On Divisibility of Almost Distributive Lattices

N. Rafi, Ravi Kumar Bandaru and G.C. Rao

Abstract

In this paper, the concepts of $*$-divisibility, $*-$ prime elements, *-irreducible elements are introduced in an Almost Distributive Lattice(ADL) and studied extensively their properties. A definition has been introduced on a congruence relation in terms of multiplier ideals and derived a set of equivalent conditions for the corresponding quotient ADL which becomes a Boolean algebra. Finally, characterized the $*-$ prime and $*-$ irreducible elements with the corresponding multiplier ideals.

1. Introduction

The concept of an Almost Distributive Lattice (ADL) was introduced by U . M. Swamy and G. C. Rao [8] as a common abstraction to most of the existing ring theoretic generalizations of a Boolean algebra on one hand and the class of distributive lattices on the other. In [6], G.C.Rao and M.S.Rao introduced the concept of annulets in an ADL and characterized both generalized stone ADL and normal ADL in terms of their annulets. The concept of Quasi-complemented ADL was introduced by G.C. Rao et. al. in [4] and they proved that a uniquely quasi-complemented ADL is a pseudo-complemented ADL. And also, the authors derived that an ADL is quasi-complemented ADL if and only if every prime ideal of an ADL is maximal. In [7], M.S. Rao introduced the concept of divisibility in distributive lattices in terms of annihilator ideals. He established that a relation between $*$-prime and $*$-irreducible elements and corresponding ideals formed by their multiplies. In this paper, we extend the concepts of divisibility, $*-$ prime elements, $*$-irreducible elements in to an Almost Distributive Lattice and also studied their important properties. We defined a congruence relation θ on an ADL and established a set of a equivalent conditions for quotient $\mathrm{ADL} L / \theta$ which becomes a Boolean algebra. Characterized $*-$ prime and $*$-irreducible elements in

[^0]terms of prime and maximal ideals respectively. Finally, it is proved that every $*-$ irreducible element of an ADL is a $*-$ prime element.

2. Preliminaries

In this section, some important definitions and results are provided for better understanding in which those are frequently used.

Definition 2.1. ([8]) An Almost Distributive Lattice with zero or simply ADL is an algebra $(L, \vee, \wedge, 0)$ of type $(2,2,0)$ satisfying:

1. $(x \vee y) \wedge z=(x \wedge z) \vee(y \wedge z)$
2. $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$
3. $(x \vee y) \wedge y=y$
4. $(x \vee y) \wedge x=x$
5. $x \vee(x \wedge y)=x$
6. $0 \wedge x=0$
7. $x \vee 0=x$, for all $x, y, z \in L$.

Every non-empty set X can be regarded as an ADL as follows. Let $x_{0} \in X$. Define the binary operations \vee, \wedge on X by

$$
x \vee y=\left\{\begin{array}{l}
x \text { if } x \neq x_{0} \\
y \text { if } x=x_{0}
\end{array} \quad x \wedge y=\left\{\begin{array}{l}
y \text { if } x \neq x_{0} \\
x_{0} \text { if } x=x_{0} .
\end{array}\right.\right.
$$

Then $\left(X, \vee, \wedge, x_{0}\right)$ is an ADL (where x_{0} is the zero) and is called a discrete ADL. If ($L, \vee, \wedge, 0$) is an ADL, for any $a, b \in L$, define $a \leqslant b$ if and only if $a=a \wedge b$ (or equivalently, $a \vee b=b$), then \leqslant is a partial ordering on L.

Theorem $2.1([\mathbf{8}])$. If $(L, \vee, \wedge, 0)$ is an $A D L$, for any $a, b, c \in L$, we have the following:
(1). $a \vee b=a \Leftrightarrow a \wedge b=b$
(2). $a \vee b=b \Leftrightarrow a \wedge b=a$
(3). \wedge is associative in L
(4). $a \wedge b \wedge c=b \wedge a \wedge c$
(5). $(a \vee b) \wedge c=(b \vee a) \wedge c$
(6). $a \wedge b=0 \Leftrightarrow b \wedge a=0$
(7). $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$
(8). $a \wedge(a \vee b)=a,(a \wedge b) \vee b=b$ and $a \vee(b \wedge a)=a$
(9). $a \leqslant a \vee b$ and $a \wedge b \leqslant b$
(10). $a \wedge a=a$ and $a \vee a=a$
(11). $0 \vee a=a$ and $a \wedge 0=0$
(12). If $a \leqslant c, b \leqslant c$ then $a \wedge b=b \wedge a$ and $a \vee b=b \vee a$
(13). $a \vee b=(a \vee b) \vee a$.

It can be observed that an ADL L satisfies almost all the properties of a distributive lattice except the right distributivity of \vee over \wedge, commutativity of \vee, commutativity of \wedge. Any one of these properties make an ADL L a distributive
lattice. That is

Theorem $2.2([8])$. Let $(L, \vee, \wedge, 0)$ be an ADL with 0 . Then the following are equivalent:
1). $(L, \vee, \wedge, 0)$ is a distributive lattice
2). $a \vee b=b \vee a$, for all $a, b \in L$
3). $a \wedge b=b \wedge a$, for all $a, b \in L$
4). $(a \wedge b) \vee c=(a \vee c) \wedge(b \vee c)$, for all $a, b, c \in L$.

As usual, an element $m \in L$ is called maximal if it is a maximal element in the partially ordered set (L, \leqslant). That is, for any $a \in L, m \leqslant a \Rightarrow m=a$.

Theorem 2.3 ([8]). Let L be an $A D L$ and $m \in L$. Then the following are equivalent:
1). m is maximal with respect to \leqslant
2). $m \vee a=m$, for all $a \in L$
3). $m \wedge a=a$, for all $a \in L$
4). $a \vee m$ is maximal, for all $a \in L$.

As in distributive lattices $([\mathbf{1}],[\mathbf{2}])$, a non-empty sub set I of an ADL L is called an ideal of L if $a \vee b \in I$ and $a \wedge x \in I$ for any $a, b \in I$ and $x \in L$. Also, a non-empty subset F of L is said to be a filter of L if $a \wedge b \in F$ and $x \vee a \in F$ for $a, b \in F$ and $x \in L$.

The set $I(L)$ of all ideals of L is a bounded distributive lattice with least element $\{0\}$ and greatest element L under set inclusion in which, for any $I, J \in I(L), I \cap J$ is the infimum of I and J while the supremum is given by $I \vee J:=\{a \vee b \mid a \in I, b \in J\}$. A proper ideal P of L is called a prime ideal if, for any $x, y \in L, x \wedge y \in P \Rightarrow$ $x \in P$ or $y \in P$. A proper ideal M of L is said to be maximal if it is not properly contained in any proper ideal of L. It can be observed that every maximal ideal of L is a prime ideal. Every proper ideal of L is contained in a maximal ideal. For any subset S of L the smallest ideal containing S is given by $(S]:=$ $\left\{\left(\bigvee_{i=1}^{n} s_{i}\right) \wedge x \mid s_{i} \in S, x \in L\right.$ and $\left.n \in N\right\}$. If $S=\{s\}$, we write ($\left.s\right]$ instead of $(S]$.
Similarly, for any $S \subseteq L,[S):=\left\{x \vee\left(\bigwedge_{i=1}^{n} s_{i}\right) \mid s_{i} \in S, x \in L\right.$ and $\left.n \in N\right\}$. If $S=\{s\}$, we write $[s)$ instead of $[S)$.

Theorem 2.4. [8] For any x, y in L the following are equivalent:
1). $(x] \subseteq(y]$
2). $y \wedge x=x$
3). $y \vee x=y$
4). $[y) \subseteq[x)$.

For any $x, y \in L$, it can be verified that $(x] \vee(y]=(x \vee y]$ and $(x] \wedge(y]=(x \wedge y]$. Hence the set $P I(L)$ of all principal ideals of L is a sublattice of the distributive lattice $I(L)$ of ideals of L.

Definition $2.2([\mathbf{6}])$. For any $A \subseteq L$, the annihilator of A is defined as $A^{*}=\{x \in L \mid a \wedge x=0$ for all $a \in A\}$

If $A=\{a\}$, then we denote $(\{a\})^{*}$ by $(a)^{*}$.
Theorem 2.5 ([6]). For any $a, b \in L$, we have the following:
(1). $(a] \subseteq(a)^{* *}$
(2). $(a)^{* * *}=(a)^{*}$
(3). $a \leqslant b$ implies $(b)^{*} \subseteq(a)^{*}$
(4). $(a)^{*} \subseteq(b)^{*}$ if and only if $(b)^{* *} \subseteq(a)^{* *}$
(5). $(a \vee b)^{*}=(a)^{*} \cap(b)^{*}$
(6). $(a \wedge b)^{* *}=(a)^{* *} \cap(b)^{* *}$.

Definition 2.3 ([3]). An equivalence relation θ on an ADL L is called a congruence relation on L if $(a \wedge c, b \wedge d),(a \vee c, b \vee d) \in \theta$, for all $(a, b),(c, d) \in \theta$

Definition 2.4 ([3]). For any congruence relation θ on an ADL L and $a \in L$, we define $[a]_{\theta}=\{b \in L \mid(a, b) \in \theta\}$ and it is called the congruence class containing a.

ThEOREM 2.6 ([3]). An equivalence relation θ on an $A D L L$ is a congruence relation if and only if for any $(a, b) \in \theta, x \in L,(a \vee x, b \vee x),(x \vee a, x \vee b),(a \wedge x, b \wedge$ $x),(x \wedge a, x \wedge b)$ are all in θ

An element $a \in L$ is called dense [4] if $(a)^{*}=(0]$. The set D of all dense elements forms a filter provided $D \neq \emptyset$. A lattice L with 0 is called quasi-complemented [4] if for each $x \in L$, there exists $y \in L$ such that $x \wedge y=0$ and $x \vee y$ is dense.

3. Divisibility in an ADL

In [7], M.S. Rao introduced the concepts of divisibility, $*-$ prime, $*$-irreducible elements in distributive lattices in terms of annihilator ideals and proved their properties. In this section, we extend these concepts to an Almost Distributive Lattice, analogously and established a set of a equivalent conditions for quotient ADL L / θ to become a Boolean algebra. We characterized $*-$ prime elements and *-irreducible elements in terms of prime ideals and maximal ideals respectively. In addition to this, it is proved that every $*$-irreducible element of an ADL is a *-prime element. Though many results look similar, the proofs are not similar because we do not have the properties like commutativity of \vee, commutativity of \wedge and the right distributivity of \vee over \wedge in an ADL.
Now, we begin with following definition.
Definition 3.1. Let L be an ADL and for any $a, b \in L$. An element a is said to be a \star-divisor of b or a divides b if $(b)^{*}=(a \wedge c)^{*}$ for some $c \in L$. In this case, we write it as $(a / b)_{*}$.

We prove the following result.
Lemma 3.1. Let L be an $A D L$. Then for any $a, b \in L$, we have $(a)^{*}=(b)^{*}$ implies that $(a \wedge x)^{*}=(b \wedge x)^{*}$ and $(a \vee x)^{*}=(b \vee x)^{*}$, for any $x \in L$.

Proof. Suppose that $(a)^{*}=(b)^{*}$. Let x be any element of L. Now, $t \in(a \wedge$ $x)^{*} \Leftrightarrow t \wedge a \wedge x=0 \Leftrightarrow t \wedge x \in(a)^{*}=(b)^{*} \Leftrightarrow t \wedge x \wedge b=0 \Leftrightarrow t \in(b \wedge x)^{*}$. Therefore $(a \wedge x)^{*}=(b \wedge x)^{*}$. And now, $(a \vee x)^{*}=(a)^{*} \cap(x)^{*}=(b)^{*} \cap(x)^{*}=(b \vee x)^{*}$. Hence $(a \vee x)^{*}=(b \vee x)^{*}$.

Now, we have the following properties of \star-divisibility.
Lemma 3.2. Let L be an ADL with maximal elements. Then for any three elements $a, b, c \in L$, we have the following:
(1). $(a / 0)_{*}$
(2). If m is a maximal element of L then $(m / a)_{*}$
(3). $(a / a)_{*}$
(4). $a \leqslant c \Rightarrow(c / a)_{*}$.
(5). $(a)^{*}=(b)^{*} \Rightarrow(a / b)_{*}$ and $(b / a)_{*}$
(6). $(a / b)_{*}$ and $(b / c)_{*} \Rightarrow(a / c)_{*}$
(7). $(a / b)_{*} \Rightarrow(a / b \wedge x)_{*}$ for all $x \in L$
(8). $(a / b)_{*} \Rightarrow(a \wedge x / b \wedge x)_{*}$ and $(a \vee x / b \vee x)_{*}$ for all $x \in L$.

Proof. (1), (2) and (3) are obviously true.
(4). Suppose $a \leqslant c$. Then $a=a \wedge c$. That implies $(a)^{*}=(a \wedge c)^{*}$. Therefore $(c / a)_{*}$. (5). Suppose $(a)^{*}=(b)^{*}$. Then we have $(a)^{*}=(b)^{*}=(b \wedge b)^{*}$. Hence $(b / a)_{*}$. Similarly, we get $(a / b)_{*}$.
(6). Let $(a / b)_{*}$ and $(b / c)_{*}$. Then $(b)^{*}=(a \wedge x)^{*}$ and $(c)^{*}=(b \wedge y)^{*}$, for some $x, y \in L$. Now $d \in(c)^{*}=(b \wedge y)^{*} \Leftrightarrow d \wedge b \wedge y=0 \Leftrightarrow d \wedge y \in(b)^{*}=(a \wedge x)^{*} \Leftrightarrow$ $d \wedge y \wedge a \wedge x=0 \Leftrightarrow d \in(a \wedge x \wedge y)^{*}$. Therefore $(c)^{*}=(a \wedge x \wedge y)^{*}$. Hence $(a / c)_{*}$.
(7). Let $(a / b)_{*}$. Then $(b)^{*}=(a \wedge r)^{*}$, for some $r \in L$. Now, for any $x \in L$, we get easily that $(b \wedge x)^{*}=(a \wedge r \wedge x)^{*}$. Therefore $(a / b \wedge x)_{*}$.
(8). Assume that $(a / b)_{*}$. Then $(b)^{*}=(a \wedge s)^{*}$, for some $s \in L$. Now, for any $x \in L$, we get easily that $(b \wedge x)^{*}=(a \wedge s \wedge x)^{*}$. Therefore $(a \wedge x / b \wedge x)^{*}$. Now, $(b \vee x)^{*}=(b)^{*} \cap(x)^{*}=(a \wedge s)^{*} \cap(x)^{*}=((a \wedge s) \vee x)^{*}=(x \vee(a \wedge s))^{*}=$ $((x \vee a) \wedge(x \vee s))^{*}=((a \vee x) \wedge(x \vee s))^{*}$. Therefore $(a \vee x / b \vee x)_{*}$.

Definition 3.2. For any element a of an ADL L, we define $(a)^{\perp}$ as the set of all multipliers of a. That is $(a)^{\perp}=\left\{x \in L \mid(a / x)_{*}\right\}$.

Lemma 3.3. Let L be an ADL with maximal elements. Then for any $a, b \in L$, we have the following:
(1). $(0)^{\perp}=\{0\}$
(2). $(m)^{\perp}=L$, where m is any maximal element of L.
(3). $a \in(a)^{\perp}$
(4). $(a)^{\perp}$ is an ideal of L.
(5). $a \in(b)^{\perp} \Rightarrow(a)^{\perp} \subseteq(b)^{\perp}$
(6). $a \leqslant b \Rightarrow(a)^{\perp} \subseteq(b)^{\perp}$
(7). $(a)^{*}=(b)^{*} \Rightarrow(a)^{\perp}=(b)^{\perp}$
(8). $(a)^{\perp} \cap(b)^{\perp}=(a \wedge b)^{\perp}$
(9). d is a dense element of L if and only if $(d)^{\perp}=L$.

Proof. (1). Let $x \in(0)^{\perp}$. Then $(0 / x)_{*}$. That implies $(x)^{*}=(c \wedge 0)^{*}=(0)^{*}=$ L. So that $x \in(x)^{*}$. Therefore $x \wedge x=0$. Hence $x=0$. Thus $(0)^{\perp}=\{0\}$.
(2). Let m be any maximal element of an ADL L. Clearly we have $x=m \wedge x$, for all $x \in L$. That implies $(x)^{*}=(m \wedge x)^{*}$. Therefore $x \in(m)^{\perp}$ and hence $(m)^{\perp}=L$. (3). Since $(a)^{*}=(a \wedge a)^{*}$, we get $(a / a)_{*}$. Hence $a \in(a)^{\perp}$.
(4). Let $x, y \in(a)^{\perp}$. Then $(a / x)_{*}$ and $(a / y)_{*}$. That implies $(x)^{*}=(r \wedge a)^{*}$ and $(y)^{*}=(s \wedge a)^{*}$, for some $r, s \in L$. Now $(x \vee y)^{*}=(x)^{*} \cap(y)^{*}=(r \wedge a)^{*} \cap(s \wedge a)^{*}=$ $((r \wedge a) \vee(s \wedge a))^{*}=((r \vee s) \wedge a)^{*}$. Therefore $(a / x \vee y)_{*}$ and hence $x \vee y \in(a)^{\perp}$. Let $x \in(a)^{\perp}$ and $r \in L$. Then $(a / x)_{*}$. That implies $(x)^{*}=(s \wedge a)^{*}$, for some $s \in L$. Clearly, we get that $(x \wedge r)^{*}=(s \wedge a \wedge r)^{*}$. Therefore $(a / x \wedge r)_{*}$ and hence $x \wedge r \in(a)^{\perp}$. Thus $(a)^{\perp}$ is an ideal of L.
(5). Let $a \in(b)^{\perp}$. Then $(b / a)_{*}$. That implies $(a)^{*}=(s \wedge b)^{*}$, for some $s \in L$. Let $x \in(a)^{\perp}$. Then $(a / x)_{*}$ and hence $(x)^{*}=(r \wedge a)^{*}$, for some $r \in L$. Therefore $(x)^{*}=(r \wedge a)^{*}=(r \wedge s \wedge b)^{*}$. Hence $(b / x)_{*}$. Thus $x \in(b)^{\perp}$.
(6). Suppose $a \leqslant b$. Let $x \in(a)^{\perp}$. Then $(a / x)_{*}$. That implies $(x)^{*}=(r \wedge a)^{*}=$ $(r \wedge a \wedge b)^{*}$ for some $r \in L$. Therefore $(b / x)_{*}$ and hence $x \in(b)^{\perp}$. Thus $(a)^{\perp} \subseteq(b)^{\perp}$. (7). Suppose $(a)^{*}=(b)^{*}$. Let $x \in(a)^{\perp}$. Then $(a / x)_{*}$. This implies $(x)^{*}=(r \wedge a)^{*}=$ $(r \wedge b)^{*}$, for some $r \in L$. Therefore $(b / x)_{*}$ and hence $x \in(b)^{\perp}$. Similarly, we verify that $(b)^{\perp} \subseteq(a)^{\perp}$.
(8). Clearly, we have $(a \wedge b)^{\perp} \subseteq(a)^{\perp} \cap(b)^{\perp}$. Let $x \in(a)^{\perp} \cap(b)^{\perp}$. Then $(a / x)_{*}$ and $(b / x)_{*}$. Hence $(x)^{*}=(r \wedge a)^{*}$ and $(x)^{*}=(s \wedge b)^{*}$, for some $r, s \in L$. Now, $(x)^{* *}=(x)^{* *} \cap(x)^{* *}=(r \wedge a)^{* *} \cap(s \wedge b)^{* *}=((r \wedge s) \wedge(a \wedge b))^{* *}$. That implies $(x)^{*}=(r \wedge s \wedge a \wedge b)^{*}$. Thus $((a \wedge b) / x)_{*}$. Therefore $x \in(a \wedge b)^{\perp}$ and hence $(a)^{\perp} \cap(b)^{\perp}=(a \wedge b)^{\perp}$.
(9). Let m be any maximal element of L. Assume that d is a dense element of L. Then $(d)^{*}=\{0\}=(m)^{*}$. Now, $d=m \wedge d \Rightarrow(d)^{*}=(m \wedge d)^{*} \Rightarrow(m)^{*}=(m \wedge d)^{*}$. Therefore $(d / m)_{*}$ and hence $m \in(d)^{\perp}$. Thus $(d)^{\perp}=L$. Conversely assume that $(d)^{\perp}=L$. Then maximal element $m \in(d)^{\perp}$. That implies $(d / m)_{*}$. Therefore $(m)^{*}=(d \wedge c)^{*}$. Implies that $\{0\}=(d \wedge c)^{*}$. Therefore $d \wedge c$ is maximal element and hence d is maximal element. Thus $(d)^{*}=\{0\}$.

Let us denote the set of all ideals of the form $(x)^{\perp}$ for all $x \in L$ by $\mathcal{I}^{\perp}(L)$. In general, $\mathcal{I}^{\perp}(L)$ is not a sublattice of $\mathcal{I}(L)$ of all ideals of L. For, consider the following distributive lattice $L=\{0, a, b, c, 1\}$ whose Hasse diagram is given by:

Then clearly $(a)^{\perp}=\{0, a\}$ and $(b)^{\perp}=\{0, b\}$. Hence $(a)^{\perp} \vee(b)^{\perp}=\{0, a\} \vee$ $\{0, b\}=\{0, a, b, c\}$. But $(a \vee b)^{\perp}=(c)^{\perp}=L$ (because c is a dense element). Therefore $(a)^{\perp} \vee(b)^{\perp} \neq(a \vee b)^{\perp}$. Thus $\mathcal{I}^{\perp}(L)$ is not a sublattice of $\mathcal{I}(L)$.

We have the following theorem.
Theorem 3.1. For any $A D L L$, the set $\mathcal{I}^{\perp}(L)$ forms a complete distributive lattice on its own.

Proof. For any $a, b \in L$, define as $(a)^{\perp} \cap(b)^{\perp}=(a \wedge b)^{\perp}$ and $(a)^{\perp} \sqcup(b)^{\perp}=$ $(a \vee b)^{\perp}$. Clearly, $(a \wedge b)^{\perp}$ is the infimum of both $(a)^{\perp}$ and $(b)^{\perp}$ in $\mathcal{I}^{\perp}(L)$. We have always $(a)^{\perp},(b)^{\perp} \subseteq(a \vee b)^{\perp}$. Suppose $(a)^{\perp} \subseteq(c)^{\perp}$ and $(b)^{\perp} \subseteq(c)^{\perp}$ for some $c \in L$. Then we get $a, b \in(c)^{\perp}$. Since $(c)^{\perp}$ is an ideal, it gives $a \vee b \in(c)^{\perp}$. Hence $(a \vee b)^{\perp} \subseteq(c)^{\perp}$. Thus $(a \vee b)^{\perp}$ is the supremum of both $(a)^{\perp}$ and $(b)^{\perp}$ in $\mathcal{I}^{\perp}(L)$. Therefore $\mathcal{I}^{\perp}(L)$ is a lattice. We now prove the distributivity of these ideals. For any $(a)^{\perp},(b)^{\perp},(c)^{\perp} \in \mathcal{I}^{\perp}(L),(a)^{\perp} \sqcup\left\{(b)^{\perp} \cap(c)^{\perp}\right\}=(a)^{\perp} \sqcup(b \wedge c)^{\perp}=$ $\{a \vee(b \wedge c)\}^{\perp}=\{(a \vee b) \wedge(a \vee c)\}^{\perp}=(a \vee b)^{\perp} \cap(a \vee c)^{\perp}=\left\{(a)^{\perp} \sqcup(b)^{\perp}\right\} \cap\left\{(a)^{\perp} \sqcup(c)^{\perp}\right\}$. Therefore $\left(\mathcal{I}^{\perp}(L), \cap, \sqcup\right)$ is a distributive lattice. Let a, b be two elements in L. Then $(a)^{\perp},(b)^{\perp} \in \mathcal{I}^{\perp}(L)$. Define $(a)^{\perp} \leqslant(b)^{\perp} \Leftrightarrow(a)^{\perp} \subseteq(b)^{\perp}$. Clearly $\left(\mathcal{I}^{\perp}(L), \leqslant\right)$ is a partially ordered set. Clearly $\{0\}$ and L are the bounds for $\mathcal{I}^{\perp}(L)$. By lemma $3.3(8)$, we get that $\mathcal{I}^{\perp}(L)$ is bounded and complete distributive lattice.

We have the following definition.
Definition 3.3. Let L be an ADL. For any $a, b \in L$, define a relation θ on L as follows:
$(a, b) \in \theta$ if and only if $(a)^{\perp}=(b)^{\perp}$.
The following result can be verified easily.
Lemma 3.4. Let L be an $A D L$. Then the relation θ defined above is a congruence on L.

Let θ be any congruence relation on an ADL L. For any $x \in L,[x]_{\theta}=\{y \in$ $L \mid(x, y) \in \theta\}$. Write $L / \theta=\left\{[x]_{\theta} \mid x \in L\right\}$. Define binary operations \vee, \wedge on L / θ by $[x]_{\theta} \wedge[y]_{\theta}=[x \wedge y]_{\theta}$ and $[x]_{\theta} \vee[y]_{\theta}=[x \vee y]_{\theta}$, then it can be verified easily that $(L / \theta, \vee, \wedge)$ is an ADL. Let ρ be the natural homomorphism from L onto L / θ defined by $\rho(x)=[x]_{\theta}$, for all $x \in L$.

We prove the following lemma.
Lemma 3.5. Let θ be any congruence relation on an $A D L$. Then (0] is the smallest congruence class and D is the unit congruence class of L / θ

Proof. Clearly, (0] is the smallest congruence of L / θ. Let $x, y \in D$. Then $(x)^{*}=(y)^{*}=\{0\}$. By lemma-3.3(7), we get that $(x)^{\perp}=(y)^{\perp}$. Therefore $(x, y) \in \theta$. Thus D is a congruence class of L / θ. Now, let $a \in D$ and $x \in L$. Since D is a filter, we get $a \vee x \in D$. Hence $[x]_{\theta} \vee[a]_{\theta}=[a \vee x]_{\theta}=D$. Thus D is the unit congruence class of L / θ.

From [4], recall that an Almost Distributive Lattice L is called quasi - complemented if for each $x \in L$, there is an element $y \in L$ such that $x \wedge y=0$ and $x \vee y$ is a dense element.

Now, we establish a set of equivalent conditions for L / θ to become a Boolean algebra which leads to a characterization of quasi-complemented ADL.

Theorem 3.2. Let L be an ADL. Then the following conditions are equivalent: (1). L is a quasi-complemented $A D L$
(2). L / θ is a Boolean algebra
(3). $\mathcal{I}^{\perp}(L)$ is a Boolean algebra

Proof. $(1) \Longrightarrow(2)$: Assume that L is a quasi-complemented ADL. Let $[x]_{\theta} \in$ L / θ. Since L is a quasi-complemented ADL and $x \in L$, there exists $x^{\prime} \in L$ such that $x \wedge x^{\prime}=0$ and $x \vee x^{\prime}$ is dense. Therefore $[x]_{\theta} \cap\left[x^{\prime}\right]_{\theta}=\left[x \wedge x^{\prime}\right]_{\theta}=[0]_{\theta}$ and also $[x]_{\theta} \vee\left[x^{\prime}\right]_{\theta}=\left[x \vee x^{\prime}\right]_{\theta}=D$. Hence L / θ. is a Boolean algebra.
$(2) \Longrightarrow(3)$: Assume that L / θ is a Boolean algebra. Define a mapping $\Phi: L / \theta \longrightarrow$ $\mathcal{I}^{\perp}(L)$ by $\Phi\left([x]_{\theta}\right)=(x)^{\perp}$ for all $[x]_{\theta} \in L / \theta$. Clearly, Φ is well defined. Let $[x]_{\theta},[y]_{\theta} \in$ L / θ, Suppose $\Phi\left([x]_{\theta}\right)=\Phi\left([y]_{\theta}\right)$. Then $(x)^{\perp}=(y)^{\perp}$. This implies $(x, y) \in \theta$. Thus $[x]_{\theta}=[y]_{\theta}$. Therefore Φ is injective. Let $(x)^{\perp} \in \mathcal{I}^{\perp}(L)$, where $x \in L$. Now for this $x, \rho(x)=[x]_{\theta} \in L / \theta$ such that $\Phi\left([x]_{\theta}\right)=(x)^{\perp}$. Therefore Φ is surjective and hence it is bijective. Let $[x]_{\theta},[y]_{\theta} \in L / \theta$ where $x, y \in L$. Then $\Phi\left([x]_{\theta} \cap[y]_{\theta}\right)=$ $\Phi\left([x \wedge y]_{\theta}\right)=(x \wedge y)^{\perp}=(x)^{\perp} \cap(y)^{\perp}=\Phi\left([x]_{\theta}\right) \cap \Phi\left([y]_{\theta}\right)$. Again $\Phi\left([x]_{\theta} \vee[y]_{\theta}\right)=$ $\Phi\left([x \vee y]_{\theta}\right)=(x \vee y)^{\perp}=(x)^{\perp} \sqcup(y)^{\perp}=\Phi\left([x]_{\theta}\right) \sqcup \Phi\left([y]_{\theta}\right)$. Thus L / θ is isomorphic to $\mathcal{I}^{\perp}(L)$. Therefore $\mathcal{I}^{\perp}(L)$ is a Boolean algebra.
$(3) \Longrightarrow(1)$: Assume that $\mathcal{I}^{\perp}(L)$ is a Boolean algebra. Let $x \in L$. Then $(x)^{\perp} \in$ $\mathcal{I}^{\perp}(L)$. Since $\mathcal{I}^{\perp}(L)$ is a Boolean algebra, there exists $(y)^{\perp} \in \mathcal{I}^{\perp}(L)$ such that $(x \wedge y)^{\perp}=(x)^{\perp} \cap(y)^{\perp}=(0)^{\perp}$ and $(x \vee y)^{\perp}=(x)^{\perp} \vee(y)^{\perp}=L$. Hence $x \wedge y=0$ and $x \vee y$ is dense. Therefore L is quasi-complemented.

Now, we have the following definition.
Definition 3.4. A non-zero element a of an ADL L is called \star-prime if $(a / b \wedge$ $c)_{*}$ implies that $(a / b)_{*}$ or $(a / c)_{*}$

We characterized the \star-prime elements in the following result.
Theorem 3.3. Let a be a non-dense element of an ADL L. Then a is a a-prime element of L if and only if $(a)^{\perp}$ is a prime ideal of L.

Proof. Assume that a is \star-prime. Let $x, y \in L$ such that $x \wedge y \in(a)^{\perp}$. Then $(a / x \wedge y)_{*}$. Since a is $\star-$ prime, we get either $(a / x)_{*}$ or $(a / y)_{*}$. That implies $x \in(a)^{\perp}$ or $y \in(a)^{\perp}$. Therefore $(a)^{\perp}$ is prime ideal of L. Conversely, assume that $(a)^{\perp}$ is a prime ideal of L. Let $x, y \in L$ with $(a / x \wedge y)_{*}$. Then $x \wedge y \in(a)^{\perp}$. Since $(a)^{\perp}$ is prime, we get either $x \in(a)^{\perp}$ or $y \in(a)^{\perp}$. Hence $(a / x)_{*}$ or $(a / y)_{*}$. Therefore a is a \star-prime element of L.

Definition 3.5. A non-zero element a of an ADL L is called \star-irreducible if $(a)^{*}=(b \wedge c)^{*}$, then either $b \in D$ or $c \in D$.

Now, we have the following lemma.
Lemma 3.6. Every dense element of L is $a \star$-irreducible element.
Proof. Let d be a dense element of L. Then $(d)^{*}=(0]$. Suppose $(d)^{*}=(b \wedge c)^{*}$, for some $b, c \in L$. Then $(b \wedge c)^{*}=(0]$. Hence $(b)^{*}=(0]$ or $(c)^{*}=(0]$. Thus d is \star-irreducible.

We prove the following theorem.
Theorem 3.4. Let a be a non-dense element of an ADL L with maximal elements. Then the following conditions are equivalent:
(1). a is \star-irreducible.
(2). i) $(a)^{\perp}$ is a maximal among all proper ideals of the form $(x)^{\perp}$.
ii) For any $x \in L,(a)^{*}=(a \wedge x)^{*}$ implies $(x)^{*}=(0]$.

Proof. Let m be any maximal element of an ADL L.
$(1) \Longrightarrow(2)(\mathrm{i}):$ Assume that a is a \star-irreducible element. Suppose $(a)^{\perp} \subseteq(b)^{\perp} \neq L$ for some a non-zero element b of L. We have $a \in(a)^{\perp} \subseteq(b)^{\perp}$. Then $(b / a)_{*}$. So that there exists $c \in L$ such that $(a)^{*}=(c \wedge b)^{*}$. Since a is \star-irreducible, we get that either $(b)^{*}=(0]$ or $(c)^{*}=(0]$. Since $(b)^{\perp} \neq L$, by lemma-3.3(9), we get that $(b)^{*} \neq(0]$. Hence $(c)^{*}=(0]$. Now, $(c)^{*}=(0]=(m)^{*} \Rightarrow(b \wedge c)^{*}=(b \wedge m)^{*} \Rightarrow$ $(b \wedge c)^{*}=(b)^{*} \Rightarrow(a)^{*}=(b)^{*} \Rightarrow(a)^{\perp}=(b)^{\perp}$. Therefore $(a)^{\perp}$ is maximal among all ideals of the form $(x)^{\perp}$.
$(1) \Longrightarrow(2)($ ii $):$ Suppose $(a)^{*}=(a \wedge x)^{*}$ for $x \in L$. Since a is \star-irreducible, we get that either $(a)^{*}=(0]$ or $(x)^{*}=(0]$. Since a is non-dense, we must have $(x)^{*}=(0]$. $(2) \Longrightarrow(1)$: Assume the conditions $(2)(\mathrm{i})$ and 2(ii). Suppose $(a)^{*}=(c \wedge d)^{*}$ for some $c, d \in L$. Hence $(d / a)_{*}$. So we get $a \in(d)^{\perp}$ and hence $(a)^{\perp} \subseteq(d)^{\perp}$. Since the ideal $(a)^{\perp}$ is maximal, we get that either $(a)^{\perp}=(d)^{\perp}$ or $(d)^{\perp}=L$. Suppose $(a)^{\perp}=(d)^{\perp}$. Then we get $d \in(a)^{\perp} \Rightarrow(a / d)_{*} \Rightarrow(d)^{*}=(r \wedge a)^{*}$ for some $r \in L \Rightarrow$ $(c \wedge d)^{*}=(c \wedge r \wedge a)^{*} \Rightarrow(a)^{*}=(c \wedge r \wedge a)^{*} \Rightarrow(c \wedge r)^{*}=(0]$ by $(2)(\mathrm{ii}) \Rightarrow(c)^{*}=(0]$. Suppose $(d)^{\perp}=L$. Let m be any maximal element of L. Then we have $m \in(d)^{\perp}$. Hence $(d / m)_{*}$. Then there exists some $s \in L$ such that $(m)^{*}=(s \wedge d)^{*}$. Thus $(s \wedge d)^{*}=\{0\}$ and hence $(d)^{*}=(0]$. Therefore a is a \star-irreducible element.

We conclude this paper with the following result.
Theorem 3.5. Let L be an ADL. Then every \star-irreducible element of L is a *-prime element.

Proof. If a is a dense element of an ADL L, then we are through. Suppose a is non-dense. Assume that a is a \star-irreducible element of L. Then by above theorem, $(a)^{\perp}$ is a maximal among all ideals of the form $(r)^{\perp}$. Choose $x, y \in L$ such that $x \notin(a)^{\perp}$ and $y \notin(a)^{\perp}$. Hence $(a)^{\perp} \subset(a)^{\perp} \vee(x] \subseteq(a)^{\perp} \vee(x)^{\perp} \subseteq(a)^{\perp} \sqcup(x)^{\perp}$ and also $(a)^{\perp} \subset(a)^{\perp} \sqcup(y)^{\perp}$. By the maximality of $(a)^{\perp}$, we get that $(a)^{\perp} \sqcup(x)^{\perp}=L$ and $(a)^{\perp} \sqcup(y)^{\perp}=L$. Now, $L=L \cap L=\left\{(a)^{\perp} \sqcup(x)^{\perp}\right\} \cap\left\{(a)^{\perp} \sqcup(y)^{\perp}\right\}=$ $(a)^{\perp} \sqcup\left\{(x)^{\perp} \cap(y)^{\perp}\right\}=(a)^{\perp} \sqcup(x \wedge y)^{\perp}$. If $x \wedge y \in(a)^{\perp}$, then $(x \wedge y)^{\perp} \subseteq(a)^{\perp}$. Hence $(a)^{\perp}=L$. Which is a contradiction. Thus $(a)^{\perp}$ is a prime ideal. Therefore by theorem 3.3, a is a \star-prime element of L.

References

[1] G. Birkhoff: Lattice Theory, Amer. Math. Soc. Colloq. Publ. XXV, Providence, 1967.
[2] G. Gratzer: General Lattice Theory, Academic Press, New York, Sanfransisco, 1978.
[3] G.C. Rao: Almost Distributive Lattices, Doctoral Thesis (1980), Dept. of Mathematics, Andhra University, Visakhapatnam.
[4] G. C. Rao, G. Nanaji Rao and A. Lakshmana, Quasi-complemented almost distributive lattices, Southeast Asian Bull. Math (to appear)
[5] G.C. Rao and S. Ravi Kumar: Minimal prime ideals in an ADL, Int. J. Contemp. Sciences, 4 (2009), 475-484.
[6] G.C. Rao and M. Sambasiva Rao: Annulets in Almost Distributive Lattices, European Journal of Pure and Applied Mathematics, Vol.2(1) (2009), 58-72.
[7] M. Sambasiva Rao: Divisibility and Ideals in a Distributive Lattices, Southeast Asian Bulletin of Mathematics Vol. 37 (2013), 763-770.
[8] U.M. Swamy and G.C. Rao: Almost Distributive Lattices, J. Aust. Math. Soc. (Series A), 31 (1981), 77-91.

Received by editors 09.07.2015; Revised version 23.09.2015;
Available online 28.09.2015.
N. Rafi, Department of Math., Bapatla Engineering College, Bapatla, Andhra Pradesh, India-522 101

E-mail address: : rafimaths@gmail.com
R.K.Bandaru, Department of Engg. Mathematics, GItam University, Hyderabad Campus, Andhra Pradesh, India-502 329

E-mail address: ravimaths83@gmail.com
G.C. Rao, Department of Mathematics, Andhra University, Visakhapatnam, Andhra Pradesh, India - 530003

E-mail address: gcraomaths@yahoo.co.in

[^0]: 2010 Mathematics Subject Classification. 06D99.
 Key words and phrases. Almost Distributive Lattice(ADL), Boolean algebra, dense element, $*$-divisor, multipliers, quasi-complemented ADL, $*$-prime element, $*$-irreducible element.

