Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

On Divisibility of Almost Distributive Lattices

N. Rafi, Ravi Kumar Bandaru and G.C. Rao

ABSTRACT. In this paper, the concepts of *-divisibility, *-prime elements, *-irreducible elements are introduced in an Almost Distributive Lattice(ADL) and studied extensively their properties. A definition has been introduced on a congruence relation in terms of multiplier ideals and derived a set of equivalent conditions for the corresponding quotient ADL which becomes a Boolean algebra. Finally, characterized the *-prime and *-irreducible elements with the corresponding multiplier ideals.

1. Introduction

The concept of an Almost Distributive Lattice (ADL) was introduced by U. M. Swamy and G. C. Rao [8] as a common abstraction to most of the existing ring theoretic generalizations of a Boolean algebra on one hand and the class of distributive lattices on the other. In [6], G.C.Rao and M.S.Rao introduced the concept of annulets in an ADL and characterized both generalized stone ADL and normal ADL in terms of their annulets. The concept of Quasi-complemented ADL was introduced by G.C. Rao et. al. in [4] and they proved that a uniquely quasi-complemented ADL is a pseudo-complemented ADL. And also, the authors derived that an ADL is quasi-complemented ADL if and only if every prime ideal of an ADL is maximal. In [7], M.S. Rao introduced the concept of divisibility in distributive lattices in terms of annihilator ideals. He established that a relation between *-prime and *-irreducible elements and corresponding ideals formed by their multiplies. In this paper, we extend the concepts of divisibility, *-prime elements, *-irreducible elements in to an Almost Distributive Lattice and also studied their important properties. We defined a congruence relation θ on an ADL and established a set of a equivalent conditions for quotient ADL L/θ which becomes a Boolean algebra. Characterized *-prime and *-irreducible elements in

²⁰¹⁰ Mathematics Subject Classification. 06D99.

Key words and phrases. Almost Distributive Lattice(ADL), Boolean algebra, dense element, *-divisor, multipliers, quasi-complemented ADL, *-prime element, *-irreducible element.

¹⁷¹

terms of prime and maximal ideals respectively. Finally, it is proved that every *-irreducible element of an ADL is a *-prime element.

2. Preliminaries

In this section, some important definitions and results are provided for better understanding in which those are frequently used.

DEFINITION 2.1. ([8]) An Almost Distributive Lattice with zero or simply ADL is an algebra $(L, \lor, \land, 0)$ of type (2, 2, 0) satisfying:

1. $(x \lor y) \land z = (x \land z) \lor (y \land z)$ 2. $x \land (y \lor z) = (x \land y) \lor (x \land z)$ 3. $(x \lor y) \land y = y$ 4. $(x \lor y) \land x = x$ 5. $x \lor (x \land y) = x$ 6. $0 \land x = 0$ 7. $x \lor 0 = x$, for all $x, y, z \in L$.

Every non-empty set X can be regarded as an ADL as follows. Let $x_0 \in X$. Define the binary operations \lor, \land on X by

$$x \lor y = \begin{cases} x & \text{if } x \neq x_0 \\ y & \text{if } x = x_0 \end{cases} \qquad \qquad x \land y = \begin{cases} y & \text{if } x \neq x_0 \\ x_0 & \text{if } x = x_0 \end{cases}$$

Then (X, \lor, \land, x_0) is an ADL (where x_0 is the zero) and is called a discrete ADL. If $(L, \lor, \land, 0)$ is an ADL, for any $a, b \in L$, define $a \leq b$ if and only if $a = a \land b$ (or equivalently, $a \lor b = b$), then \leq is a partial ordering on L.

THEOREM 2.1 ([8]). If $(L, \lor, \land, 0)$ is an ADL, for any $a, b, c \in L$, we have the following:

(1). $a \lor b = a \Leftrightarrow a \land b = b$ (2). $a \lor b = b \Leftrightarrow a \land b = a$ (3). \land is associative in L(4). $a \land b \land c = b \land a \land c$ (5). $(a \lor b) \land c = (b \lor a) \land c$ (6). $a \land b = 0 \Leftrightarrow b \land a = 0$ (7). $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ (8). $a \land (a \lor b) = a$, $(a \land b) \lor b = b$ and $a \lor (b \land a) = a$ (9). $a \leqslant a \lor b$ and $a \land b \leqslant b$ (10). $a \land a = a$ and $a \lor a = a$ (11). $0 \lor a = a$ and $a \land 0 = 0$ (12). If $a \leqslant c$, $b \leqslant c$ then $a \land b = b \land a$ and $a \lor b = b \lor a$ (13). $a \lor b = (a \lor b) \lor a$.

It can be observed that an ADL L satisfies almost all the properties of a distributive lattice except the right distributivity of \lor over \land , commutativity of \lor , commutativity of \land . Any one of these properties make an ADL L a distributive lattice. That is

THEOREM 2.2 ([8]). Let $(L, \lor, \land, 0)$ be an ADL with 0. Then the following are equivalent:

- 1). $(L, \lor, \land, 0)$ is a distributive lattice
- 2). $a \lor b = b \lor a$, for all $a, b \in L$
- 3). $a \wedge b = b \wedge a$, for all $a, b \in L$
- 4). $(a \wedge b) \lor c = (a \lor c) \land (b \lor c)$, for all $a, b, c \in L$.

As usual, an element $m \in L$ is called maximal if it is a maximal element in the partially ordered set (L, \leq) . That is, for any $a \in L$, $m \leq a \Rightarrow m = a$.

THEOREM 2.3 ([8]). Let L be an ADL and $m \in L$. Then the following are equivalent:

1). *m* is maximal with respect to \leq

- 2). $m \lor a = m$, for all $a \in L$
- 3). $m \wedge a = a$, for all $a \in L$
- 4). $a \lor m$ is maximal, for all $a \in L$.

As in distributive lattices ([1], [2]), a non-empty sub set I of an ADL L is called an ideal of L if $a \lor b \in I$ and $a \land x \in I$ for any $a, b \in I$ and $x \in L$. Also, a non-empty subset F of L is said to be a filter of L if $a \land b \in F$ and $x \lor a \in F$ for $a, b \in F$ and $x \in L$.

The set I(L) of all ideals of L is a bounded distributive lattice with least element $\{0\}$ and greatest element L under set inclusion in which, for any $I, J \in I(L), I \cap J$ is the infimum of I and J while the supremum is given by $I \lor J := \{a \lor b \mid a \in I, b \in J\}$. A proper ideal P of L is called a prime ideal if, for any $x, y \in L, x \land y \in P \Rightarrow x \in P$ or $y \in P$. A proper ideal M of L is said to be maximal if it is not properly contained in any proper ideal of L. It can be observed that every maximal ideal of L is a prime ideal. Every proper ideal of L is contained in a maximal ideal. For any subset S of L the smallest ideal containing S is given by $(S] := \{(\bigvee_{i=1}^{n} s_i) \land x \mid s_i \in S, x \in L \text{ and } n \in N\}$. If $S = \{s\}$, we write (s] instead of (S]. Similarly, for any $S \subseteq L, [S] := \{x \lor (\bigwedge_{i=1}^{n} s_i) \mid s_i \in S, x \in L \text{ and } n \in N\}$. If $S = \{s\}$,

we write [s) instead of [S).

THEOREM 2.4. [8] For any x, y in L the following are equivalent:

1). $(x] \subseteq (y]$ 2). $y \land x = x$ 3). $y \lor x = y$ 4). $[y] \subseteq [x)$.

For any $x, y \in L$, it can be verified that $(x] \lor (y] = (x \lor y]$ and $(x] \land (y] = (x \land y]$. Hence the set PI(L) of all principal ideals of L is a sublattice of the distributive lattice I(L) of ideals of L. DEFINITION 2.2 ([6]). For any $A \subseteq L$, the annihilator of A is defined as $A^* = \{x \in L \mid a \land x = 0 \text{ for all } a \in A\}$

If $A = \{a\}$, then we denote $(\{a\})^*$ by $(a)^*$.

THEOREM 2.5 ([6]). For any $a, b \in L$, we have the following:

- (1). $(a] \subseteq (a)^{**}$
- (2). $(a)^{***} = (a)^*$
- (3). $a \leq b$ implies $(b)^* \subseteq (a)^*$
- (4). $(a)^* \subseteq (b)^*$ if and only if $(b)^{**} \subseteq (a)^{**}$
- (5). $(a \lor b)^* = (a)^* \cap (b)^*$
- (6). $(a \wedge b)^{**} = (a)^{**} \cap (b)^{**}$.

DEFINITION 2.3 ([3]). An equivalence relation θ on an ADL L is called a congruence relation on L if $(a \land c, b \land d), (a \lor c, b \lor d) \in \theta$, for all $(a, b), (c, d) \in \theta$

DEFINITION 2.4 ([3]). For any congruence relation θ on an ADL L and $a \in L$, we define $[a]_{\theta} = \{b \in L \mid (a, b) \in \theta\}$ and it is called the congruence class containing a.

THEOREM 2.6 ([3]). An equivalence relation θ on an ADL L is a congruence relation if and only if for any $(a,b) \in \theta$, $x \in L$, $(a \lor x, b \lor x)$, $(x \lor a, x \lor b)$, $(a \land x, b \land x)$, $(x \land a, x \land b)$ are all in θ

An element $a \in L$ is called dense [4] if $(a)^* = (0]$. The set D of all dense elements forms a filter provided $D \neq \emptyset$. A lattice L with 0 is called quasi-complemented [4] if for each $x \in L$, there exists $y \in L$ such that $x \wedge y = 0$ and $x \vee y$ is dense.

3. Divisibility in an ADL

In [7], M.S. Rao introduced the concepts of divisibility, *-prime, *-irreducibleelements in distributive lattices in terms of annihilator ideals and proved their properties. In this section, we extend these concepts to an Almost Distributive Lattice, analogously and established a set of a equivalent conditions for quotient ADL L/θ to become a Boolean algebra. We characterized *-prime elements and *-irreducible elements in terms of prime ideals and maximal ideals respectively. In addition to this, it is proved that every *-irreducible element of an ADL is a *-prime element. Though many results look similar, the proofs are not similar because we do not have the properties like commutativity of \lor , commutativity of \land and the right distributivity of \lor over \land in an ADL. Now, we begin with following definition.

DEFINITION 3.1. Let L be an ADL and for any $a, b \in L$. An element a is said to be a \star -divisor of b or a divides b if $(b)^* = (a \wedge c)^*$ for some $c \in L$. In this case, we write it as $(a/b)_*$.

We prove the following result.

LEMMA 3.1. Let L be an ADL. Then for any $a, b \in L$, we have $(a)^* = (b)^*$ implies that $(a \wedge x)^* = (b \wedge x)^*$ and $(a \vee x)^* = (b \vee x)^*$, for any $x \in L$.

174

PROOF. Suppose that $(a)^* = (b)^*$. Let x be any element of L. Now, $t \in (a \land x)^* \Leftrightarrow t \land a \land x = 0 \Leftrightarrow t \land x \in (a)^* = (b)^* \Leftrightarrow t \land x \land b = 0 \Leftrightarrow t \in (b \land x)^*$. Therefore $(a \land x)^* = (b \land x)^*$. And now, $(a \lor x)^* = (a)^* \cap (x)^* = (b)^* \cap (x)^* = (b \lor x)^*$. Hence $(a \lor x)^* = (b \lor x)^*$.

Now, we have the following properties of \star -divisibility.

LEMMA 3.2. Let L be an ADL with maximal elements. Then for any three elements $a, b, c \in L$, we have the following:

(a/0)*
If m is a maximal element of L then (m/a)*
(a/a)*
(a/a)*
(a)* = (b)* ⇒ (a/b)* and (b/a)*
(a)* = (b)* ⇒ (a/b)* and (b/a)*
(a/b)* and (b/c)* ⇒ (a/c)*
(a/b)* ⇒ (a/b ∧ x)* for all x ∈ L
(a/b)* ⇒ (a ∧ x/b ∧ x)* and (a ∨ x/b ∨ x)* for all x ∈ L.
PROOF. (1), (2) and (3) are obviously true.
(4). Suppose a ≤ c. Then a = a ∧ c. That implies (a)* = (a ∧ c)*. Therefore (c/a)*.

(4). Suppose $a \leq c$. Then $a = a \wedge c$. That implies $(a)^* = (a \wedge c)^*$. Therefore $(c/a)_*$. (5). Suppose $(a)^* = (b)^*$. Then we have $(a)^* = (b)^* = (b \wedge b)^*$. Hence $(b/a)_*$. Similarly, we get $(a/b)_*$.

(6). Let $(a/b)_*$ and $(b/c)_*$. Then $(b)^* = (a \wedge x)^*$ and $(c)^* = (b \wedge y)^*$, for some $x, y \in L$. Now $d \in (c)^* = (b \wedge y)^* \Leftrightarrow d \wedge b \wedge y = 0 \Leftrightarrow d \wedge y \in (b)^* = (a \wedge x)^* \Leftrightarrow d \wedge y \wedge a \wedge x = 0 \Leftrightarrow d \in (a \wedge x \wedge y)^*$. Therefore $(c)^* = (a \wedge x \wedge y)^*$. Hence $(a/c)_*$. (7). Let $(a/b)_*$. Then $(b)^* = (a \wedge r)^*$, for some $r \in L$. Now, for any $x \in L$, we get easily that $(b \wedge x)^* = (a \wedge r \wedge x)^*$. Therefore $(a/b \wedge x)_*$.

(8). Assume that $(a/b)_*$. Then $(b)^* = (a \land s)^*$, for some $s \in L$. Now, for any $x \in L$, we get easily that $(b \land x)^* = (a \land s \land x)^*$. Therefore $(a \land x/b \land x)^*$. Now, $(b \lor x)^* = (b)^* \cap (x)^* = (a \land s)^* \cap (x)^* = ((a \land s) \lor x)^* = (x \lor (a \land s))^* = ((x \lor a) \land (x \lor s))^* = ((a \lor x) \land (x \lor s))^*$. Therefore $(a \lor x/b \lor x)_*$.

DEFINITION 3.2. For any element a of an ADL L, we define $(a)^{\perp}$ as the set of all multipliers of a. That is $(a)^{\perp} = \{x \in L \mid (a/x)_*\}.$

LEMMA 3.3. Let L be an ADL with maximal elements. Then for any $a, b \in L$, we have the following:

- (1). $(0)^{\perp} = \{0\}$
- (2). $(m)^{\perp} = L$, where m is any maximal element of L.
- (3). $a \in (a)^{\perp}$
- (4). $(a)^{\perp}$ is an ideal of L.
- (5). $a \in (b)^{\perp} \Rightarrow (a)^{\perp} \subseteq (b)^{\perp}$
- (6). $a \leqslant b \Rightarrow (a)^{\perp} \subseteq (b)^{\perp}$
- (7). $(a)^* = (b)^* \Rightarrow (a)^{\perp} = (b)^{\perp}$
- (8). $(a)^{\perp} \cap (b)^{\perp} = (a \wedge b)^{\perp}$
- (9). d is a dense element of L if and only if $(d)^{\perp} = L$.

PROOF. (1). Let $x \in (0)^{\perp}$. Then $(0/x)_*$. That implies $(x)^* = (c \wedge 0)^* = (0)^* = L$. So that $x \in (x)^*$. Therefore $x \wedge x = 0$. Hence x = 0. Thus $(0)^{\perp} = \{0\}$.

(2). Let *m* be any maximal element of an ADL *L*. Clearly we have $x = m \wedge x$, for all $x \in L$. That implies $(x)^* = (m \wedge x)^*$. Therefore $x \in (m)^{\perp}$ and hence $(m)^{\perp} = L$. (3). Since $(a)^* = (a \wedge a)^*$, we get $(a/a)_*$. Hence $a \in (a)^{\perp}$.

(4). Let $x, y \in (a)^{\perp}$. Then $(a/x)_*$ and $(a/y)_*$. That implies $(x)^* = (r \land a)^*$ and $(y)^* = (s \land a)^*$, for some $r, s \in L$. Now $(x \lor y)^* = (x)^* \cap (y)^* = (r \land a)^* \cap (s \land a)^* = ((r \land a) \lor (s \land a))^* = ((r \lor s) \land a)^*$. Therefore $(a/x \lor y)_*$ and hence $x \lor y \in (a)^{\perp}$. Let $x \in (a)^{\perp}$ and $r \in L$. Then $(a/x)_*$. That implies $(x)^* = (s \land a)^*$, for some $s \in L$. Clearly, we get that $(x \land r)^* = (s \land a \land r)^*$. Therefore $(a/x \land r)_*$ and hence $x \land r \in (a)^{\perp}$. Thus $(a)^{\perp}$ is an ideal of L.

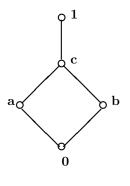
(5). Let $a \in (b)^{\perp}$. Then $(b/a)_*$. That implies $(a)^* = (s \wedge b)^*$, for some $s \in L$. Let $x \in (a)^{\perp}$. Then $(a/x)_*$ and hence $(x)^* = (r \wedge a)^*$, for some $r \in L$. Therefore $(x)^* = (r \wedge a)^* = (r \wedge s \wedge b)^*$. Hence $(b/x)_*$. Thus $x \in (b)^{\perp}$.

(6). Suppose $a \leq b$. Let $x \in (a)^{\perp}$. Then $(a/x)_*$. That implies $(x)^* = (r \wedge a)^* = (r \wedge a \wedge b)^*$ for some $r \in L$. Therefore $(b/x)_*$ and hence $x \in (b)^{\perp}$. Thus $(a)^{\perp} \subseteq (b)^{\perp}$. (7). Suppose $(a)^* = (b)^*$. Let $x \in (a)^{\perp}$. Then $(a/x)_*$. This implies $(x)^* = (r \wedge a)^* = (r \wedge b)^*$, for some $r \in L$. Therefore $(b/x)_*$ and hence $x \in (b)^{\perp}$. Similarly, we verify that $(b)^{\perp} \subseteq (a)^{\perp}$.

(8). Clearly, we have $(a \wedge b)^{\perp} \subseteq (a)^{\perp} \cap (b)^{\perp}$. Let $x \in (a)^{\perp} \cap (b)^{\perp}$. Then $(a/x)_*$ and $(b/x)_*$. Hence $(x)^* = (r \wedge a)^*$ and $(x)^* = (s \wedge b)^*$, for some $r, s \in L$. Now, $(x)^{**} = (x)^{**} \cap (x)^{**} = (r \wedge a)^{**} \cap (s \wedge b)^{**} = ((r \wedge s) \wedge (a \wedge b))^{**}$. That implies $(x)^* = (r \wedge s \wedge a \wedge b)^*$. Thus $((a \wedge b)/x)_*$. Therefore $x \in (a \wedge b)^{\perp}$ and hence $(a)^{\perp} \cap (b)^{\perp} = (a \wedge b)^{\perp}$.

(9). Let *m* be any maximal element of *L*. Assume that *d* is a dense element of *L*. Then $(d)^* = \{0\} = (m)^*$. Now, $d = m \land d \Rightarrow (d)^* = (m \land d)^* \Rightarrow (m)^* = (m \land d)^*$. Therefore $(d/m)_*$ and hence $m \in (d)^{\perp}$. Thus $(d)^{\perp} = L$. Conversely assume that $(d)^{\perp} = L$. Then maximal element $m \in (d)^{\perp}$. That implies $(d/m)_*$. Therefore $(m)^* = (d \land c)^*$. Implies that $\{0\} = (d \land c)^*$. Therefore $d \land c$ is maximal element and hence *d* is maximal element. Thus $(d)^* = \{0\}$.

Let us denote the set of all ideals of the form $(x)^{\perp}$ for all $x \in L$ by $\mathcal{I}^{\perp}(L)$. In general, $\mathcal{I}^{\perp}(L)$ is not a sublattice of $\mathcal{I}(L)$ of all ideals of L. For, consider the following distributive lattice $L = \{0, a, b, c, 1\}$ whose Hasse diagram is given by:



Then clearly $(a)^{\perp} = \{0, a\}$ and $(b)^{\perp} = \{0, b\}$. Hence $(a)^{\perp} \vee (b)^{\perp} = \{0, a\} \vee \{0, b\} = \{0, a, b, c\}$. But $(a \vee b)^{\perp} = (c)^{\perp} = L$ (because c is a dense element). Therefore $(a)^{\perp} \vee (b)^{\perp} \neq (a \vee b)^{\perp}$. Thus $\mathcal{I}^{\perp}(L)$ is not a sublattice of $\mathcal{I}(L)$.

We have the following theorem.

THEOREM 3.1. For any ADL L, the set $\mathcal{I}^{\perp}(L)$ forms a complete distributive lattice on its own.

PROOF. For any $a, b \in L$, define as $(a)^{\perp} \cap (b)^{\perp} = (a \wedge b)^{\perp}$ and $(a)^{\perp} \sqcup (b)^{\perp} = (a \vee b)^{\perp}$. Clearly, $(a \wedge b)^{\perp}$ is the infimum of both $(a)^{\perp}$ and $(b)^{\perp}$ in $\mathcal{I}^{\perp}(L)$. We have always $(a)^{\perp}, (b)^{\perp} \subseteq (a \vee b)^{\perp}$. Suppose $(a)^{\perp} \subseteq (c)^{\perp}$ and $(b)^{\perp} \subseteq (c)^{\perp}$ for some $c \in L$. Then we get $a, b \in (c)^{\perp}$. Since $(c)^{\perp}$ is an ideal, it gives $a \vee b \in (c)^{\perp}$. Hence $(a \vee b)^{\perp} \subseteq (c)^{\perp}$. Thus $(a \vee b)^{\perp}$ is the supremum of both $(a)^{\perp}$ and $(b)^{\perp}$ in $\mathcal{I}^{\perp}(L)$. Therefore $\mathcal{I}^{\perp}(L)$ is a lattice. We now prove the distributivity of these ideals. For any $(a)^{\perp}, (b)^{\perp}, (c)^{\perp} \in \mathcal{I}^{\perp}(L), (a)^{\perp} \sqcup \{(b)^{\perp} \cap (c)^{\perp}\} = (a)^{\perp} \sqcup (b \wedge c)^{\perp} = \{a \vee (b \wedge c)\}^{\perp} = \{(a \vee b) \wedge (a \vee c)\}^{\perp} = (a \vee b)^{\perp} \cap (a \vee c)^{\perp} = \{(a)^{\perp} \sqcup (b)^{\perp}\} \cap \{(a)^{\perp} \sqcup (c)^{\perp}\}$. Therefore $(\mathcal{I}^{\perp}(L), \cap, \sqcup)$ is a distributive lattice. Let a, b be two elements in L. Then $(a)^{\perp}, (b)^{\perp} \in \mathcal{I}^{\perp}(L)$. Define $(a)^{\perp} \leqslant (b)^{\perp} \Leftrightarrow (a)^{\perp} \subseteq (b)^{\perp}$. Clearly $(\mathcal{I}^{\perp}(L), \leqslant)$ is a partially ordered set. Clearly $\{0\}$ and L are the bounds for $\mathcal{I}^{\perp}(L)$. By lemma 3.3(8), we get that $\mathcal{I}^{\perp}(L)$ is bounded and complete distributive lattice.

We have the following definition.

DEFINITION 3.3. Let L be an ADL. For any $a, b \in L$, define a relation θ on L as follows:

 $(a,b) \in \theta$ if and only if $(a)^{\perp} = (b)^{\perp}$.

The following result can be verified easily.

LEMMA 3.4. Let L be an ADL. Then the relation θ defined above is a congruence on L.

Let θ be any congruence relation on an ADL L. For any $x \in L$, $[x]_{\theta} = \{y \in L \mid (x, y) \in \theta\}$. Write $L/\theta = \{[x]_{\theta} \mid x \in L\}$. Define binary operations \lor , \land on L/θ by $[x]_{\theta} \land [y]_{\theta} = [x \land y]_{\theta}$ and $[x]_{\theta} \lor [y]_{\theta} = [x \lor y]_{\theta}$, then it can be verified easily that $(L/\theta, \lor, \land)$ is an ADL. Let ρ be the natural homomorphism from L onto L/θ defined by $\rho(x) = [x]_{\theta}$, for all $x \in L$.

We prove the following lemma.

LEMMA 3.5. Let θ be any congruence relation on an ADL L. Then (0] is the smallest congruence class and D is the unit congruence class of L/θ

PROOF. Clearly, (0] is the smallest congruence of L/θ . Let $x, y \in D$. Then $(x)^* = (y)^* = \{0\}$. By lemma-3.3(7), we get that $(x)^{\perp} = (y)^{\perp}$. Therefore $(x, y) \in \theta$. Thus D is a congruence class of L/θ . Now, let $a \in D$ and $x \in L$. Since D is a filter, we get $a \lor x \in D$. Hence $[x]_{\theta} \lor [a]_{\theta} = [a \lor x]_{\theta} = D$. Thus D is the unit congruence class of L/θ .

From [4], recall that an Almost Distributive Lattice L is called quasi - complemented if for each $x \in L$, there is an element $y \in L$ such that $x \wedge y = 0$ and $x \vee y$ is a dense element.

Now, we establish a set of equivalent conditions for L/θ to become a Boolean algebra which leads to a characterization of quasi-complemented ADL.

THEOREM 3.2. Let L be an ADL. Then the following conditions are equivalent: (1). L is a quasi-complemented ADL

- (2). L/θ is a Boolean algebra
- (3). $\mathcal{I}^{\perp}(L)$ is a Boolean algebra

PROOF. (1) \Longrightarrow (2): Assume that L is a quasi-complemented ADL. Let $[x]_{\theta} \in L/\theta$. Since L is a quasi-complemented ADL and $x \in L$, there exists $x' \in L$ such that $x \wedge x' = 0$ and $x \vee x'$ is dense. Therefore $[x]_{\theta} \cap [x']_{\theta} = [x \wedge x']_{\theta} = [0]_{\theta}$ and also $[x]_{\theta} \vee [x']_{\theta} = [x \vee x']_{\theta} = D$. Hence L/θ is a Boolean algebra.

 $\begin{array}{l} (2) \Longrightarrow (3): \text{ Assume that } L/\theta \text{ is a Boolean algebra. Define a mapping } \Phi: L/\theta \longrightarrow \mathcal{I}^{\perp}(L) \text{ by } \Phi([x]_{\theta}) = (x)^{\perp} \text{ for all } [x]_{\theta} \in L/\theta. \text{ Clearly, } \Phi \text{ is well defined. Let } [x]_{\theta}, [y]_{\theta} \in L/\theta, \text{ Suppose } \Phi([x]_{\theta}) = \Phi([y]_{\theta}). \text{ Then } (x)^{\perp} = (y)^{\perp}. \text{ This implies } (x,y) \in \theta. \text{ Thus } [x]_{\theta} = [y]_{\theta}. \text{ Therefore } \Phi \text{ is injective. Let } (x)^{\perp} \in \mathcal{I}^{\perp}(L), \text{ where } x \in L. \text{ Now for this } x, \ \rho(x) = [x]_{\theta} \in L/\theta \text{ such that } \Phi([x]_{\theta}) = (x)^{\perp}. \text{ Therefore } \Phi \text{ is surjective and hence it is bijective. Let } [x]_{\theta}, [y]_{\theta} \in L/\theta \text{ where } x, y \in L. \text{ Then } \Phi([x]_{\theta} \cap [y]_{\theta}) = \Phi([x \wedge y]_{\theta}) = (x \wedge y)^{\perp} = (x)^{\perp} \cap (y)^{\perp} = \Phi([x]_{\theta}) \cap \Phi([y]_{\theta}). \text{ Again } \Phi([x]_{\theta} \vee [y]_{\theta}) = \Phi([x \vee y]_{\theta}) = (x \vee y)^{\perp} = (x)^{\perp} \sqcup (y)^{\perp} = \Phi([x]_{\theta}) \sqcup \Phi([y]_{\theta}). \text{ Thus } L/\theta \text{ is isomorphic to } \mathcal{I}^{\perp}(L). \text{ Therefore } \mathcal{I}^{\perp}(L) \text{ is a Boolean algebra.} \end{array}$

(3) \Longrightarrow (1): Assume that $\mathcal{I}^{\perp}(L)$ is a Boolean algebra. Let $x \in L$. Then $(x)^{\perp} \in \mathcal{I}^{\perp}(L)$. Since $\mathcal{I}^{\perp}(L)$ is a Boolean algebra, there exists $(y)^{\perp} \in \mathcal{I}^{\perp}(L)$ such that $(x \wedge y)^{\perp} = (x)^{\perp} \cap (y)^{\perp} = (0)^{\perp}$ and $(x \vee y)^{\perp} = (x)^{\perp} \vee (y)^{\perp} = L$. Hence $x \wedge y = 0$ and $x \vee y$ is dense. Therefore L is quasi-complemented.

Now, we have the following definition.

DEFINITION 3.4. A non-zero element a of an ADL L is called \star -prime if $(a/b \land c)_*$ implies that $(a/b)_*$ or $(a/c)_*$

We characterized the \star -prime elements in the following result.

THEOREM 3.3. Let a be a non-dense element of an ADL L. Then a is a \star -prime element of L if and only if $(a)^{\perp}$ is a prime ideal of L.

PROOF. Assume that a is \star -prime. Let $x, y \in L$ such that $x \wedge y \in (a)^{\perp}$. Then $(a/x \wedge y)_*$. Since a is \star -prime, we get either $(a/x)_*$ or $(a/y)_*$. That implies $x \in (a)^{\perp}$ or $y \in (a)^{\perp}$. Therefore $(a)^{\perp}$ is prime ideal of L. Conversely, assume that $(a)^{\perp}$ is a prime ideal of L. Let $x, y \in L$ with $(a/x \wedge y)_*$. Then $x \wedge y \in (a)^{\perp}$. Since $(a)^{\perp}$ is prime, we get either $x \in (a)^{\perp}$ or $y \in (a)^{\perp}$. Hence $(a/x)_*$ or $(a/y)_*$. Therefore a is a \star -prime element of L.

DEFINITION 3.5. A non-zero element a of an ADL L is called \star -irreducible if $(a)^* = (b \wedge c)^*$, then either $b \in D$ or $c \in D$.

178

Now, we have the following lemma.

LEMMA 3.6. Every dense element of L is a \star -irreducible element.

PROOF. Let d be a dense element of L. Then $(d)^* = (0]$. Suppose $(d)^* = (b \land c)^*$, for some $b, c \in L$. Then $(b \land c)^* = (0]$. Hence $(b)^* = (0]$ or $(c)^* = (0]$. Thus d is \star -irreducible.

We prove the following theorem.

THEOREM 3.4. Let a be a non-dense element of an ADL L with maximal elements. Then the following conditions are equivalent:

(1). a is \star -irreducible.

(2). i) (a)^{\perp} is a maximal among all proper ideals of the form $(x)^{\perp}$.

ii) For any $x \in L$, $(a)^* = (a \wedge x)^*$ implies $(x)^* = (0]$.

PROOF. Let m be any maximal element of an ADL L.

(1) \Longrightarrow (2)(i): Assume that a is a \star -irreducible element. Suppose $(a)^{\perp} \subseteq (b)^{\perp} \neq L$ for some a non-zero element b of L. We have $a \in (a)^{\perp} \subseteq (b)^{\perp}$. Then $(b/a)_*$. So that there exists $c \in L$ such that $(a)^* = (c \wedge b)^*$. Since a is \star -irreducible, we get that either $(b)^* = (0]$ or $(c)^* = (0]$. Since $(b)^{\perp} \neq L$, by lemma-3.3(9), we get that $(b)^* \neq (0]$. Hence $(c)^* = (0]$. Now, $(c)^* = (0] = (m)^* \Rightarrow (b \wedge c)^* = (b \wedge m)^* \Rightarrow (b \wedge c)^* = (b)^* \Rightarrow (a)^* = (b)^* \Rightarrow (a)^{\perp} = (b)^{\perp}$. Therefore $(a)^{\perp}$ is maximal among all ideals of the form $(x)^{\perp}$.

(1) \Longrightarrow (2)(ii): Suppose $(a)^* = (a \land x)^*$ for $x \in L$. Since a is \star -irreducible, we get that either $(a)^* = (0]$ or $(x)^* = (0]$. Since a is non-dense, we must have $(x)^* = (0]$. (2) \Longrightarrow (1): Assume the conditions (2)(i) and 2(ii). Suppose $(a)^* = (c \land d)^*$ for some $c, d \in L$. Hence $(d/a)_*$. So we get $a \in (d)^{\perp}$ and hence $(a)^{\perp} \subseteq (d)^{\perp}$. Since the ideal $(a)^{\perp}$ is maximal, we get that either $(a)^{\perp} = (d)^{\perp}$ or $(d)^{\perp} = L$. Suppose $(a)^* = (c \land r \land a)^* \Rightarrow (a)^* = (c \land r \land a)^* \Rightarrow (c \land r)^* = (0]$ by (2)(ii) $\Rightarrow (c)^* = (0]$. Suppose $(d)^{\perp} = L$. Let m be any maximal element of L. Then we have $m \in (d)^{\perp}$. Hence $(d/m)_*$. Then there exists some $s \in L$ such that $(m)^* = (s \land d)^*$. Thus $(s \land d)^* = \{0\}$ and hence $(d)^* = (0]$. Therefore a is a \star -irreducible element. \Box

We conclude this paper with the following result.

THEOREM 3.5. Let L be an ADL. Then every \star -irreducible element of L is a \star -prime element.

PROOF. If a is a dense element of an ADL L, then we are through. Suppose a is non-dense. Assume that a is a \star -irreducible element of L. Then by above theorem, $(a)^{\perp}$ is a maximal among all ideals of the form $(r)^{\perp}$. Choose $x, y \in L$ such that $x \notin (a)^{\perp}$ and $y \notin (a)^{\perp}$. Hence $(a)^{\perp} \subset (a)^{\perp} \vee (x] \subseteq (a)^{\perp} \vee (x)^{\perp} \subseteq (a)^{\perp} \sqcup (x)^{\perp}$ and also $(a)^{\perp} \subset (a)^{\perp} \sqcup (y)^{\perp}$. By the maximality of $(a)^{\perp}$, we get that $(a)^{\perp} \sqcup (x)^{\perp} = L$ and $(a)^{\perp} \sqcup (y)^{\perp} = L$. Now, $L = L \cap L = \{(a)^{\perp} \sqcup (x)^{\perp}\} \cap \{(a)^{\perp} \sqcup (y)^{\perp}\} =$ $(a)^{\perp} \sqcup \{(x)^{\perp} \cap (y)^{\perp}\} = (a)^{\perp} \sqcup (x \wedge y)^{\perp}$. If $x \wedge y \in (a)^{\perp}$, then $(x \wedge y)^{\perp} \subseteq (a)^{\perp}$. Hence $(a)^{\perp} = L$. Which is a contradiction. Thus $(a)^{\perp}$ is a prime ideal. Therefore by theorem 3.3, a is a \star -prime element of L.

References

- [1] G. Birkhoff: Lattice Theory, Amer. Math. Soc. Colloq. Publ. XXV, Providence, 1967.
- [2] G. Gratzer: General Lattice Theory, Academic Press, New York, Sanfransisco, 1978.
- [3] G.C. Rao: Almost Distributive Lattices, Doctoral Thesis (1980), Dept. of Mathematics, Andhra University, Visakhapatnam.
- [4] G. C. Rao, G. Nanaji Rao and A. Lakshmana, Quasi-complemented almost distributive lattices, *Southeast Asian Bull. Math* (to appear)
- [5] G.C. Rao and S. Ravi Kumar: Minimal prime ideals in an ADL, Int. J. Contemp. Sciences, 4 (2009), 475-484.
- [6] G.C. Rao and M. Sambasiva Rao: Annulets in Almost Distributive Lattices, European Journal of Pure and Applied Mathematics, Vol.2(1) (2009), 58-72.
- [7] M. Sambasiva Rao: Divisibility and Ideals in a Distributive Lattices, Southeast Asian Bulletin of Mathematics Vol.37 (2013), 763-770.
- [8] U.M. Swamy and G.C. Rao: Almost Distributive Lattices, J. Aust. Math. Soc. (Series A), 31 (1981), 77-91.

Received by editors 09.07.2015; Revised version 23.09.2015; Available online 28.09.2015.

N. Rafi, Department of Math., Bapatla Engineering College, Bapatla, Andhra Pradesh, India-522101

E-mail address: : rafimaths@gmail.com

R.K.Bandaru, Department of Engg. Mathematics, GITAM University, Hyderabad Campus, Andhra Pradesh, India-502329

E-mail address: ravimaths83@gmail.com

G.C. RAO, DEPARTMENT OF MATHEMATICS, ANDHRA UNIVERSITY, VISAKHAPATNAM, ANDHRA PRADESH, INDIA - 530003

E-mail address: gcraomaths@yahoo.co.in