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On Divisibility of Almost Distributive Lattices

N. Rafi, Ravi Kumar Bandaru and G.C. Rao

Abstract. In this paper, the concepts of ∗−divisibility, ∗−prime elements,
∗−irreducible elements are introduced in an Almost Distributive Lattice(ADL)
and studied extensively their properties. A definition has been introduced on
a congruence relation in terms of multiplier ideals and derived a set of equiva-

lent conditions for the corresponding quotient ADL which becomes a Boolean
algebra. Finally, characterized the ∗−prime and ∗−irreducible elements with
the corresponding multiplier ideals.

1. Introduction

The concept of an Almost Distributive Lattice (ADL) was introduced by U.
M. Swamy and G. C. Rao [8] as a common abstraction to most of the existing
ring theoretic generalizations of a Boolean algebra on one hand and the class of
distributive lattices on the other. In [6], G.C.Rao and M.S.Rao introduced the
concept of annulets in an ADL and characterized both generalized stone ADL
and normal ADL in terms of their annulets. The concept of Quasi-complemented
ADL was introduced by G.C. Rao et. al. in [4] and they proved that a uniquely
quasi-complemented ADL is a pseudo-complemented ADL. And also, the authors
derived that an ADL is quasi-complemented ADL if and only if every prime ideal
of an ADL is maximal. In [7], M.S. Rao introduced the concept of divisibility in
distributive lattices in terms of annihilator ideals. He established that a relation
between ∗−prime and ∗−irreducible elements and corresponding ideals formed by
their multiplies. In this paper, we extend the concepts of divisibility, ∗−prime
elements, ∗−irreducible elements in to an Almost Distributive Lattice and also
studied their important properties. We defined a congruence relation θ on an
ADL and established a set of a equivalent conditions for quotient ADL L/θ which
becomes a Boolean algebra. Characterized ∗−prime and ∗−irreducible elements in
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terms of prime and maximal ideals respectively. Finally, it is proved that every
∗−irreducible element of an ADL is a ∗−prime element.

2. Preliminaries

In this section, some important definitions and results are provided for better
understanding in which those are frequently used.

Definition 2.1. ([8]) An Almost Distributive Lattice with zero or simply ADL
is an algebra (L,∨,∧, 0) of type (2, 2, 0) satisfying:
1. (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)
2. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
3. (x ∨ y) ∧ y = y
4. (x ∨ y) ∧ x = x
5. x ∨ (x ∧ y) = x
6. 0 ∧ x = 0
7. x ∨ 0 = x, for all x, y, z ∈ L.

Every non-empty set X can be regarded as an ADL as follows. Let x0 ∈ X.
Define the binary operations ∨,∧ on X by

x ∨ y =

{
x if x ̸= x0

y if x = x0

x ∧ y =

{
y if x ̸= x0

x0 if x = x0.

Then (X,∨,∧, x0) is an ADL (where x0 is the zero) and is called a discrete ADL.
If (L,∨,∧, 0) is an ADL, for any a, b ∈ L, define a 6 b if and only if a = a ∧ b (or
equivalently, a ∨ b = b), then 6 is a partial ordering on L.

Theorem 2.1 ([8]). If (L,∨,∧, 0) is an ADL, for any a, b, c ∈ L, we have the
following:

(1). a ∨ b = a ⇔ a ∧ b = b
(2). a ∨ b = b ⇔ a ∧ b = a
(3). ∧ is associative in L
(4). a ∧ b ∧ c = b ∧ a ∧ c
(5). (a ∨ b) ∧ c = (b ∨ a) ∧ c
(6). a ∧ b = 0 ⇔ b ∧ a = 0
(7). a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)
(8). a ∧ (a ∨ b) = a, (a ∧ b) ∨ b = b and a ∨ (b ∧ a) = a
(9). a 6 a ∨ b and a ∧ b 6 b
(10). a ∧ a = a and a ∨ a = a
(11). 0 ∨ a = a and a ∧ 0 = 0
(12). If a 6 c, b 6 c then a ∧ b = b ∧ a and a ∨ b = b ∨ a
(13). a ∨ b = (a ∨ b) ∨ a.

It can be observed that an ADL L satisfies almost all the properties of a dis-
tributive lattice except the right distributivity of ∨ over ∧, commutativity of ∨,
commutativity of ∧. Any one of these properties make an ADL L a distributive



ON DIVISIBILITY OF ADLS 173

lattice. That is

Theorem 2.2 ([8]). Let (L,∨,∧, 0) be an ADL with 0. Then the following are
equivalent:

1). (L,∨,∧, 0) is a distributive lattice
2). a ∨ b = b ∨ a, for all a, b ∈ L
3). a ∧ b = b ∧ a, for all a, b ∈ L
4). (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c), for all a, b, c ∈ L.

As usual, an element m ∈ L is called maximal if it is a maximal element in the
partially ordered set (L,6). That is, for any a ∈ L, m 6 a ⇒ m = a.

Theorem 2.3 ([8]). Let L be an ADL and m ∈ L. Then the following are
equivalent:

1). m is maximal with respect to 6
2). m ∨ a = m, for all a ∈ L
3). m ∧ a = a, for all a ∈ L
4). a ∨m is maximal, for all a ∈ L.

As in distributive lattices ([1], [2]), a non-empty sub set I of an ADL L is
called an ideal of L if a ∨ b ∈ I and a ∧ x ∈ I for any a, b ∈ I and x ∈ L. Also, a
non-empty subset F of L is said to be a filter of L if a ∧ b ∈ F and x ∨ a ∈ F for
a, b ∈ F and x ∈ L.

The set I(L) of all ideals of L is a bounded distributive lattice with least element
{0} and greatest element L under set inclusion in which, for any I, J ∈ I(L), I∩J is
the infimum of I and J while the supremum is given by I∨J := {a∨b | a ∈ I, b ∈ J}.
A proper ideal P of L is called a prime ideal if, for any x, y ∈ L, x ∧ y ∈ P ⇒
x ∈ P or y ∈ P . A proper ideal M of L is said to be maximal if it is not
properly contained in any proper ideal of L. It can be observed that every maximal
ideal of L is a prime ideal. Every proper ideal of L is contained in a maximal
ideal. For any subset S of L the smallest ideal containing S is given by (S] :=

{(
n∨

i=1

si) ∧ x | si ∈ S, x ∈ L and n ∈ N}. If S = {s}, we write (s] instead of (S].

Similarly, for any S ⊆ L, [S) := {x∨(
n∧

i=1

si) | si ∈ S, x ∈ L and n ∈ N}. If S = {s},

we write [s) instead of [S).

Theorem 2.4. [8] For any x, y in L the following are equivalent:
1). (x] ⊆ (y]
2). y ∧ x = x
3). y ∨ x = y
4). [y) ⊆ [x).

For any x, y ∈ L, it can be verified that (x]∨(y] = (x∨y] and (x]∧(y] = (x∧y].
Hence the set PI(L) of all principal ideals of L is a sublattice of the distributive
lattice I(L) of ideals of L.
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Definition 2.2 ([6]). For any A ⊆ L, the annihilator of A is defined as
A∗ = {x ∈ L | a ∧ x = 0 for all a ∈ A}

If A = {a}, then we denote ({a})∗ by (a)∗.

Theorem 2.5 ([6]). For any a, b ∈ L, we have the following:
(1). (a] ⊆ (a)∗∗

(2). (a)∗∗∗ = (a)∗

(3). a 6 b implies (b)∗ ⊆ (a)∗

(4). (a)∗ ⊆ (b)∗ if and only if (b)∗∗ ⊆ (a)∗∗

(5). (a ∨ b)∗ = (a)∗ ∩ (b)∗

(6). (a ∧ b)∗∗ = (a)∗∗ ∩ (b)∗∗.

Definition 2.3 ([3]). An equivalence relation θ on an ADL L is called a
congruence relation on L if (a ∧ c, b ∧ d), (a ∨ c, b ∨ d) ∈ θ, for all (a, b), (c, d) ∈ θ

Definition 2.4 ([3]). For any congruence relation θ on an ADL L and a ∈ L,
we define [a]θ = {b ∈ L | (a, b) ∈ θ} and it is called the congruence class containing
a.

Theorem 2.6 ([3]). An equivalence relation θ on an ADL L is a congruence
relation if and only if for any (a, b) ∈ θ, x ∈ L, (a∨x, b∨x), (x∨a, x∨ b), (a∧x, b∧
x), (x ∧ a, x ∧ b) are all in θ

An element a ∈ L is called dense [4] if (a)∗ = (0]. The setD of all dense elements
forms a filter provided D ̸= ∅. A lattice L with 0 is called quasi-complemented [4]
if for each x ∈ L, there exists y ∈ L such that x ∧ y = 0 and x ∨ y is dense.

3. Divisibility in an ADL

In [7], M.S. Rao introduced the concepts of divisibility, ∗−prime, ∗−irreducible
elements in distributive lattices in terms of annihilator ideals and proved their
properties. In this section, we extend these concepts to an Almost Distributive
Lattice, analogously and established a set of a equivalent conditions for quotient
ADL L/θ to become a Boolean algebra. We characterized ∗−prime elements and
∗−irreducible elements in terms of prime ideals and maximal ideals respectively.
In addition to this, it is proved that every ∗−irreducible element of an ADL is a
∗−prime element. Though many results look similar, the proofs are not similar
because we do not have the properties like commutativity of ∨, commutativity of
∧ and the right distributivity of ∨ over ∧ in an ADL.
Now, we begin with following definition.

Definition 3.1. Let L be an ADL and for any a, b ∈ L. An element a is said
to be a ⋆−divisor of b or a divides b if (b)∗ = (a ∧ c)∗ for some c ∈ L. In this case,
we write it as (a/b)∗.

We prove the following result.

Lemma 3.1. Let L be an ADL. Then for any a, b ∈ L, we have (a)∗ = (b)∗

implies that (a ∧ x)∗ = (b ∧ x)∗ and (a ∨ x)∗ = (b ∨ x)∗, for any x ∈ L.
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Proof. Suppose that (a)∗ = (b)∗. Let x be any element of L. Now, t ∈ (a ∧
x)∗ ⇔ t∧ a∧ x = 0 ⇔ t∧ x ∈ (a)∗ = (b)∗ ⇔ t∧ x∧ b = 0 ⇔ t ∈ (b∧ x)∗. Therefore
(a∧ x)∗ = (b∧ x)∗. And now, (a∨ x)∗ = (a)∗ ∩ (x)∗ = (b)∗ ∩ (x)∗ = (b∨ x)∗. Hence
(a ∨ x)∗ = (b ∨ x)∗. �

Now, we have the following properties of ⋆−divisibility.

Lemma 3.2. Let L be an ADL with maximal elements. Then for any three
elements a, b, c ∈ L, we have the following:
(1). (a/0)∗
(2). If m is a maximal element of L then (m/a)∗
(3). (a/a)∗
(4). a 6 c ⇒ (c/a)∗.
(5). (a)∗ = (b)∗ ⇒ (a/b)∗ and (b/a)∗
(6). (a/b)∗ and (b/c)∗ ⇒ (a/c)∗
(7). (a/b)∗ ⇒ (a/b ∧ x)∗ for all x ∈ L
(8). (a/b)∗ ⇒ (a ∧ x/b ∧ x)∗ and (a ∨ x/b ∨ x)∗ for all x ∈ L.

Proof. (1), (2) and (3) are obviously true.
(4). Suppose a 6 c. Then a = a∧ c. That implies (a)∗ = (a∧ c)∗. Therefore (c/a)∗.
(5). Suppose (a)∗ = (b)∗. Then we have (a)∗ = (b)∗ = (b ∧ b)∗. Hence (b/a)∗.
Similarly, we get (a/b)∗.
(6). Let (a/b)∗ and (b/c)∗. Then (b)∗ = (a ∧ x)∗ and (c)∗ = (b ∧ y)∗, for some
x, y ∈ L. Now d ∈ (c)∗ = (b ∧ y)∗ ⇔ d ∧ b ∧ y = 0 ⇔ d ∧ y ∈ (b)∗ = (a ∧ x)∗ ⇔
d ∧ y ∧ a ∧ x = 0 ⇔ d ∈ (a ∧ x ∧ y)∗. Therefore (c)∗ = (a ∧ x ∧ y)∗. Hence (a/c)∗.
(7). Let (a/b)∗. Then (b)∗ = (a ∧ r)∗, for some r ∈ L. Now, for any x ∈ L, we get
easily that (b ∧ x)∗ = (a ∧ r ∧ x)∗. Therefore (a/b ∧ x)∗.
(8). Assume that (a/b)∗. Then (b)∗ = (a ∧ s)∗, for some s ∈ L. Now, for any
x ∈ L, we get easily that (b ∧ x)∗ = (a ∧ s ∧ x)∗. Therefore (a ∧ x/b ∧ x)∗. Now,
(b ∨ x)∗ = (b)∗ ∩ (x)∗ = (a ∧ s)∗ ∩ (x)∗ = ((a ∧ s) ∨ x)∗ = (x ∨ (a ∧ s))∗ =
((x ∨ a) ∧ (x ∨ s))∗ = ((a ∨ x) ∧ (x ∨ s))∗. Therefore (a ∨ x/b ∨ x)∗. �

Definition 3.2. For any element a of an ADL L, we define (a)⊥ as the set of
all multipliers of a. That is (a)⊥ = {x ∈ L | (a/x)∗}.

Lemma 3.3. Let L be an ADL with maximal elements. Then for any a, b ∈ L,
we have the following:
(1). (0)⊥ = {0}
(2). (m)⊥ = L, where m is any maximal element of L.
(3). a ∈ (a)⊥

(4). (a)⊥ is an ideal of L.
(5). a ∈ (b)⊥ ⇒ (a)⊥ ⊆ (b)⊥

(6). a 6 b ⇒ (a)⊥ ⊆ (b)⊥

(7). (a)∗ = (b)∗ ⇒ (a)⊥ = (b)⊥

(8). (a)⊥ ∩ (b)⊥ = (a ∧ b)⊥

(9). d is a dense element of L if and only if (d)⊥ = L.
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Proof. (1). Let x ∈ (0)⊥. Then (0/x)∗. That implies (x)∗ = (c∧0)∗ = (0)∗ =
L. So that x ∈ (x)∗. Therefore x ∧ x = 0. Hence x = 0. Thus (0)⊥ = {0}.
(2). Let m be any maximal element of an ADL L. Clearly we have x = m ∧ x, for
all x ∈ L. That implies (x)∗ = (m∧ x)∗. Therefore x ∈ (m)⊥ and hence (m)⊥ = L.
(3). Since (a)∗ = (a ∧ a)∗, we get (a/a)∗. Hence a ∈ (a)⊥.
(4). Let x, y ∈ (a)⊥. Then (a/x)∗ and (a/y)∗. That implies (x)∗ = (r ∧ a)∗ and
(y)∗ = (s∧a)∗, for some r, s ∈ L. Now (x∨ y)∗ = (x)∗ ∩ (y)∗ = (r∧a)∗ ∩ (s∧a)∗ =
((r ∧ a) ∨ (s ∧ a))∗ = ((r ∨ s) ∧ a)∗. Therefore (a/x ∨ y)∗ and hence x ∨ y ∈ (a)⊥.
Let x ∈ (a)⊥ and r ∈ L. Then (a/x)∗. That implies (x)∗ = (s ∧ a)∗, for some
s ∈ L. Clearly, we get that (x ∧ r)∗ = (s ∧ a ∧ r)∗. Therefore (a/x ∧ r)∗ and hence
x ∧ r ∈ (a)⊥. Thus (a)⊥ is an ideal of L.
(5). Let a ∈ (b)⊥. Then (b/a)∗. That implies (a)∗ = (s ∧ b)∗, for some s ∈ L.
Let x ∈ (a)⊥. Then (a/x)∗ and hence (x)∗ = (r ∧ a)∗, for some r ∈ L. Therefore
(x)∗ = (r ∧ a)∗ = (r ∧ s ∧ b)∗. Hence (b/x)∗. Thus x ∈ (b)⊥.
(6). Suppose a 6 b. Let x ∈ (a)⊥. Then (a/x)∗. That implies (x)∗ = (r ∧ a)∗ =
(r∧a∧b)∗ for some r ∈ L. Therefore (b/x)∗ and hence x ∈ (b)⊥. Thus (a)⊥ ⊆ (b)⊥.
(7). Suppose (a)∗ = (b)∗. Let x ∈ (a)⊥. Then (a/x)∗. This implies (x)∗ = (r∧a)∗ =
(r ∧ b)∗, for some r ∈ L. Therefore (b/x)∗ and hence x ∈ (b)⊥. Similarly, we verify
that (b)⊥ ⊆ (a)⊥.
(8). Clearly, we have (a ∧ b)⊥ ⊆ (a)⊥ ∩ (b)⊥. Let x ∈ (a)⊥ ∩ (b)⊥. Then (a/x)∗
and (b/x)∗. Hence (x)∗ = (r ∧ a)∗ and (x)∗ = (s ∧ b)∗, for some r, s ∈ L. Now,
(x)∗∗ = (x)∗∗ ∩ (x)∗∗ = (r ∧ a)∗∗ ∩ (s ∧ b)∗∗ = ((r ∧ s) ∧ (a ∧ b))∗∗. That implies
(x)∗ = (r ∧ s ∧ a ∧ b)∗. Thus ((a ∧ b)/x)∗. Therefore x ∈ (a ∧ b)⊥ and hence
(a)⊥ ∩ (b)⊥ = (a ∧ b)⊥.
(9). Let m be any maximal element of L. Assume that d is a dense element of L.
Then (d)∗ = {0} = (m)∗. Now, d = m ∧ d ⇒ (d)∗ = (m ∧ d)∗ ⇒ (m)∗ = (m ∧ d)∗.
Therefore (d/m)∗ and hence m ∈ (d)⊥. Thus (d)⊥ = L. Conversely assume that
(d)⊥ = L. Then maximal element m ∈ (d)⊥. That implies (d/m)∗. Therefore
(m)∗ = (d ∧ c)∗. Implies that {0} = (d ∧ c)∗. Therefore d ∧ c is maximal element
and hence d is maximal element. Thus (d)∗ = {0}. �

Let us denote the set of all ideals of the form (x)⊥ for all x ∈ L by I⊥(L).
In general, I⊥(L) is not a sublattice of I(L) of all ideals of L. For, consider the
following distributive lattice L = {0, a, b, c, 1} whose Hasse diagram is given by:
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�
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�
�
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d d

d
d

0

a b

c

1
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Then clearly (a)⊥ = {0, a} and (b)⊥ = {0, b}. Hence (a)⊥ ∨ (b)⊥ = {0, a} ∨
{0, b} = {0, a, b, c}. But (a ∨ b)⊥ = (c)⊥ = L(because c is a dense element). There-
fore (a)⊥ ∨ (b)⊥ ̸= (a ∨ b)⊥. Thus I⊥(L) is not a sublattice of I(L).

We have the following theorem.

Theorem 3.1. For any ADL L, the set I⊥(L) forms a complete distributive
lattice on its own.

Proof. For any a, b ∈ L, define as (a)⊥ ∩ (b)⊥ = (a ∧ b)⊥ and (a)⊥ ⊔ (b)⊥ =
(a ∨ b)⊥. Clearly, (a ∧ b)⊥ is the infimum of both (a)⊥ and (b)⊥ in I⊥(L). We
have always (a)⊥, (b)⊥ ⊆ (a ∨ b)⊥. Suppose (a)⊥ ⊆ (c)⊥ and (b)⊥ ⊆ (c)⊥ for some
c ∈ L. Then we get a, b ∈ (c)⊥. Since (c)⊥ is an ideal, it gives a ∨ b ∈ (c)⊥.
Hence (a ∨ b)⊥ ⊆ (c)⊥. Thus (a ∨ b)⊥ is the supremum of both (a)⊥ and (b)⊥

in I⊥(L). Therefore I⊥(L) is a lattice. We now prove the distributivity of these
ideals. For any (a)⊥, (b)⊥, (c)⊥ ∈ I⊥(L), (a)⊥ ⊔ {(b)⊥ ∩ (c)⊥} = (a)⊥ ⊔ (b ∧ c)⊥ =
{a∨(b∧c)}⊥ = {(a∨b)∧(a∨c)}⊥ = (a∨b)⊥∩(a∨c)⊥ = {(a)⊥⊔(b)⊥}∩{(a)⊥⊔(c)⊥}.
Therefore (I⊥(L),∩,⊔) is a distributive lattice. Let a, b be two elements in L. Then
(a)⊥, (b)⊥ ∈ I⊥(L). Define (a)⊥ 6 (b)⊥ ⇔ (a)⊥ ⊆ (b)⊥. Clearly (I⊥(L),6) is a
partially ordered set. Clearly {0} and L are the bounds for I⊥(L). By lemma
3.3(8), we get that I⊥(L) is bounded and complete distributive lattice. �

We have the following definition.

Definition 3.3. Let L be an ADL. For any a, b ∈ L, define a relation θ on L
as follows:
(a, b) ∈ θ if and only if (a)⊥ = (b)⊥.

The following result can be verified easily.

Lemma 3.4. Let L be an ADL. Then the relation θ defined above is a congruence
on L.

Let θ be any congruence relation on an ADL L. For any x ∈ L, [x]θ = {y ∈
L | (x, y) ∈ θ}. Write L/θ = {[x]θ | x ∈ L}. Define binary operations ∨, ∧ on L/θ
by [x]θ ∧ [y]θ = [x ∧ y]θ and [x]θ ∨ [y]θ = [x ∨ y]θ, then it can be verified easily
that (L/θ,∨,∧) is an ADL. Let ρ be the natural homomorphism from L onto L/θ
defined by ρ(x) = [x]θ, for all x ∈ L.

We prove the following lemma.

Lemma 3.5. Let θ be any congruence relation on an ADL L. Then (0] is the
smallest congruence class and D is the unit congruence class of L/θ

Proof. Clearly, (0] is the smallest congruence of L/θ. Let x, y ∈ D. Then
(x)∗ = (y)∗ = {0}. By lemma-3.3(7), we get that (x)⊥ = (y)⊥. Therefore (x, y) ∈ θ.
Thus D is a congruence class of L/θ. Now, let a ∈ D and x ∈ L. Since D is a filter,
we get a ∨ x ∈ D. Hence [x]θ ∨ [a]θ = [a ∨ x]θ = D. Thus D is the unit congruence
class of L/θ. �
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From [4], recall that an Almost Distributive Lattice L is called quasi - comple-
mented if for each x ∈ L, there is an element y ∈ L such that x ∧ y = 0 and x ∨ y
is a dense element.

Now, we establish a set of equivalent conditions for L/θ to become a Boolean
algebra which leads to a characterization of quasi-complemented ADL.

Theorem 3.2. Let L be an ADL. Then the following conditions are equivalent:
(1). L is a quasi-complemented ADL
(2). L/θ is a Boolean algebra
(3). I⊥(L) is a Boolean algebra

Proof. (1) =⇒ (2): Assume that L is a quasi-complemented ADL. Let [x]θ ∈
L/θ. Since L is a quasi-complemented ADL and x ∈ L, there exists x′ ∈ L such
that x∧ x′ = 0 and x∨ x′ is dense. Therefore [x]θ ∩ [x′]θ = [x∧ x′]θ = [0]θ and also
[x]θ ∨ [x′]θ = [x ∨ x′]θ = D. Hence L/θ. is a Boolean algebra.
(2) =⇒ (3): Assume that L/θ is a Boolean algebra. Define a mapping Φ : L/θ −→
I⊥(L) by Φ([x]θ) = (x)⊥ for all [x]θ ∈ L/θ. Clearly, Φ is well defined. Let [x]θ, [y]θ ∈
L/θ, Suppose Φ([x]θ) = Φ([y]θ). Then (x)⊥ = (y)⊥. This implies (x, y) ∈ θ. Thus
[x]θ = [y]θ. Therefore Φ is injective. Let (x)⊥ ∈ I⊥(L), where x ∈ L. Now for
this x, ρ(x) = [x]θ ∈ L/θ such that Φ([x]θ) = (x)⊥. Therefore Φ is surjective and
hence it is bijective. Let [x]θ, [y]θ ∈ L/θ where x, y ∈ L. Then Φ([x]θ ∩ [y]θ) =
Φ([x ∧ y]θ) = (x ∧ y)⊥ = (x)⊥ ∩ (y)⊥ = Φ([x]θ) ∩ Φ([y]θ). Again Φ([x]θ ∨ [y]θ) =
Φ([x ∨ y]θ) = (x ∨ y)⊥ = (x)⊥ ⊔ (y)⊥ = Φ([x]θ) ⊔ Φ([y]θ). Thus L/θ is isomorphic
to I⊥(L). Therefore I⊥(L) is a Boolean algebra.
(3) =⇒ (1): Assume that I⊥(L) is a Boolean algebra. Let x ∈ L. Then (x)⊥ ∈
I⊥(L). Since I⊥(L) is a Boolean algebra, there exists (y)⊥ ∈ I⊥(L) such that
(x ∧ y)⊥ = (x)⊥ ∩ (y)⊥ = (0)⊥ and (x ∨ y)⊥ = (x)⊥ ∨ (y)⊥ = L. Hence x ∧ y = 0
and x ∨ y is dense. Therefore L is quasi-complemented. �

Now, we have the following definition.

Definition 3.4. A non-zero element a of an ADL L is called ⋆−prime if (a/b∧
c)∗ implies that (a/b)∗ or (a/c)∗

We characterized the ⋆−prime elements in the following result.

Theorem 3.3. Let a be a non-dense element of an ADL L. Then a is a ⋆−prime
element of L if and only if (a)⊥ is a prime ideal of L.

Proof. Assume that a is ⋆−prime. Let x, y ∈ L such that x∧ y ∈ (a)⊥. Then
(a/x∧y)∗. Since a is ⋆−prime, we get either (a/x)∗ or (a/y)∗. That implies x ∈ (a)⊥

or y ∈ (a)⊥. Therefore (a)⊥ is prime ideal of L. Conversely, assume that (a)⊥ is a
prime ideal of L. Let x, y ∈ L with (a/x ∧ y)∗. Then x ∧ y ∈ (a)⊥. Since (a)⊥ is
prime, we get either x ∈ (a)⊥ or y ∈ (a)⊥. Hence (a/x)∗ or (a/y)∗. Therefore a is
a ⋆−prime element of L. �

Definition 3.5. A non-zero element a of an ADL L is called ⋆−irreducible if
(a)∗ = (b ∧ c)∗, then either b ∈ D or c ∈ D.
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Now, we have the following lemma.

Lemma 3.6. Every dense element of L is a ⋆−irreducible element.

Proof. Let d be a dense element of L. Then (d)∗ = (0]. Suppose (d)∗ = (b∧c)∗,
for some b, c ∈ L. Then (b ∧ c)∗ = (0]. Hence (b)∗ = (0] or (c)∗ = (0]. Thus d is
⋆−irreducible. �

We prove the following theorem.

Theorem 3.4. Let a be a non-dense element of an ADL L with maximal ele-
ments. Then the following conditions are equivalent:
(1). a is ⋆−irreducible.
(2). i) (a)⊥ is a maximal among all proper ideals of the form (x)⊥.
ii) For any x ∈ L, (a)∗ = (a ∧ x)∗ implies (x)∗ = (0].

Proof. Let m be any maximal element of an ADL L.
(1) =⇒ (2)(i): Assume that a is a ⋆−irreducible element. Suppose (a)⊥ ⊆ (b)⊥ ̸= L
for some a non-zero element b of L. We have a ∈ (a)⊥ ⊆ (b)⊥. Then (b/a)∗. So
that there exists c ∈ L such that (a)∗ = (c ∧ b)∗. Since a is ⋆−irreducible, we get
that either (b)∗ = (0] or (c)∗ = (0]. Since (b)⊥ ̸= L, by lemma-3.3(9), we get that
(b)∗ ̸= (0]. Hence (c)∗ = (0]. Now, (c)∗ = (0] = (m)∗ ⇒ (b ∧ c)∗ = (b ∧ m)∗ ⇒
(b∧ c)∗ = (b)∗ ⇒ (a)∗ = (b)∗ ⇒ (a)⊥ = (b)⊥. Therefore (a)⊥ is maximal among all
ideals of the form (x)⊥.
(1) =⇒ (2)(ii): Suppose (a)∗ = (a ∧ x)∗ for x ∈ L. Since a is ⋆−irreducible, we get
that either (a)∗ = (0] or (x)∗ = (0]. Since a is non-dense, we must have (x)∗ = (0].
(2) =⇒ (1): Assume the conditions (2)(i) and 2(ii). Suppose (a)∗ = (c ∧ d)∗ for
some c, d ∈ L. Hence (d/a)∗. So we get a ∈ (d)⊥ and hence (a)⊥ ⊆ (d)⊥. Since
the ideal (a)⊥ is maximal, we get that either (a)⊥ = (d)⊥ or (d)⊥ = L. Suppose
(a)⊥ = (d)⊥. Then we get d ∈ (a)⊥ ⇒ (a/d)∗ ⇒ (d)∗ = (r ∧ a)∗ for some r ∈ L ⇒
(c∧d)∗ = (c∧r∧a)∗ ⇒ (a)∗ = (c∧r∧a)∗ ⇒ (c∧r)∗ = (0] by (2)(ii) ⇒ (c)∗ = (0].
Suppose (d)⊥ = L. Let m be any maximal element of L. Then we have m ∈ (d)⊥.
Hence (d/m)∗. Then there exists some s ∈ L such that (m)∗ = (s ∧ d)∗. Thus
(s ∧ d)∗ = {0} and hence (d)∗ = (0]. Therefore a is a ⋆−irreducible element. �

We conclude this paper with the following result.

Theorem 3.5. Let L be an ADL. Then every ⋆−irreducible element of L is a
⋆−prime element.

Proof. If a is a dense element of an ADL L, then we are through. Suppose a is
non-dense. Assume that a is a ⋆−irreducible element of L. Then by above theorem,
(a)⊥ is a maximal among all ideals of the form (r)⊥. Choose x, y ∈ L such that
x /∈ (a)⊥ and y /∈ (a)⊥. Hence (a)⊥ ⊂ (a)⊥ ∨ (x] ⊆ (a)⊥ ∨ (x)⊥ ⊆ (a)⊥ ⊔ (x)⊥ and
also (a)⊥ ⊂ (a)⊥ ⊔ (y)⊥. By the maximality of (a)⊥, we get that (a)⊥ ⊔ (x)⊥ = L
and (a)⊥ ⊔ (y)⊥ = L. Now, L = L ∩ L = {(a)⊥ ⊔ (x)⊥} ∩ {(a)⊥ ⊔ (y)⊥} =
(a)⊥ ⊔ {(x)⊥ ∩ (y)⊥} = (a)⊥ ⊔ (x ∧ y)⊥. If x ∧ y ∈ (a)⊥, then (x ∧ y)⊥ ⊆ (a)⊥.
Hence (a)⊥ = L. Which is a contradiction. Thus (a)⊥ is a prime ideal. Therefore
by theorem 3.3, a is a ⋆−prime element of L. �
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