Total mean cordiality of some derived graphs

R. Ponraj and S. Sathish Narayanan

Abstract

A total mean cordial labeling of a graph $G=(V, E)$ is a function $f: V(G) \rightarrow\{0,1,2\}$ such that for each edge $x y$ assign the label $\left\lceil\frac{f(x)+f(y)}{2}\right\rceil$ where $x, y \in V(G)$ and $\left|e v_{f}(i)-e v_{f}(j)\right| \leqslant 1, i, j \in\{0,1,2\}$ where $e v_{f}(x)$ denotes the total number of vertices and edges labeled with $x(x=0,1,2)$. If there exists a total mean cordial labeling on a graph G, we will call G is total mean cordial. In this paper, we investigate the total mean cordial labeling behavior of some derived graphs.

1. Introduction

By a graph $G=(V, E)$ we mean a finite, undirected graph with neither loops nor multiple edges. The number of vertices of G is called order of G and it is denoted by p. Similarly the number of edges of G is called size of G and it is denoted by q. A graph labeling is an assignment of integers to the vertices or edges, or both, subject to certain conditions. Labeled graphs are used in several areas of science and technology such as astronomy, radar, circuit design and database management [3]. The origin of graph labeling is graceful labeling which was introduced by Rosa [12] in the year 1967. In 1980, Cahit [1] introduced the cordial labeling of graphs. Product cordial set (PC set) of a graph was studied by Ebrahim Salehi, Yaroslav Mukhin [2], Harris Kwong, Sin Min Lee and Ho Kuen NG [5], W. C. Shiu, Harris Kwong [13] etc. Ponraj, Sathish Narayanan and Ramasamy [6] introduced the concept of total mean cordial labeling of graphs and studied about the total mean cordial labeling behavior of path, cycle, wheel and some more standard graphs. Also they investigate the total mean cordiality of olive tree, $P_{n}^{2}, S\left(P_{n} \odot K_{1}\right), S\left(K_{1, n}\right)$ in $[\mathbf{8}, \mathbf{1 1}]$. In $[\mathbf{7}, \mathbf{9}, \mathbf{1 0}]$ Ponraj and Sathish Narayanan proved that $K_{n}^{c}+2 K_{2}$ is total mean cordial if and only if $n=1,2,4,6,8$ and they studied about the total mean cordial labeling of some more graphs. In this paper we investigate the total mean

[^0]cordial labeling behavior of $P_{n} \odot K_{2}, C_{n} \odot K_{2}$, dragon and some derived graphs. If x is any real number. Then the symbol $\lfloor x\rfloor$ stands for the largest integer less than or equal to x and $\lceil x\rceil$ stands for the smallest integer greater than or equal to x. Terms and definitions not defined here are follow from Harary [4].

2. Total mean cordial labeling

Definition 2.1. A total mean cordial labeling of a graph $G=(V, E)$ is a function $f: V(G) \rightarrow\{0,1,2\}$ such that for each edge $x y$ assign the label $\left\lceil\frac{f(x)+f(y)}{2}\right\rceil$ where $x, y \in V(G)$ and $\left|e v_{f}(i)-e v_{f}(j)\right| \leqslant 1, i, j \in\{0,1,2\}$ where $e v_{f}(x)$ denotes the total number of vertices and edges labeled with $x(x=0,1,2)$. If there exists a total mean cordial labeling on a graph G, we will call G is total mean cordial.

The following results are frequently used in the subsequent section.
Theorem 2.1. [6] Any Path P_{n} is total mean cordial.
Theorem 2.2. [6] The Cycle C_{n} is total mean cordial if and only if $n \neq 3$.
Theorem 2.3. [6] The star $K_{1, n}$ is total mean cordial.

3. Main Results

Let G_{1}, G_{2} respectively be $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)$ graphs. The corona of G_{1} with G_{2}, $G_{1} \odot G_{2}$ is the graph obtained by taking one copy of G_{1} and p_{1} copies of G_{2} and joining the $i^{\text {th }}$ vertex of G_{1} with an edge to every vertex in the $i^{t h}$ copy of G_{2}.

Theorem 3.1. Let G be a (p, q) graph. If G satisfies any one of the following then $G \odot 2 K_{1}$ is total mean cordial.
(1) G is a tree.
(2) G is a unicycle.
(3) $q=p+1$.

Proof. Assign the label 0 to the vertices of G and 2 to the pendent vertices. If G is a tree then $e v_{f}(0)=2 p-1, e v_{f}(1)=e v_{f}(2)=2 p$. If G is a unicyclic graph then $e v_{f}(0)=e v_{f}(1)=e v_{f}(2)=2 p$. If G is a graph with $q=p+1$ then $e v_{f}(0)=2 p+1, e v_{f}(1)=e v_{f}(2)=2 p$.

The shadow graph $D_{2}(G)$ of a connected graph G is constructed by taking two copies of G, G^{\prime} and $G^{\prime \prime}$ and joining each vertex u^{\prime} in G^{\prime} to the neighbors of the corresponding vertex $u^{\prime \prime}$ in $G^{\prime \prime}$.

Theorem 3.2. Let G be a (p, q) graph. If G satisfies any one of the following then $D_{2}(G)$ is total mean cordial.
(1) G is a tree.
(2) G is a unicycle.
(3) $q=p+1$.

Proof. Assign the label 0 to one copy of G and 2 to another copy of G. If G is a tree then $e v_{f}(0)=e v_{f}(2)=2 p-1, e v_{f}(1)=2 p-2$. If G is a unicyclic graph then $e v_{f}(0)=e v_{f}(1)=e v_{f}(2)=2 p$. If $q=p+1$ then $e v_{f}(0)=e v_{f}(2)=2 p+1$ and $e v_{f}(1)=2 p+2$.

Now we look into the graph dragon.
A dragon is a graph formed by joining an end vertex of a path P_{n} to a vertex of the cycle C_{m}. It is denoted by $C_{m} @ P_{n}$. Let C_{m} be the cycle $u_{1} u_{2} \ldots u_{m} u_{1}$ and P_{n} be the path $v_{1} v_{2} \ldots v_{n}$.

Theorem 3.3. All dragons $C_{m} @ P_{n}$ are total mean cordial.
Proof. Without loss generality unify the vertices u_{1} and v_{1}.
Case 1. $n \leqslant 8$.
Subcase 1. $m \equiv 0(\bmod 3), m>3$.
Let $m=3 t$. Let f be a total mean cordial labeling defined in theorem 2.2. Then $e v_{f}(0)=e v_{f}(1)=e v_{f}(2)=2 t$. The vertex labeling given in table 1 together with the labeling f forms a total mean cordial labeling h of $C_{m} @ P_{n}(n \leqslant 8)$.

n	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	$e v_{h}(0)$	$e v_{h}(1)$	$e v_{h}(2)$
2	0	2							$2 t$	$2 t+1$	$2 t+1$
3	0	0	2						$2 t+2$	$2 t+1$	$2 t+1$
4	0	0	1	2					$2 t+2$	$2 t+2$	$2 t+2$
5	0	0	1	2	0				$2 t+3$	$2 t+3$	$2 t+2$
6	0	0	0	1	2	1			$2 t+4$	$2 t+3$	$2 t+4$
7	0	0	0	2	1	1	2		$2 t+4$	$2 t+4$	$2 t+4$
8	0	0	0	2	1	1	2	1	$2 t+4$	$2 t+5$	$2 t+5$

Subcase 2. $m \equiv 1(\bmod 3)$.
Let $m=3 t+1$. For $n=3$ and $t>2$ define a map $f: V\left(C_{m} @ P_{3}\right) \rightarrow\{0,1,2\}$ by

$$
\begin{array}{ll}
f\left(u_{i}\right) & =0, \quad 1 \leqslant i \leqslant t-1 \\
f\left(u_{t+1+i}\right) & =2, \quad 1 \leqslant i \leqslant t+1 \\
f\left(u_{2 t+2+i}\right) & =1, \quad 1 \leqslant i \leqslant t-1
\end{array}
$$

$f\left(u_{t}\right)=1, f\left(u_{t+1}\right)=0, f\left(v_{2}\right)=f\left(v_{3}\right)=0$. Here, $e v_{f}(0)=e v_{f}(1)=e v_{f}(2)=$ $2 t+2$. For $C_{4} @ P_{3}$, assign the labels $1,2,2,0,0,0$ to the vertices $u_{1}, u_{2}, u_{3}, u_{4}, v_{2}$, v_{3} respectively. For $C_{7} @ P_{3}$, assign the labels $0,2,2,2,0,2,0,0,0$ to the vertices $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}, v_{2}, v_{3}$ respectively.

Let f be a total mean cordial labeling defined in theorem 2.2. Then $e v_{f}(0)=$ $e v_{f}(1)=2 t+1, e v_{f}(2)=2 t$. The vertex labeling given in table 2 together with the labeling f forms a total mean cordial labeling h of $C_{m} @ P_{n}(n \leqslant 8)$.
Subcase 3. $m \equiv 2(\bmod 3)$.
Let $m=3 t+2$. Let f be a total mean cordial labeling defined in theorem 2.2. Then $e v_{f}(0)=e v_{f}(2)=2 t+1, e v_{f}(1)=2 t+2$. The vertex labeling given

n	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	$e v_{h}(0)$	$e v_{h}(1)$	$e v_{h}(2)$
2	0	2							$2 t+1$	$2 t+2$	$2 t+1$
4	0	2	2	0					$2 t+3$	$2 t+3$	$2 t+3$
5	0	0	2	2	1				$2 t+3$	$2 t+3$	$2 t+4$
6	0	0	2	2	1	0			$2 t+4$	$2 t+4$	$2 t+4$
7	0	0	2	2	1	0	2		$2 t+4$	$2 t+5$	$2 t+5$
8	0	0	2	2	1	0	2	0	$2 t+5$	$2 t+6$	$2 t+5$

Table 2

n	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	$e v_{h}(0)$	$e v_{h}(1)$	$e v_{h}(2)$
3	0	0	2						$2 t+3$	$2 t+3$	$2 t+2$
4	0	0	2	2					$2 t+3$	$2 t+3$	$2 t+4$
5	0	0	2	2	0				$2 t+4$	$2 t+4$	$2 t+4$
6	0	0	2	2	0	2			$2 t+4$	$2 t+5$	$2 t+5$
7	0	0	2	2	0	2	0		$2 t+5$	$2 t+6$	$2 t+5$
8	0	0	0	1	2	2	1	0	$2 t+6$	$2 t+6$	$2 t+6$

in table 3 together with the labeling f forms a total mean cordial labeling h of $C_{m} @ P_{n}(n \leqslant 8)$.

For $n=2$ and $t \geqslant 2$ define a map $f: V\left(C_{m} @ P_{2}\right) \rightarrow\{0,1,2\}$ by

$$
\begin{array}{ll}
f\left(u_{i}\right) & =0, \quad 1 \leqslant i \leqslant t \\
f\left(u_{t+2+i}\right) & =2, \quad 1 \leqslant i \leqslant t+1 \\
f\left(u_{2 t+3+i}\right) & =1, \quad 1 \leqslant i \leqslant t-1
\end{array}
$$

$f\left(u_{t+1}\right)=1, f\left(u_{t+2}\right)=0, f\left(v_{2}\right)=0$. Here, $e v_{f}(0)=e v_{f}(1)=e v_{f}(2)=2 t+2$. For $C_{5} @ P_{2}$ assign the labels $0,2,2,0,2,0$ to the vertices $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, v_{2}$ respectively.
Case 2. $m=3$.
Without loss of generality we may assume that the vertex u_{1} is unified with v_{1}. By theorem 2.1, P_{n} is total mean cordial. Let g be the total mean cordial labeling of P_{n} as defined in theorem 2.1.
Subcase 1. $n \equiv 0(\bmod 3)$.
Put $n=3 t$. Define a function $f: V\left(C_{m} @ P_{n}\right) \rightarrow\{0,1,2\}$ by $f\left(u_{1}\right)=f\left(u_{2}\right)=0$, $f\left(u_{3}\right)=2$ and $f\left(v_{i}\right)=g\left(v_{i}\right), 1 \leqslant i \leqslant n$. In this case $e v_{f}(0)=e v_{f}(2)=2 t+1$ and $e v_{f}(1)=2 t+2$.
Subcase 2. $n \equiv 1(\bmod 3)$.
Take $n=3 t+1$. Define a function $f: V\left(C_{m} @ P_{n}\right) \rightarrow\{0,1,2\}$ by $f\left(u_{2}\right)=f\left(u_{3}\right)=0$ and $f\left(v_{i}\right)=g\left(v_{i}\right), 1 \leqslant i \leqslant n$. Then relabel the vertex $v_{1}\left(=u_{1}\right)$ by 2 . Since $e v_{f}(0)=e v_{f}(1)=2 t+2$ and $e v_{f}(2)=2 t+1, f$ is a total mean cordial labeling.
Subcase 3. $n \equiv 2(\bmod 3)$.
Put $n=3 t+2$. Define a labeling f as in subcase 1. Here $e v_{f}(0)=e v_{f}(1)=2 t+3$ and $e v_{f}(2)=2 t+2$.

Case 3. $n \geqslant 8$.
Suppose the graph $C_{m} @ P_{n}$ is obtained by unifying the cycle vertex u_{i} with the path vertex v_{1}. Treating u_{i} as u_{1}, u_{i+1} as u_{2} and so on. Then assign the labels to the vertices of C_{m} as in theorem 2.2. Similarly assign the labels to the vertices of the path P_{n} as in theorem 2.1. Let f be the vertex labeling of $C_{m} @ P_{n}$ described above.
Subcase 1. $m \equiv 0(\bmod 3)$ and $n \equiv 0(\bmod 3)$.
Let $m=3 t_{1}$ and $n=3 t_{2}$. Now relabel the vertex $v_{t_{2}+2}$ by 0 . Here $e v_{f}(0)=$ $e v_{f}(1)=2 t_{1}+2 t_{2}-1$ and $e v_{f}(2)=2 t_{1}+2 t_{2}$.
Subcase 2. $m \equiv 0(\bmod 3)$ and $n \equiv 1(\bmod 3)$.
Let $m=3 t_{1}$ and $n=3 t_{2}+1$. In this case $e v_{f}(0)=e v_{f}(1)=e v_{f}(2)=2 t_{1}+2 t_{2}$.
Subcase 3. $m \equiv 0(\bmod 3)$ and $n \equiv 2(\bmod 3)$.
Let $m=3 t_{1}$ and $n=3 t_{2}+2$. Here $e v_{f}(0)=2 t_{1}+2 t_{2}, e v_{f}(1)=e v_{f}(2)=2 t_{1}+2 t_{2}+1$.
Subcase 4. $m \equiv 1(\bmod 3)$ and $n \equiv 0(\bmod 3)$.
Let $m=3 t_{1}+1$ and $n=3 t_{2}$. Now relabel the vertex $v_{t_{2}+2}$ by 0 . Here $e v_{f}(0)=$ $e v_{f}(1)=e v_{f}(2)=2 t_{1}+2 t_{2}$.
Subcase 5. $m \equiv 1(\bmod 3)$ and $n \equiv 1(\bmod 3)$.
Let $m=3 t_{1}+1$ and $n=3 t_{2}+1$. In this case $e v_{f}(0)=e v_{f}(1)=2 t_{1}+2 t_{2}+1$ and $e v_{f}(2)=2 t_{1}+2 t_{2}$.
Subcase 6. $m \equiv 1(\bmod 3)$ and $n \equiv 2(\bmod 3)$.
Let $m=3 t_{1}+1$ and $n=3 t_{2}+2$. Here $e v_{f}(0)=e v_{f}(2)=2 t_{1}+2 t_{2}+1$ and $e v_{f}(1)=2 t_{1}+2 t_{2}+2$.
Subcase 7. $m \equiv 2(\bmod 3)$ and $n \equiv 0(\bmod 3)$.
Let $m=3 t_{1}+2$ and $n=3 t_{2}$. Now relabel the vertex $v_{t_{2}+2}$ by 0 . Then $e v_{f}(0)=$ $2 t_{1}=2 t_{2}, e v_{f}(1)=e v_{f}(2)=2 t_{1}+2 t_{2}+1$.
Subcase 8. $m \equiv 2(\bmod 3)$ and $n \equiv 1(\bmod 3)$.
Take $m=3 t_{1}+2$ and $n=3 t_{2}+1$. Here $e v_{f}(0)=e v_{f}(2)=2 t_{1}+2 t_{2}+1$ and $e v_{f}(1)=2 t_{1}+2 t_{2}+2$.
Subcase 9. $m \equiv 2(\bmod 3)$ and $n \equiv 2(\bmod 3)$.
Let $m=3 t_{1}+2$ and $n=3 t_{2}+2$. Now relabel the vertex $v_{t_{2}+3}$ by 0 . Here $e v_{f}(0)=e v_{f}(1)=e v_{f}(2)=2 t_{1}+2 t_{2}+2$. Hence $C_{m} @ P_{n}$ is total mean cordial.

Next investigation is about $P_{n} \odot K_{2}$ and $C_{n} \odot K_{2}$.
Theorem 3.4. $P_{n} \odot K_{2}$ is total mean cordial iff $n \neq 1$.
Proof. Let $P_{n}: u_{1} u_{2} \ldots u_{n}$ be the path. Let $V\left(P_{n} \odot K_{2}\right)=V\left(P_{n}\right) \cup\left\{v_{i}, w_{i}\right.$: $1 \leqslant i \leqslant n\}$ and $E\left(P_{n} \odot K_{2}\right)=E\left(P_{n}\right) \cup\left\{u_{i} v_{i}, v_{i} w_{i}, w_{i} u_{i}: 1 \leqslant i \leqslant n\right\}$. The order and size of $P_{n} \odot K_{2}$ are $3 n$ and $4 n-1$ respectively.
Case 1. $n \equiv 0(\bmod 3)$.
Let $n=3 t$ and $t>0$. Define a map $f: V\left(P_{n} \odot K_{2}\right) \rightarrow\{0,1,2\}$ as follows:

$$
\begin{array}{lllll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =f\left(w_{i}\right) & =0, & 1 \leqslant i \leqslant t \\
f\left(u_{t+i}\right) & =f\left(v_{t+i}\right) & =f\left(w_{t+i}\right) & =1, & 1 \leqslant i \leqslant t \\
f\left(u_{2 t+i}\right) & =f\left(v_{2 t+i}\right) & =f\left(w_{2 t+i}\right) & =2, & 1 \leqslant i \leqslant t
\end{array}
$$

In this case $e v_{f}(0)=7 t-1, e v_{f}(1)=e v_{f}(2)=7 t$.
Case 2. $n \equiv 1(\bmod 3)$.

Clearly $P_{n} \odot K_{2}$ is not total mean cordial. Assume $n>1$. Take $n=3 t+1$ and $t>0$. Define a function $f: V\left(P_{n} \odot K_{2}\right) \rightarrow\{0,1,2\}$ as follows:

$$
\begin{array}{lllll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =f\left(w_{i}\right) & =0, \quad 1 \leqslant i \leqslant t \\
f\left(u_{t+1+i}\right) & =f\left(v_{t+1+i}\right) & =f\left(w_{t+1+i}\right) & =1, \quad 1 \leqslant i \leqslant t \\
f\left(u_{2 t+1+i}\right)=f\left(v_{2 t+1+i}\right) & =f\left(w_{2 t+1+i}\right) & =2, \quad 1 \leqslant i \leqslant t
\end{array}
$$

$f\left(u_{t+1}\right)=2, f\left(v_{t+1}\right)=f\left(w_{t+1}\right)=0 . \operatorname{Here} e v_{f}(0)=e v_{f}(1)=e v_{f}(2)=7 t+2$.
Case 3. $n \equiv 2(\bmod 3)$.
For $P_{2} \odot K_{2}$, assign the label $0,0,0,2,2,2$ to the vertices $u_{1}, u_{2}, v_{1}, v_{2}, w_{1}, w_{2}$ respectively.
Let $n=3 t+2$ and $t>0$. Define $f: V\left(P_{n} \odot K_{2}\right) \rightarrow\{0,1,2\}$ by

$$
\begin{array}{lllll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =f\left(w_{i}\right) & =0, \quad 1 \leqslant i \leqslant t \\
f\left(u_{t+2+i}\right) & =f\left(v_{t+2+i}\right) & =f\left(w_{t+2+i}\right) & =1, \quad 1 \leqslant i \leqslant t \\
f\left(u_{2 t+2+i}\right) & =f\left(v_{2 t+2+i}\right) & =f\left(w_{2 t+2+i}\right) & =2, \quad 1 \leqslant i \leqslant t
\end{array}
$$

$f\left(u_{t+1}\right)=f\left(u_{t+2}\right)=2, f\left(v_{t+1}\right)=f\left(v_{t+2}\right)=f\left(w_{t+1}\right)=f\left(w_{t+2}\right)=2$. In this case $e v_{f}(0)=7 t+5, e v_{f}(1)=e v_{f}(2)=7 t+4$.

Theorem 3.5. $C_{n} \odot K_{2}$ is total mean cordial.
Proof. Let $V\left(C_{n} \odot K_{2}\right)$ be taken as in that of $P_{n} \odot K_{2}$ and $E\left(C_{n} \odot K_{2}\right)=$ $E\left(P_{n} \odot K_{2}\right) \cup\left\{u_{n} u_{1}\right\}$, see theorem 3.4. The order and size of $C_{n} \odot K_{2}$ are $3 n$ and $4 n$ respectively.
Case 1. $n \equiv 0(\bmod 3)$.
Let $n=3 t$. Define a map $f: V\left(C_{n} \odot K_{2}\right) \rightarrow\{0,1,2\}$ by

$$
\begin{aligned}
f\left(u_{i}\right) & =2, \quad 1 \leqslant i \leqslant 3 t \\
f\left(v_{i}\right) & =0, \quad 1 \leqslant i \leqslant 3 t \\
f\left(w_{i}\right) & =0, \quad 1 \leqslant i \leqslant 2 t \\
f\left(w_{2 t+i}\right) & =1, \quad 1 \leqslant i \leqslant t
\end{aligned}
$$

In this case $e v_{f}(0)=e v_{f}(1)=e v_{f}(2)=7 t$.
Case 2. $n \equiv 1(\bmod 3)$.
Label the vertices of $C_{n} \odot K_{2}$ as in case 2 of theorem 3.4. It is easy from the fact that $e v_{f}(0)=e v_{f}(2)=7 t+2$ and $e v_{f}(1)=7 t+3, f$ is a total mean cordial labeling. Case 3. $n \equiv 2(\bmod 3)$.
Assign the labels to the vertices of $C_{n} \odot K_{2}$ as in case 2 of theorem 3.4. Here we have $e v_{f}(0)=e v_{f}(1)=7 t+5$ and $e v_{f}(2)=7 t+4$ and hence $C_{n} \odot K_{2}$ is a total mean cordial graph.

Finally we investigate the total mean cordiality of splitting graph of star and comb.

For a graph G, the splitting graph of $G, S^{\prime}(G)$, is obtained from G by adding for each vertex v of G a new vertex v^{\prime} so that v^{\prime} is adjacent to every vertex that is adjacent to v. Note that if G is a (p, q) graph then $S^{\prime}(G)$ is a $(2 p, 3 q)$ graph.

Theorem 3.6. Splitting graph of a star, $S^{\prime}\left(K_{1, n}\right)$ is total mean cordial.

Proof. Let $V\left(S^{\prime}\left(K_{1, n}\right)\right)=\left\{u, v, u_{i}, v_{i}: 1 \leqslant i \leqslant n\right\}$ and $E\left(S^{\prime}\left(K_{1, n}\right)\right)=$ $\left\{u u_{i}, v u_{i}, v v_{i}: 1 \leqslant i \leqslant n\right\}$. Clearly, $p+q=5 n+2$.
Case 1. $n \equiv 0(\bmod 6)$.
Let $n=6 t$ and $t>0$. Define a function $f: V\left(S^{\prime}\left(K_{1, n}\right)\right) \rightarrow\{0,1,2\}$ by $f(u)=0$ and $f(v)=1$,

$$
\begin{array}{lll}
f\left(u_{i}\right) & =0 & 1 \leqslant i \leqslant 5 t \\
f\left(u_{5 t+i}\right) & =1 & 1 \leqslant i \leqslant t \\
f\left(v_{i}\right) & =2 & 1 \leqslant i \leqslant 5 t \\
f\left(v_{5 t+i}\right) & =1 & 1 \leqslant i \leqslant t
\end{array}
$$

In this case $e v_{f}(0)=e v_{f}(1)=10 t+1, e v_{f}(2)=10 t$.
Case 2. $n \equiv 1(\bmod 6)$.
Let $n=6 t-5$ and $t>0$. Define a function $f: V\left(S^{\prime}\left(K_{1, n}\right)\right) \rightarrow\{0,1,2\}$ by $f(u)=0$ and $f(v)=1$,

$$
\begin{array}{lll}
f\left(u_{i}\right) & =0 \quad 1 \leqslant i \leqslant 5 t-4 \\
f\left(u_{5 t-4+i}\right) & =1 \quad 1 \leqslant i \leqslant t-1 \\
f\left(v_{i}\right) & =2 \quad 1 \leqslant i \leqslant 5 t-4 \\
f\left(v_{5 t-4+i}\right) & =1 \quad 1 \leqslant i \leqslant t
\end{array}
$$

Here $e v_{f}(0)=10 t-7, e v_{f}(1)=e v_{f}(2)=10 t-8$.
Case 3. $n \equiv 2(\bmod 6)$.
For $S^{\prime}\left(K_{1,2}\right)$, asign the labels $0,1,0,2,2,0$ to the vertices $u_{1}, u_{2}, v_{1}, v_{2}, u, v$ respectively.
Let $n=6 t+2$ and $t>0$. Define a map $f: V\left(S^{\prime}\left(K_{1, n}\right)\right) \rightarrow\{0,1,2\}$ by $f(u)=0$, $f(v)=1$ and $f\left(v_{1}\right)=0$,

$$
\begin{array}{lll}
f\left(u_{i}\right) & =0 \quad 1 \leqslant i \leqslant 5 t+1 \\
f\left(u_{5 t+1+i}\right) & =1 \quad 1 \leqslant i \leqslant t+1 \\
f\left(v_{i+1}\right) & =2 \quad 1 \leqslant i \leqslant 5 t+2 \\
f\left(v_{5 t+3+i}\right) & =1 \quad 1 \leqslant i \leqslant t-1
\end{array}
$$

In this case $e v_{f}(0)=e v_{f}(1)=e v_{f}(2)=10 t+4$.
Case 4. $n \equiv 3(\bmod 6)$.
Let $n=6 t-3$ and $t>0$. Define a function $f: V\left(S^{\prime}\left(K_{1, n}\right)\right) \rightarrow\{0,1,2\}$ by $f(u)=0$ and $f(v)=1$,

$$
\begin{array}{lll}
f\left(u_{i}\right) & =0 \quad 1 \leqslant i \leqslant 5 t-3 \\
f\left(u_{5 t-3+i}\right) & =1 \quad 1 \leqslant i \leqslant t \\
f\left(v_{i}\right) & =2 \quad 1 \leqslant i \leqslant 5 t-2 \\
f\left(v_{5 t-2+i}\right) & =1 \quad 1 \leqslant i \leqslant t-1
\end{array}
$$

Here $e v_{f}(0)=10 t-5, e v_{f}(1)=e v_{f}(2)=10 t-4$.
Case 5. $n \equiv 4(\bmod 6)$.
Let $n=6 t-2$ and $t>0$. Define a function $f: V\left(S^{\prime}\left(K_{1, n}\right)\right) \rightarrow\{0,1,2\}$ by $f(u)=0$ and $f(v)=1$,

$$
\begin{array}{lll}
f\left(u_{i}\right) & =0 \quad 1 \leqslant i \leqslant 5 t-2 \\
f\left(u_{5 t-2+i}\right) & =1 \quad 1 \leqslant i \leqslant t \\
f\left(v_{i}\right) & =2 \quad 1 \leqslant i \leqslant 5 t-1 \\
f\left(v_{5 t-1+i}\right) & =1 \quad 1 \leqslant i \leqslant t-1
\end{array}
$$

In this case $e v_{f}(0)=e v_{f}(1)=10 t-3, e v_{f}(2)=10 t-2$.
Case 6. $n \equiv 5(\bmod 6)$.
Let $n=6 t-1$ and $t>0$. Define a function $f: V\left(S^{\prime}\left(K_{1, n}\right)\right) \rightarrow\{0,1,2\}$ by $f(u)=0$ and $f(v)=2$,

$$
\begin{array}{lll}
f\left(u_{i}\right) & =0 & 1 \leqslant i \leqslant 5 t-1 \\
f\left(u_{5 t-1+i}\right) & =1 & 1 \leqslant i \leqslant t \\
f\left(v_{i}\right) & =1 & 1 \leqslant i \leqslant 3 t \\
f\left(v_{3 t+i}\right) & =2 & 1 \leqslant i \leqslant 3 t-1
\end{array}
$$

In this case $e v_{f}(0)=e v_{f}(1)=e v_{f}(2)=10 t-1$.
Theorem 3.7. $S^{\prime}\left(P_{n} \odot K_{1}\right)$ is total mean cordial.
Proof. Let $V\left(P_{n} \odot K_{1}\right)=\left\{u_{i}, v_{i}: 1 \leqslant i \leqslant n\right\}$ and $E\left(P_{n} \odot K_{1}\right)=\left\{u_{i} u_{i+1}\right.$: $1 \leqslant i \leqslant n-1\} \cup\left\{u_{i} v_{i}: 1 \leqslant i \leqslant n\right\}$. Let $u_{i}^{\prime}(1 \leqslant i \leqslant n)$ be the vertex corresponding to $u_{i}(1 \leqslant i \leqslant n)$ and $v_{i}^{\prime}(1 \leqslant i \leqslant n)$ be the vertex corresponding to $v_{i}(1 \leqslant i \leqslant n)$. Define a map $f: V\left(S^{\prime}\left(P_{n} \odot K_{1}\right)\right) \rightarrow\{0,1,2\}$ by

$$
\begin{array}{llll}
f\left(u_{i}\right) & =0, & 1 \leqslant i \leqslant n & \\
f\left(u_{i}^{\prime}\right) & =2, & 1 \leqslant i \leqslant n & \\
f\left(v_{i}\right) & =2 & 1, \leqslant i \leqslant n & \\
f\left(v_{i}^{\prime}\right) & =0, & 1 \leqslant i \leqslant\left\lceil\frac{2 n}{3}\right\rceil & \text { if } n \equiv 0,1(\bmod 3) \\
f\left(v_{\left\lceil\frac{2 n}{3}\right\rceil+i}^{\prime}\right) & =2, & 1 \leqslant i \leqslant\left\lfloor\frac{2 n}{3}\right\rfloor & \text { if } n \equiv 2(\bmod 3) \\
f\left(v_{\left\lfloor\frac{2 n}{3}\right\rfloor+i}^{3}\right\rfloor & =2, & \text { if } & n \equiv 0,1(\bmod 3) \\
& 1 \leqslant i \leqslant\left\lceil\frac{n-3}{3}\right\rceil & \text { if } & n \equiv 2(\bmod 3)
\end{array}
$$

and $f\left(v_{n}^{\prime}\right)=1$. The following table 4 shows that f is a total mean cordial labeling.

Nature of n	$e v_{f}(0)$	$e v_{f}(1)$	$e v_{f}(2)$
$n \equiv 0(\bmod 3)$	$\frac{10 n-3}{3}$	$\frac{10 n-3}{3}$	$\frac{10 n-3}{3}$
$n \equiv 1(\bmod 3)$	$\frac{10 n-1}{3}$	$\frac{10 n-4}{3}$	$\frac{10 n-4}{3}$
$n \equiv 2(\bmod 3)$	$\frac{10 n-5}{3}$	$\frac{10 n-2}{3}$	$\frac{10 n-2}{3}$
TABLE 4			

References

[1] I. Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars combin., 23 (1987) 201-207.
[2] Ebrahim Salehi, Yaroslav Mukhin, Product Cordial Sets of Long Grids, Ars Combinatoria, 107 (2012), 339-351.
[3] J. A. Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 16 (2013) \# Ds6.
[4] F. Harary, Graph theory, Narosa Publishing house, New Delhi (2001).
[5] Harris Kwong, Sin Min Lee and Ho Kuen NG, On Product cordial index sets and friendly index sets of 2-Regular graphs and generalized wheels, Acta Mathematica Sinica, English series, 28(4) (2012), 661-674
[6] R. Ponraj, S. Sathish Narayanan and A. M. S. Ramasamy, Total mean cordial labeling of graphs, International Journal of Mathematical Combinatorics, 4(2014), 56-68.
[7] R. Ponraj and S. Sathish Narayanan, Total mean cordiality of $K_{n}^{c}+2 K_{2}$, Palestine Journal of Mathematics, 4(2) (2015), 431438.
[8] R. Ponraj, S. Sathish Narayanan and A. M. S. Ramasamy, Total mean cordial labeling of some graphs, Utilitas Mathematica, Accepted for publication.
[9] R. Ponraj and S. Sathish Narayanan, Total mean cordial labeling of some cycle related graphs, J. Appl. Math. E Informatics 33(2015), No. 1- 2, 101-110.
[10] R. Ponraj and S. Sathish Narayanan, Some results on total mean cordial labeling of graphs, International J.Math. Combin., 2(2015), 122-132.
[11] R.Ponraj, S.Sathish Narayanan and A.M.S.Ramasamy, Total mean cordiality of umbrella, butterfly and dumbbell graphs, Jordan Journal of Mathematics and Statistics (JJMS), 8(1)(2015), 59-77.
[12] A.Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N.Y. and Dunod Paris (1967) 349-355.
[13] W.C.Shiu and H.Kwong, Product cordial index and friendly index of regular graphs, Transaction on Combinatorics, $\mathbf{1}(1)(2012), 15-20$.

Received by editors 06.12.2014; Available online 19.12.2015.
Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627 412, InDIA.

E-mail address: ponrajmaths@gmail.com; sathishrvss@gmail.com

[^0]: 1991 Mathematics Subject Classification. 05C78.
 Key words and phrases. dragon, corona, path, comb, splitting graph, star.

