BLOCK LINE CUT VERTEX DIGRAPHS OF DIGRAPHS

Nagesh, H.M. and R.Chandrasekhar

Abstract

In this paper, the digraph valued function(digraph operator), namely the block line cut vertex digraph $B L C(D)$ of a digraph D is defined, and the problem of reconstructing a digraph from its block line cut vertex digraph is presented. Outer planarity, maximal outer planarity, and minimally non-outer planarity properties of these digraphs are discussed.

1. Introduction

Notations and definitions not introduced here can be found in [2,3]. For a simple graph G with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, detailed by V.R. Kulli et al.[5] gave the following definition. The block line cut vertex graph of G, written $B n(G)$, is the graph whose vertices are the edges, cut vertices, and blocks of G, with two vertices of $\operatorname{Bn}(G)$ adjacent whenever the corresponding members of G are adjacent or incident, where the edges, cut vertices, and blocks of G are called its members.

In this paper, we extend the definition of the block line cut vertex graph of a graph to a directed graph. M.Aigner [1] defines the line digraph of a digraph as follows. Let D be a digraph with n vertices $v_{1}, v_{2}, \ldots, v_{n}$ and m arcs, and $L(D)$ its associated line digraph with n^{\prime} vertices and m^{\prime} arcs. We immediately have $n^{\prime}=m$ and $m^{\prime}=\sum_{i=1}^{n} d^{-}\left(v_{i}\right) \cdot d^{+}\left(v_{i}\right)$. Furthermore, the in-respectively out-degree of a vertex $v^{\prime}=\left(v_{i}, v_{j}\right)$ in $L(D)$ are $d^{-}\left(v^{\prime}\right)=d^{-}\left(v_{i}\right), d^{+}\left(v^{\prime}\right)=d^{+}\left(v_{j}\right)$. Also, a digraph D is said to be a line digraph if it is isomorphic to the line digraph of a certain digraph $H[7]$.

We need some concepts and notations on directed graphs. A directed graph(or just digraph) D consists of a finite non-empty set $V(D)$ of elements called vertices and a finite set $A(D)$ of ordered pair of distinct vertices called arcs. Here, $V(D)$ is

[^0]the vertex set and $A(D)$ is the arc set of D. For an arc (u, v) or $u v$ the first vertex u is its tail and the second vertex v is its head. The out-degree of a vertex v, written $d^{+}(v)$, is the number of arcs going out from v and the in-degree of a vertex v, written $d^{-}(v)$, is the number of arcs coming into v. The total degree of a vertex v, written $t d(v)$, is the number of arcs incident with v, i.e., $t d(v)=d^{-}(v)+d^{+}(v)$. A vertex v for which $d^{+}(v)=d^{-}(v)=0$ is called an isolate. A vertex v is called a transmitter or a receiver according as $d^{+}(v)>0, d^{-}(v)=0$ or $d^{+}(v)=0, d^{-}(v)>0$. An out-star (in-star) in a digraph D is a star in the underlying undirected graph of D such that all arcs are directed out of (into) the center. The out-star and in-star of order k is denoted by S_{k}^{+}and S_{k}^{-}, respectively.

A cut set of a digraph D is defined as a minimal set of vertices whose removal increases the number of connected components of D. A cut set of size one is called a cut vertex. A block of a digraph D is a maximal connected subdigraph B of D such that no vertex of B is a cut vertex of D. A tournament is a digraph whose underlying graph is a complete graph. A tournament of order n is denoted by T_{n}.

Since most of the results and definitions for undirected planar graphs are valid for planar digraphs also, the following definitions hold good for planar digraphs. A planar drawing of a digraph D is a drawing of D in which no two distinct arcs intersect. A digraph is said to be planar if it admits a planar drawing. If D is a planar digraph, then the inner vertex number $i(D)$ of D is the minimum number of vertices not belonging to the boundary of the exterior region in any embedding of D in the plane. A digraph D is an outerplanar if $i(D)=0$ and minimally non-outerplanar if $i(D)=1$ ([4]).

2. Definition of $\mathrm{BLC}(\mathrm{D})$:

For a connected digraph D, the block line cut vertex digraph $Q=B L C(D)$ has vertex set $V(Q)=A(D) \cup C(D) \cup B(D)$ and the arc set

$$
A(Q)=\left\{\begin{array}{l}
a b: a, b \in A(D), \text { the head of } a \text { coincides with the tail of } b, \\
C d: C \in C(D), d \in A(D), \text { the tail of } d \text { is } C \\
d C: C \in C(D), d \in A(D), \text { the head of } d \text { is } C \\
B e: B \in B(D), e \in A(D) \text {, the arc } e \text { lie on block } B
\end{array}\right.
$$

Here $C(D)$ is the cut vertex set and $B(D)$ is the block set of D.
For a connected digraph D with $V(Q)=A(D) \cup C(D)$, the first three conditions of $A(Q)$ is the line cut vertex digraph of D and denoted by $L C(D)$.

Clearly, $L C(D) \subseteq B L C(D)$, where \subseteq is the subdigraph notation.

3. Decomposition and Reconstruction

One of the major challenges in the study of digraph operators is to reproduce the original digraph from the digraph operator, i.e., when is a digraph the block line cut vertex digraph of a certain digraph D and is D reconstructible from $B L C(D)$?

A digraph D is a complete bipartite digraph if its vertex set can be partitioned into two sets A, B in such a way that every arc has its initial vertex in A and its terminal vertex in B and any two vertices $a \in A$ and $b \in B$ are joined by an arc. An arc (u, v) of D is said to be an end arc if u is the transmitter and v is the receiver.

Let D be a digraph with vertex set $V(D)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, cut vertex set $C(D)=\left\{C_{1}, C_{2}, \ldots, C_{r}\right\}$, and block set $B(D)=\left\{B_{1}, B_{2}, \ldots, B_{s}\right\}$. We consider the following four cases.

Case 1: Let v be a vertex of D with $d_{D}^{-}(v)=\alpha$ and $d_{D}^{+}(v)=\beta$. Then $\alpha \operatorname{arcs}$ coming into v and the β arcs going out from v give rise to a complete bipartite subdigraph with α tails and β heads and $\alpha \cdot \beta$ arcs joining each tail with each head. This is the decomposition of $L(D)$ into mutually arc disjoint complete bipartite subdigraphs.

Case 2: Let C be a cut vertex of D with $d_{D}^{-}(C)=\alpha^{\prime}$. Then α^{\prime} arcs coming into C give rise to a complete bipartite subdigraph with α^{\prime} tails and a single head(i.e., C) and α^{\prime} arcs joining each tail with C.

Case 3: Let C be a cut vertex of D with $d_{D}^{+}(C)=\beta^{\prime}$. Then β^{\prime} arcs going out from C give rise to a complete bipartite subdigraph with a single tail (i.e., C) and β^{\prime} heads and β^{\prime} arcs joining C with each head.

Case 4: Let B be a block of D. Then the arcs, say γ that lie on B give rise to a complete bipartite subdigraph with a single tail(i.e., B) and γ heads and γ arcs joining B with each head.

Hence by all above cases, $H=B L C(D)$ is decomposed into mutually arcdisjoint complete bipartite subdigraphs with $V(H)=A(D) \cup C(D) \cup B(D)$ and arc sets (i) $\cup_{i=1}^{n} X_{i} \times Y_{i}$, where X_{i} and Y_{i} be the sets of in-coming and out-going arcs at v_{i}, respectively. (ii) $\cup_{j=1}^{r} \cup_{k=1}^{r} Z_{j}^{\prime} \times C_{k}$ such that $Z_{j}^{\prime} \times C_{k}=0$ for $j \neq k$, (iii) $\cup_{k=1}^{r} \cup_{j=1}^{r} C_{k} \times Z_{j}$ such that $C_{k} \times Z_{j}=0$ for $k \neq j$, where Z_{j}^{\prime} and Z_{j} be the sets of in-coming and out-going arcs at C_{j}, respectively. (iv) $\cup_{l=1}^{s} \cup_{l^{\prime}=1}^{s} B_{l} \times N_{l^{\prime}}$ such that $B_{l} \times N_{l^{\prime}}=0$ for $l \neq l^{\prime}$, where $N_{l^{\prime}}$ is the set of arcs that lie on B_{l} of D.

Conversely, let H be a digraph of the type described above. It should be noted that the subdigraphs obtained by Case 2, Case 3 and Case 4 are used to identify the cut vertex(es) and blocks of D. So, we first reconstruct D without cut vertex(es) and blocks. For that, let us denote each of the complete bipartite subdigraphs obtained by Case 1 by $T_{1}, T_{2}, \ldots, T_{p}$. Let $V(D)=\left\{t_{0}, t_{1}, \ldots, t_{p}, t_{p+1}\right\}$. On the other hand, if D has end arcs, then $V(D)=\left\{t_{0}, t_{1}, \ldots, t_{p}, t_{p+1}, t_{1}^{\prime}, t_{2}^{\prime}, t_{3}^{\prime}, \ldots\right\}$, where $t_{1}^{\prime}, t_{2}^{\prime}, t_{3}^{\prime}, \ldots$ are the vertices corresponding to end $\operatorname{arcs} e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, \ldots$ of D, respectively. The arcs of D are obtained by the following procedure. For each vertex $v \in L(D)$, we draw an arc, say a_{v} to D as follows.
Step 1: If $d_{L(D)}^{+}(v)>0, d_{L(D)}^{-}(v)=0$, then $a_{v}=\left(t_{0}, t_{i}\right)$, where i is the index (or base) of T_{i} such that $v \in X_{i}$;
Step 2: If $d_{L(D)}^{+}(v)=0, d_{L(D)}^{-}(v)>0$, then $a_{v}=\left(t_{j}, t_{p+1}\right)$, where j is the index of T_{j} such that $v \in Y_{j}$;

Step 3: If $d_{L(D)}^{+}(v)>0, d_{L(D)}^{-}(v)>0$, then $a_{v}=\left(t_{i}, t_{j}\right)$, where i and j are the indices of T_{i} and T_{j} such that $v \in X_{j} \cap Y_{i}$.

If D has an end arc, then the corresponding vertex in $L(D)$ is an isolate. Then, Step 4: Let e_{1} and e_{1}^{\prime} be an arc and end arc of D, respectively, and let v be a vertex of e_{1}^{\prime} such that $d^{-}(v)>0, d^{+}(v)=0$. Then $a_{v}=\left(t_{1}^{\prime}, t_{p+1}\right)$.
Step 5: Let e_{1} and e_{1}^{\prime} be an arc and end arc of D, respectively, and let v be a vertex of e_{1}^{\prime} such that $d^{+}(v)>0, d^{-}(v)=0$. Then $a_{v}=\left(t_{0}, t_{1}^{\prime}\right)$.

We now mark the cut vertices of D as follows. From Case 2 and Case 3, we observe that for every cut vertex C, there exists at most two complete bipartite subdigraphs, one containing C as the tail, and other as head. Let it be C_{j}^{\prime} and $C_{j}^{\prime \prime}$, $1 \leqslant j \leqslant r$ such that C_{j}^{\prime} contains C as the tail and $C_{j}^{\prime \prime}$ contains C as the head. If the heads of C_{j}^{\prime} and tails of $C_{j}^{\prime \prime}$ are the heads and tails of a single $T_{i}, 1 \leqslant i \leqslant p$, then the vertex t_{i} is a cut vertex in D, where i is the index of T_{i}. If the (original digraph) D has an end arc, then a vertex of an end arc whose total degree at least two is a cut vertex in the reconstruction.

Finally, we mark the blocks of D as follows. Let us denote each of the complete bipartite subdigraphs obtained by Case 4 by $B_{1}^{\prime}, B_{2}^{\prime}, \ldots, B_{s}^{\prime}$. Now, for all l such that $1 \leqslant l \leqslant s$, if all heads of B_{l}^{\prime} are the tails(or heads) of some T_{i}, then the arcs joining the vertices t_{i} forms a block in the reconstruction, where i is the indices of T_{i}. Furthermore, an arc whose one of the end vertices having total degree one is a block. The digraph D thus constructed apparently has H as its block line cut vertex digraph. Hence we have the following Theorem.

Theorem 3.1. H is the block line cut vertex digraph of a certain digraph D if and only if $V(H)=A(D) \cup C(D) \cup B(D)$ and arc sets $A(H)$ equals : $(i) \cup_{i=1}^{n} X_{i} \times Y_{i}$, (ii) $\cup_{j=1}^{r} \cup_{k=1}^{r} Z_{j}^{\prime} \times C_{k}$ such that $Z_{j}^{\prime} \times C_{k}=0$ for $j \neq k$, (iii) $\cup_{k=1}^{r} \cup_{j=1}^{r} C_{k} \times Z_{j}$ such that $C_{k} \times Z_{j}=0$ for $k \neq j$, (iv) $\cup_{l=1}^{s} \cup_{l^{\prime}=1}^{s} B_{l} \times N_{l^{\prime}}$ such that $B_{l} \times N_{l^{\prime}}=0$ for $l \neq l^{\prime}$.

The following existing theorems are required to prove further results:
Theorem A ([2]): Every maximal outerplanar graph G with n vertices has $(2 n-3)$ edges.
Theorem B ([3]): A directed multi digraph D is Eulerian if and only if D is connected and $d_{D}^{-}(v)=d_{D}^{+}(v)$, for every vertex $v \in D$.

4. Properties of the block line cut vertex digraph

In this section, we establish some basic relationships between a digraph and its block line cut vertex digraph. The first Theorem is clear, and we omit the proof.

Theorem 4.1. Let D be a digraph with vertex set $V(D)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, cut vertex set $C(D)=\left\{C_{1}, C_{2}, \ldots, C_{r}\right\}$, and block set $B(D)=\left\{B_{1}, B_{2}, \ldots, B_{s}\right\}$. Then
the order and size of $B L C(D)$ are $m+\sum_{j=1}^{r} C_{j}+\sum_{k=1}^{s} B_{k}$ and $m+\sum_{i=1}^{n} d^{-}\left(v_{i}\right) \cdot d^{+}\left(v_{i}\right)+\sum_{j=1}^{r}\left\{d^{-}\left(C_{j}\right)+d^{+}\left(C_{j}\right)\right\}$, respectively, where m is the size of D.

Theorem 4.2. The block line cut vertex digraph $B L C(D)$ of a digraph D is always non-Eulerian.

Proof. For every block vertex $B \in B L C(D), d_{B L C(D)}^{-}(B)=0, d_{B L C(D)}^{+}(B)>$ 0 . Hence $d_{B L C(D)}^{-}(B) \neq d_{B L C(D)}^{+}(B)$. By Theorem $[\mathrm{B}], B L C(D)$ is non-Eulerian.

Theorem 4.3. For a connected digraph $D, B L C(D)$ is an outerplanar if
(a) D is a directed path $\overrightarrow{P_{n}}$ on $n \geqslant 3$ vertices.
(b) D is an in-star (out-star) of order $n \geqslant 3$.

Proof. Case 1: Suppose D is a directed path \vec{P}_{n} on $n \geqslant 3$ vertices. Then every block of $B L C(D)$ is either T_{2} or T_{3} such that $i(B L C(D))=0$. Thus, $B L C(D)$ is an outerplanar.
Case 2: Suppose D is an in-star(out-star) with vertex set $V(D)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and arc set $A(D)=\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}, n \geqslant 3$. Then $L(D)$ is totally disconnected of order $(n-1)$. The number of cut vertex of D is exactly one. Then $L C(D)$ is an in-star(out-star) of order n such that the center of $L C(D)$ is the cut vertex of D. Finally, since every arc of an in-star(out-star) is a block, the arcs incident out of corresponding block vertices reaches the vertices of $L(D)$ gives $B L C(D)$ such that $i(B L C(D))=0$. This completes the proof.

Theorem 4.4. For any connected digraph $D, B L C(D)$ is not maximal outerplanar.

Proof. We prove this by the method of contradiction. Suppose $B L C(D)$ is maximal outerplanar. We consider the following two cases.
Case 1: Let D be a directed path on $n \geqslant 3$ vertices. By Theorem 4.1, the order and size of $B L C(D)$ are $3 \phi+2$ and $4 \phi+1$, respectively, where $\phi=(n-2), n \geqslant 3$. But, $4 \phi+1<6 \phi+1=2(3 \phi+2)-3$. By Theorem $[\mathrm{A}], B L C(D)$ is not maximal outerplanar, a contradiction.
Case 2: Let D be an in-star(out-star) of order $n \geqslant 3$. By Theorem 4.1, the order and size of $B L C(D)$ are $2 \phi+3$ and $2 \phi+2$, respectively, where $\phi=(n-2), n \geqslant 3$. But, $2 \phi+2<4 \phi+3=2(2 \phi+3)-3$. By Theorem[A], $B L C(D)$ is not maximal outerplanar, a contradiction. This completes the proof.

Theorem 4.5. For a digraph $D=C_{3} \cup\{e\}$, i.e., the 3-directed cycle with a pendant arc, $B L C(D)$ is minimally non-outerplanar.

Proof. Suppose $D=C_{3} \cup\{e\}$. Let $V(D)=\{a, b, c, d\}$ and

$$
A(D)=\{(a, b),(b, c),(c, a),(c, d)\} .
$$

Then $A(L(D))=\{(a b, b c),(b c, c a),(b c, c d),(c a, a b)\}$. Now, c is the cut vertex of D such that c is the tail of $\operatorname{arcs} T=\{(c, a),(c, d)\}$ and head of an $\operatorname{arc} H=(b, c)$. Then the arcs incident into c from the vertices corresponding to H, and the arcs incident out of c reaches the vertices corresponding to arcs of T in $L(D)$ gives $L C(D)$ such that $i(L C(D))=0$. Let $B_{1}=\{(a, b),(b, c),(c, a)\}$ and $B_{2}=(c, d)$ be two blocks of D. Then the arcs incident out of block vertices B_{1} and B_{2} in $L C(D)$ gives $B L C(D)$ such that $i(B L C(D))=1$. Hence $B L C(D)$ is minimally non-outerplanar.

References

[1] M. Aigner, On the Line graph of a Directed Graph, Math.Zeitschr, 102(1967), 56-61.
[2] F.Harary, Graph Theory, Addison-Wesley, Reading, Mass (1969).
[3] Jorgen Bang-Jensen, Gregory Gutin, Digraphs Theory, Algorithms and applications, Springer-Verlag London Limited (2009).
[4] V.R.Kulli, On minimally non-outerplanar graphs, Proc.Indian Nat.Sci.Acad. 41(1975), 275280.
[5] V.R.Kulli, M.H.Muddebihal, On lict and litact graph of a graph, J.Analy and computation, Vol 3(2006), 33-43.
6] M.H.Muddebihal, R.Chandrasekhar, On pathos lict graph of a tree, J.Nat.Acad.Sci. letters Vol. 20(2003), 263-270.
[7] V.V.Malyshko, S.S Yenchenko, Algorithm for the optimal reconstruction of a digraph, Cybernetics and Systems Analysis, Springer (1981).

Received by editors 23.07.2015; Available online 02.09.2015.
PES Institute of Technology, Department of Science and Humanities, Electronic City, Bangalore-560 100, India.

E-mail address: : sachin.nagesh6@gmail.com
Rajiv Gandhi Institute of Technology, Department of Mathematics, Bangalore560 032, India.

E-mail address: : dr.chandri@gmail.com

[^0]: 2010 Mathematics Subject Classification. 05C20.
 Key words and phrases. Line digraph; Block vertex; Cut vertex; Inner vertex number.

