [bole wood, bole bark, branches, twigs, leaves and reproductive parts stump root, lateral roots and fine roots], shrubs [roots, stem and leaves] and herbs was calculated for each forest stand following [5, 14]. The sum of net production values of tree, shrub and herb layers yielded the total net primary production of the plantation site.

Data for forest floor litter were collected from ten, 50×50 cm randomly placed quadrats once in each season, i.e. rainy, winter and summer. All the live and dead herbaceous shoots in each quadrat were first harvested at ground level. The litter on the forest floor was then collected carefully, avoiding contamination with soil as much as possible and categorized into: (a) fresh leaf litter; (b) partly decomposed litter; (c) wood litter; and (d) miscellaneous litter (consisting of material other than the above). The collections were brought to the laboratory separately by category and oven- dried weights were determined.

The litter input was measured by placing ten litter traps randomly on the forest floor in each site. Each trap was 50×50 cm with 15 cm high wooden sides and fitted with a nylon net bottom. The litter was collected at monthly intervals during the study period, separated into leaf, wood, bark and reproductive parts. The samples were weighed after oven drying at 60°C to constant weight.

The biomass (above- and below-ground) and herbs on all sites was determined during their peak growth in September 2007. This value was assumed equal to net herb production. The sum of net production values of tree, shrub and herb layers yielded the total net primary production of the plantation site.

RESULTS AND DISCUSSION

Biomass: The regression coefficients for all the above ground and belowground components of trees is given in Table 1. The selection of independent variable, dbh, was occasioned by the ease and accuracy in these measurements. It is evident from r^2 - values, the relations of biomass with the dbh were found to be quite satisfactory. The calculation of biomass through X^2h method (*h* being height) has not been used because the r^2 values from such equations did not indicate much improvement over those obtained with dbh (X). Therefore the regression model Y=a+bX was used for forest biomass computations. The biomass of each component and of the total tree was significantly related to the dbh.

Table 1:	Relationship between the biomass of tree components (Y, kg per							
	tree) and dian	tree) and diameter at breast height (X, cm) for Butea forests						
Components			Age of Butea forest stands (years)					
F			5	10	15			
Polo woo	d	<i>a</i>	0.0563	0.2284	3 21/18			

Components		_		
		5	10	15
Bole wood	а	-0.0563	-0.2284	-3.2148
	b	0.9354	1.5442	2.3544
	r^2	0.9940	0.9830	0.9850
Bole bark	а	-3.2456	-4.2542	-5.2141
	b	0.2432	0.4127	0.6314
	r^2	0.9950	0.9940	0.9760
Branch [†]	а	-1.5733	-1.8955	-2.4985
	b	0.4605	0.5983	0.7256
	r^2	0.9930	0.9860	0.9890
Twig [‡]	а	-2.0961	-4.5143	-5.3565
	b	0.1069	0.2347	0.3754
	r^2	0.9950	0.9950	0.9790
Leaf	а	-2.1761	-2.8647	-3.2548
	b	0.3133	0.3984	0.3766
	r^2	0.9950	0.9940	0.9680
Reproductive parts§	а	-0.1258	-1.6472	-2.6542
	b	0.0562	0.0697	0.1842
	r^2	0.9940	0.9950	0.9850
Stump root [¶]	а	-0.2543	-1.6214	-1.0355
-	b	0.5354	0.7354	0.9875
	r^2	0.9950	0.9960	0.9860
Lateral roots	а	-0.2291	- 2.3561	-2.0457
	b	0.1684	0.3197	0.4021
	r^2	0.9940	0.9940	0.9440
Fine roots**	а	-2.5487	-2.9854	-4.2549
	b	0.0681	0.1436	0.1649
	r^2	0.9940	0.9940	0.9470

All equations were significant at P< 0.01

[†]Shoots of larger dimension without leaves

[‡] Current shoots bearing leaves

§ Includes flowers and fruits

[¶] Main root bearing 30 cm above- ground stem part

Lateral branches of stump root (Main root) with a diameter > 5mm

** Roots originate from lateral roots with a diameter < 5mm and associated mycorrhizae

 Table 2: Biomass of different components (t ha61) in tree, shrub and herb

 layers at different ages of Butea forests in Udaipur, Rajasthan

 Age of Butea forest stande (years)

	Age of Butea forest stands (years)				
Components	5	10	15		
Tree layer	183.7±3.21	246.1±3.38	298.3±3.57		
% of allocation in					
Bole*	63.6	67.3	67.8		
Branch [†]	12.3	11.9	12.8		
Leaf	6.5	5.1	4.3		
Reproductive parts	0.7	1.3	1.9		
Coarse roots [‡]	15.5	13.1	11.6		
Fine roots	1.4	1.3	1.6		
Shrub layer	4.9±1.61	5.5±1.57	6.3±1.38		
% of allocation in					
Above ground parts§	69.4	75.2	71.8		
Below ground parts	30.6	24.8	28.2		
Herb layer	2.1±1.81	1.9±1.79	1.7±1.64		
% of allocation in					
Above ground parts	78.6	76.5	73.1		
Below ground parts	21.4	23.5	26.9		
Total vegetation	190.7±2.21	253.5±2.24	306.3±2.19		

*Bole wood + bole bark, which accounted for 10.0-10.2 % of the values †Branch + twig, which accounted for 3.7-4.8 % of the values

[‡]Stump root (main root) + lateral roots (lateral branches of main root), which accounted for 3.8-4.2 % of the values

§ Stem + foliage, which accounted for 13.1-16.1 % of the values

Total biomass of trees increased with age from 183.7 ± 3.21 in 5-year- old stand to 298.3 ± 3.57 t haG¹ in 15-year-old stand, of which above- and below-ground parts represented percent values of 83-87 and 13-17, respectively (Table 2). Shrub biomass ranged from 4.9 ± 1.61 in 5-year-old stands to 6.3 ± 1.38 t haG¹ in 15-year-old stand, of which stem, foliage and roots accounted for about 53-62, 13-15 and 25-31%, respectively. The herb biomass ranged from 1.7 ± 1.64 in 15-year-old stand to 2.1 ± 1.81 in 5-year-old stands. Of this, the above ground component accounted for 73-79%. Herb biomass decreased with increasing age of the forest stand (Table 2). This could have been probably due to decrease in light penetration because of increase in forest canopy.

The total vegetation biomass ranges from 190.7 \pm 2.21(5-year-old stand) to 306.3 \pm 2.19 t haG¹ (15-year-old stand). The moderate amount of biomass has been observed in 10-year-old stands. Of this, the tree layer accounted for 96 to 98%, shrubs for 2-3% and herbs for 0.5-1% (Table 2). The present values fall with in the range reported for *Eucalyptus* stands (54-319 t haG¹; by [15]), 100 plus year old oak forest (263-301 t haG¹; by [16]), *Eucalyptus* plantation (319 t haG¹, by [17, 18]).

Analysis of variance showed significant (P < 0.01) variations in total tree biomass and its components among plantations of different ages. The contribution of bole wood, branches, twigs, reproductive parts, lateral roots and fine roots increased with age while that of the remaining parts (Herb layer) decreased (Table 2). The contribution of root biomass to the total biomass generally decreased with age [5].

According to Harris *et al.* [19], although the importance of roots as structural, storage and physiologically active organs has been known, they have been neglected in most of the 'ecosystem studies' today because of difficulties surrounding investigation. For example, the root parts left in the soil of a mature Douglas fir accounted for only 11-18% of the weight of the total root system [20].

Forest Floor Biomass: The quantity of forest floor depends on canopy closure and climate. The biomass of litter on the forest floor increased with age of the forest stand. The seasonal mean total forest floor biomass (including herbaceous litter) increased from 4.04 t haG¹ in 5-year-old to 5.1 haG¹ in the 15-year-old stands (Table 3). The herbaceous biomass, both live and dead, however, showed a reverse trend. The same trend and the range were observed for *Populus deltoides* plantations (4.6-6.1) by [21] and *Eucalyptus* hybrid plantations (4.0-6.7 t haG¹) by [22]. Frederick *et al.* [18] studied an age series of

Table 3: The average forest floor biomass (t haG¹, across seasons) and turnover of litter (rate and time) in Butea forests of Udaipur, Rajasthan

Rujustnun					
	Age of Butea forest stands (years)				
Components	5	10	15		
Forest floor biomass (t haG1)	4.04±2.11	4.92±2.36	5.1±3.02		
% Allocation in					
Fresh leaf litter	9.1	9.6	10.1		
Partially and more	24.6	28.4	32.3		
decomposed litter					
Wood litter	5.3	11.9	18.5		
Miscellaneous litter*	24.4	20.1	18.8		
Herbaceous litter [†]	36.6	30.0	20.3		
Turnover rate (kg year)	0.94	0.93	0.92		
Turnover time (t, year)	1.06	1.08	1.09		

*Includes reproductive parts of trees and litter parts of shrubs

[†]Includes living and dead herbaceous material

Table 4: Litter production (t haG¹ yearG¹) in Butea forests of Udaipur, Rajasthan

	Age of Butea forest stands (years)				
Litter components	5	10	15		
Leaf litter	2.38 (80.1)	2.91 (75.0)	3.27 (70.9)		
Wood litter*	0.13 (4.4)	0.23 (5.9)	0.40 (8.7)		
Reproductive litter [†]	0.04 (1.3)	0.10 (2.6)	0.19 4.1)		
Miscellaneous litter [‡]	0.42 (14.2)	0.64 (16.5)	0.75 (16.3)		
Total	2.97 (100)	3.88 (100)	4.61 (100)		

*Includes barks, twigs and branches

 $^{\dagger}\mbox{Includes}$ inflorescences, pods and fruits of trees and shrubs

[‡]Includes the leaf litter of shrubs and herbs

Eucalyptus regnans and stated that the native wood species and ferns generally increased with stand age, while herbaceous species declined.

The accumulated forest floor in the present study (Table 3) was lower than those reported for Pinus stands (13-110 t haG¹; [23]), oak forests (9.6-12.6 t haG¹; [24, 25]), *Eucalyptus saligna* (12.4 t haG¹; [26]), *Eucalyptus obliqua* (18.3 t haG¹; [27]), *Eucalyptus regnans* (47.5 t haG¹; [28]) and *Pinus roxburghii* forests (9.6-13.6 t haG¹; [29]) but is with in the range reported for eucalyptus plantations [18, 30] and close to the values reported for *Eucalyptus* hybrid plantations (4.0-6.7 t haG¹; [22]) and oak forest [14]. The smaller biomass on the forest floor indicates a high rate of decomposition under the warm and humid conditions.

Litter Fall: Seasonal fluctuations like climatic variables, latitude, exposure, altitude, soil moisture and wind velocity etc., affect variation in litter fall [29]. Leaves are a major component of the total litter input. Total litter fall ranged from 2.97 in 5-year-old-stand to 4.61 t haG¹ yearG¹

Iranica J.	Energy	& En	viron.,	2 (.	1):	01-	07,	2011
------------	--------	------	---------	------	-----	-----	-----	------

		sts of Udaipur, Raja tea forest stands (ye	5			
Vegetation	5	10	15			
Tree layer	17.2±2.31	23.8±2.66	29.3±2.98			
% of allocation in						
Bole	58.4	58.9	57.1			
Branch	12.1	12.6	13.4			
Leaf	6.7	6.9	7.1			
Reproductive parts	1.2	1.4	1.7			
Coarse roots	15.9	13.5	13.3			
Fine roots	5.7	6.7	7.4			
Shrub layer	0.8 ± 0.78	1.4 ± 0.89	1.6±0.95			
% of allocation in						
Above ground parts	70.9	71.2	69.5			
Below ground parts	29.1	28.8	30.5			
Herb layer	3.1±1.53	2.8±1.65	2.3±1.82			
% of allocation in						
Above ground parts	78.2	76.1	72.7			
Below ground parts	21.8	23.9	27.3			
Total vegetation	21.1±1.54	28.0±1.73	33.2±1.92			

Table 5: Component wise net primary productivity (t haG¹ yearG¹) in trees, shrubs and herbs of Butea forests of Udaipur, Rajasthan

in 15-year-old-stand (Table 4). Of this, leaf litter accounted for 71-80%, with in the range reported for natural sal forests of Central Himalaya (60-80%; [31]) and for temperate forest (40-84%; [32]). However, wood litter represented 4-9%, which lower than the value reported for various forests around the world (10-36%; [31, 33, 34]).

Net Primary Productivity (NPP): The reliability of estimates of production for a site depends mainly on the accuracy in determinations of the annual biomass increment of trees. By using the same Vernier Calipers at exactly the same location on the tree, systematic errors in successive measurements of dbh of marked trees were reduced in the present work.

Total NPP (t haG¹ yearG¹) of Butea forests at different ages is given in Table 5. NPP in the tree layer ranged from 17.2 (5-year-old stand) to 29.3 t haG¹ yearG¹ (15-year-old stand). Above-ground parts account for 78 (5-year-old stand) to 79% (15-year-old stand) and below-ground parts for 20 (10-year-old stand) to 22% (15-year-old stand). The NPP of the shrub layer was 0.88 (5-year-old stand) to 1.6 t haG¹ yearG¹ (15-year-old stand). Of this, aboveground and below-ground parts accounted for 70-71% and 30-31%, respectively. The productivity of the herb layer was 2.3 (15-year-old stand) to 3.1 t haG¹ yearG¹ (5-year-old stand). Above –ground parts accounted for 73 (15-year-old stand) to 78% (5-year-old stand) and below- ground parts for 22 (5-year-old stand) to 27% (15year-old stand). The total NPP in vegetation ranged from 21.1 (5-yearold stand) to 33.2 t haG¹ yearG¹ (15-year-old stand), of which the tree layer accounted for 88.2 (5-year-old stand) to 91.4% (15-year-old stand), the shrub layer for 2.4 (5year-old stand) to 3.5% (15-year-old stand) and the herb layer for 5.1 (15-year-old stand) to 9.4% (5-year-old stand) (Table 5). The NPP of 10-year-old-stands was found moderate between 5-year and 15-year-old stands.

Comparisons with other forests and plantations around the world show that the NPP of the present Butea forests (21-33 t haG¹ yearG¹) was much higher than the values reported for Shisham forests (13-20 t haG¹ yearG¹; [35]), for *Gmelina arborea* forest (10 t haG¹ yearG¹; [8]). The difference in average net production among different forests may be partly caused by climate, especially the length of the growing season when both thermal and moisture conditions are favourable. The high productivity in the present study is probably caused by greater leaf surface and larger duration of photosynthetic activity [5].

ACKNOWLEDGMENTS

Authors are grateful to Mr. Jagadeesh Rao, Executive Director; Foundation for Ecological Security, Anand, Gujarat for financial assistance of this research project.

REFERENCES

- Anderson, F., 1970. Ecological studies in a Seaman Woodland and meadow area. Southern Sweden II. Plant biomass, primary production and turnover of organic matter. Bolaniska Notiser, 123: 8-51.
- Teller, H.L., 1968. Impact of forest land use on floods. Unasylva, 22: 18-20.
- Swank, W.T. and H.T. Schreuder, 1974. Caparisons of three methods of estimating surface area and biomass for a forest of young eastern white pine forest. Sci., 20: 91-100.
- Lieth, H. and R.L. Whittaker, 1975. In: Primary productivity of Biosphere (Editor's preface). Springer, New York.
- Lodhiyal, L.S. and N. Lodhiyal, 1997. Variation in biomass and net primary productivity in short rotation high density Central Himalayan poplar plantations. Forest Ecology and Management, 98: 167-179.
- Nirmal Kumar, J.I., Rita N. Kumar., Rohit Kumar Bhoi and P.R. Sajish, 2009. Quantification of nutrient content in above-ground biomass of teak plantation in tropical dry deciduous forest of Udaipur, Rajasthan, India. J. Forest Sci., 55(6): 251-256.

- Nirmal Kumar, J.I., Rita N. Kumar., P.R. Sajish and Rohit Kumar Bhoi, 2010. Wood and Leaf Litter Decomposition and Nutrient Release from *Tectona grandis* Linn. f. in a Tropical Dry Deciduous Forest of Rajasthan, Western India. J. Forest Sci., 26(1): 17-23.
- Pacholi, R.K., 1997. Biomass productivity and nutrient cycling in *Cassia siamea*, *Dalbergia sissoo* and *Gmelina arborea* plantations. PhD Thesis, Kumaun University, India.
- Nirmal Kumar, J.I., Rita N. Kumar., Kanti Patel and Rohit Kumar Bhoi, 2009. An assessment of Indian fuel wood with regards to properties and environmental impact. Asian J. Energy and Environment, 10(2): 99-107.
- Nirmal Kumar, J.I., Rita N. Kumar., Kanti Patel and Rohit Kumar Bhoi, 2009. An assessment of carbon stock for various land use system in Aravally mountains, Western India. Mitigation and Adaptation Strategies for Global Change: DOI 10.1007/s11027-010-9240-3.
- Nirmal Kumar, J.I., Rita N. Kumar, Kanti Patel and Rohit Kumar Bhoi, 2010. An evaluation of fuel wood properties of some Aravally mountain tree and shrub species of Western India. Biomass and Bioenergy: DOI:10.1016/j.biombioe.2010.08.051.
- Nirmal Kumar, J.I., Rita N. Kumar, Rohit Kumar Bhoi and Kanti Patel, 2010. Seasonal changes of bioelements in the litter and their potential return to green leaves in five species of the Indian tropical dry deciduous forest, Western India. J. Forestry Res., 21(1): 33-38.
- Ovington, J.D., 1962. Quantitative ecology and the woodland ecosystem concept. Advances in Ecological Research. Vol. 1. New York: Academic Press.
- Rawat, Y.S. and J.S. Singh, 1988. Structure and function of oak forest in Central Himalaya: Dry matter dynamics. Annals of Botany, 62: 397.
- Attiwill, P.M., 1979. Nutrient cycling in a *Eucalyptus* obliqua (L'Hent.) forest. III. Growth, biomass and net primary production. Australian J. Botany, 27: 439-458.
- Negi, K.S., Y.S. Rawat and J.S. Singh, 1983. Estimation of biomass and nutrient storage in a Himalayan moist temperate forest. Canadian J. Forest Res., 13: 1185-1196.
- Frederick, D.J., H.A.I. Madgwick, M.F. Jurgenson and G.R. Oliver, 1985a. Dry matter content and nutrient distribution in an age series of *Eucalyptus regnans* plantations in New Zealand. New Zealand J. Forestry Sci., 15: 158-179.

- Frederick, D.J., H.A.I. Madgwick, G.R. Olnerand and M.F. Jurgenson, 1985b. Dry matter and nutrient content of 8-year-old *Eucalyptus saligna* growing of Tahoka forest. New Zealand J. Forestry Sci., 15: 251-254.
- Harris, W.F., D. Santantonio and D. Mcginty, 1980. The dynamic belowground ecosystem. In Forests: Fresh perspectives from Ecosystem Analysis, ed. R.H. Waring, pp: 119-130. Oregon State University Press, Corvallis, Oregon.
- Santantonio, D., R.K. Hermann and W.S. Overton, 1977. Root biomass studies in forest ecosystems. Pedobiologia, 17: 1-31.
- Lodhiyal, L.S., R.P. Singh and S.P. Singh, 1995. Structure and function of an age series of poplar plantations in Central Himalaya. I. Dry matter dynamics. Annals of Botany, 76: 191-199.
- Bargali, S.S., S.P. Singh and R.P. Singh, 1992. Structure and function of an age series of eucalypt plantations in Central Himalaya. I. Dry matter dynamics. Annals of Botany, 69: 405-411.
- 23. Ovington, J.D., 1965. Organic production, turnover and mineral cycling. Biological Review, 40: 295-336.
- Monk, C.D., G.D. Child and S.A. Nicholson, 1970. Biomass, litter and leaf surface area estimates of an Oak Hickory forest. Oikos, 21: 138-141.
- Reiners, W.A. and N.M. Reiners, 1970. Energy and nutrient dynamics of forest floors in three Minnesota forests. J. Ecol., 58: 497-519.
- 26. Richards, B.N. and J.L. Charley, 1977. Carbon and nitrogen flux through native forest floors. In Proceedings of Nutrient Cycling in Indigenous Forest Ecosystems Symposium, pp: 65-82. CSIRO Division Land Resources Management, Perth, Australia.
- Attiwill, P.M., H.B. Guthrie and R. Leuning, 1978. Nutrient cycling in an *Eucalyptus obliqua* (L' Herit) forest. I. Litter production and nutrient return. Australian J. Botany, 26: 76-91.
- Feller, M.C., 1980. Biomass and nutrient distribution in two eucalypt forest ecosystems. Australian J. Ecol., 5: 309-333.
- 29. Chaturvedi, O.P. and J.S. Singh, 1987a. A quantitative study of the forest floor biomass, litter fall and nutrient return in a *Pinus roxburghii* forest in Kumaun Himalaya. Vegetatio, 71: 97-106.
- Bradstock, R., 1981. Biomass in an age series of *Eucalyptus grandis* plantation. Australian J. Forest Res., 11: 111-127.

- Singh, J.S. and S.P. Singh, 1992. Forest of Himalaya; Structure, functioning and impact of man. Nainital, India: Gyanodaya Prakashan.
- 32. Rodin, L.E. and N.I. Bazilevich, 1967. 288 pp. Production and Mineral Cycling in Terrestrial Vegetation. Oliver & Boyd, Edinburgh.
- Bray, J.R. and E. Gorham, 1964. Litter production in the forests of the World. Advances in Ecological Res., 2: 101-57.
- Killingbeck, K.T. and M.K. Wali, 1978. Analysis of North Dakota Gallery forest: Nutrient trace element and productivity relations. Oikos, 30: 29-60.
- Lodhiyal, N., L.S. Lodhiyal and Y.P.S. Pangtey, 2002. Structure and function of Shisham forests in Central Himalaya, India: Dry matter dynamics. Annals of Botany, 89: 41-54.