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ON THE b-CHROMATIC NUMBER OF SOME GRAPHS

S. K. Vaidya and Rakhimol V. Isaac

ABSTRACT. The b-coloring of a graph is a variant of proper coloring in which
every color class has at least one vertex which has at least one neighbor in
every other color class. The largest integer k for which the graph has a b-
coloring is called b-chromatic number. We investigate b-chromatic numbers
for shell, gear and generalised web graphs.

1. Introduction

A proper k-coloring of a graph G is a function ¢ : V(G) — {1,2,...,k} such
that c(u) # c(v) for all uv € E(G). The color class ¢; is the subset of vertices of G
that is assigned to color i. The chromatic number x(G) is the minimum number
k for which G admits proper k-coloring. A b-coloring of a graph G is a proper
coloring of G in which each color class has a b-vertex, that is, a vertex that has at
least one neighbor in each of the other color class. The concept of b-coloring was
introduced in 1999 by Irving and Manlove [6]. The b-chromatic number, ¢(G), of
G is the largest integer k such that G has a b-coloring using k colors. If G has
a b-coloring by k colors for every integer k satisfying x(G) < k < ¢(G) then G
is called b-continuous. The discussion on the b-chromatic number of some power
graphs is carried out by Effantin and Kheddouci [5]. The b-continuity property of
various graphs is explored by Barth et al. [2]. The b-coloring of regular graphs is
studied by Blidia et al. [3] while the b-coloring of regular graphs without 4 cycle
is studied by Shaebani [9]. The b-chromatic number for path related graphs is
discussed by Vaidya and Rakhimol [10]. The same authors have also investigated
the b-chromatic numbers of the degree splitting graphs of path, shell and gear graph
in [11].
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All graphs considered in this paper are finite, simple, connected and undirected.
We investigate the b-chromatic numbers of shell, gear and generalised web graphs.

DEFINITION 1.1. ([6]) The m-degree of a graph G, denoted by m(G), is the
largest integer m such that G has m vertices of degree at least m — 1.

PROPOSITION 1.1 ([4]). For any graph G, x(G) = 3 if and only if G has an
odd cycle.

ProPOSITION 1.2 ([7]). x(G) < ¢(G) < m(G).

It is obvious that if x(G) = k, then every coloring of a graph G by k colors is
a b-coloring of G.

PRrROPOSITION 1.3 ([1]). If C,, Ky and W, : C,, + K1 are respectively cycle,
complete bipartite graph and wheel graph, then
(1) x(C2n) =2, x(Can41) = 3.
(2) x(W,) =3, if n is even and x(W,,) =4, if n is odd.
(3) X(Km,n) = 2.
(4) p(Wy) =3, if n=4 and p(W,) =4, if n # 4.

PROPOSITION 1.4 ([4]). If Gy is a subgraph of G2, then x(G1) < x(G2).

2. Main Results

DEFINITION 2.1. ([8]) A shell graph S,, is the graph obtained by taking (n—3)
concurrent chords in a cycle C,,.

3, n=3,4,5

THEOREM 2.1. ¢(S,) = { 4 n>6

ProOOF. The graph S,, contains two vertices, say v; and v,_1, of degree 2, n—3
vertices , say vs, Vs, ..., Un_2, of degree 3 and a vertex, u, of degree n — 1. Thus
V(Sp) = {u,v1,v2, ..., vn—1} and |V (S,)| = n. As each S,, contains at least an odd
cycle Cs, ¢(Sy) = x(Sn) = 3.

For all n = 3,4,5, the graphs S3,54 and S5 has m-degree 3. Thus ¢(S,) < 3.
Consequently ¢(S,) = 3.

But when n = 6, the graph Sg has m-degree 4. Thus ¢(Ss) < 4. If we assign
the proper coloring as c¢(vy) = ¢(v4) = 1, ¢(v2) = ¢(vs) = 2, ¢(v3) = 3 and ¢(u) = 4,
we get a b-coloring with b-vertices vy, v2, v3 and u for the color classes 1,2,3 and 4
respectively. Thus ¢(Sg) = 4.

The graph S7 is obtained from Sg by adding a vertex vg and making vg adjacent
to u and vs. The addition of a vertex and two edges will not change the number
of m-degree vertices of the resultant graph S7. Consequently, ¢(S7) < 4. Thus
4 = ¢(Sg) < ¢(S7) < 4. Therefore ¢(S7) = 4.

By recursive construction of graphs Sg, Sy, ..., Sy, each graph S, has m-degree 4
and repeating the color after assigning the colors used for Sg we have ¢(S,) =4. O

DEFINITION 2.2. Let e = uwv be an edge of graph G and w is not a vertex of
G. The edge e is subdivided when it is replaced by edges ¢/ = uw and e’ = vw.
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DEFINITION 2.3. The gear Graph, G, is obtained from the wheel by subdi-
viding each of its rim edge exactly once.

LEMMA 2.1. G, is bipartite and x(Gy,) = 2, for all n.

ProoOF. Let W,, = C}, + K; be the wheel graph with apex vertex v and the
rim vertices vy, va, ..., v,. 10 obtain the gear graph G,,, subdivide each rim edge of
wheel W, by the vertices uy, us, ..., u,, where each u; subdivides the edge v;v;41 for
i=1,2,..,n — 1 and u, subdivides the edge viv,.

The wheel W,, = C,, + K7 contains an odd cycle C5 formed by the vertices
v;, V41 and v. Hence it is not bipartite. But after subdividing each rim edges by
the vertices u; the graph G,, contains only even cycles. Hence it becomes bipartite.
Consequently, x(G,,) = 2, for all n. O

THEOREM 2.2. For alln, ¢(G,) = 4.

PrOOF. Each G,, has at least four vertices of degree 3. Thus (G,,) < m(G,) =
4. By assigning proper coloring to the vertices as c¢(v) =4, ¢(v1) = 1, ¢(va) = 2,
c(vs) =3, c¢(u1) =3, c(uz) =1, c(ug) = 2 and c(u,,) = 2 (for the remaining vertices
we proceed with any proper coloring) we get the b-vertices vy, va,vs and v for the
color classes 1,2,3 and 4 respectively. Thus ¢(G,) = 4. O

COROLLARY 2.1. G3 is not b-continuous.

ProoF. By Lemma 2.1, we have x(G3) = 2. Hence b-coloring using 2 colors
can be done in G3. By Theorem 2.2, ¢(G3) = 4. But, if we use 3 colors to meet
the requirement of b- coloring, due to the adjacency of vertices, we cannot have
a b-vertex for any one of the three color classes. Hence b-coloring of G3 is not
possible. Thus G3 is not b- continuous. O

REMARK 2.1. As mentioned in M. Alkhateeb ([1]) G3 is the smallest non b-
continuous graph and the only one with seven vertices.

DEFINITION 2.4. The web graph is the graph obtained by joining the pendant
vertices of a Helm to form a cycle and then adding a single pendant edge to each
vertex of this outer cycle.

The graph W (t,n) is the generalised web graph with ¢ number of n- cycles.

THEOREM 2.3.
(W (t,3)) =4, when t = 2,3
e(W(t,n)) =5, whent#2,3 and for all n

PROOF. Consider the generalised web graph W (¢,n) with ¢t number of n-cycles.
Let V(W (t,n)) = {v},u,u;;1 <i < n,1 <j <t} W(tn) has at least 5 vertices
of degree at least 4. Therefore (W (¢,n)) < 5. Here d(u) = n, d(u;) =1, d(v]) = 4.

Case 1 : When t =2, n = 3. Suppose W (2,3) does have b-chromatic 5 color-
ing. Then at least two vertices of the first cycle (wlog vi and vi) are b-vertices.
To become b-vertices, v} and v3 must be adjacent to the three same colors. Such
a coloring is not possible since v} and v3 are adjacent. Therefore (W (2,3)) < 5.
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Thus (W (2,3)) < 4. As it contains a wheel W3 and x(W3) = 4, ¢(W(2,3)) >
x((W(2,3)) = x(W3) = 4. Hence p(W(2,3)) = 4.

Case 2: When t =3, n = 3. Suppose W (3,3) does have b-chromatic 5 color-
ing. By assigning the proper coloring as c(vi) = 2, c(vd) = 5, c(vi) = 3, c(v}) = 4,
c(v3) =3, c(v3) =5, c(v3) =1, c(v3) =5, c(v]) = 3, c(u) = 1, c(uy) = 2, c(uz) = 3,
c(us) = 2 gives the b-vertices for the color classes 1,2 and 4, but not for 3 and 5.
Similarly all other proper coloring using 5 colors will generate b-vertices at most
for three color classes only. Hence ¢(W(3,3)) # 5. Thus (W (3,3)) < 4. As it
contains a wheel W3 and x(W3) = 4, (W (3,3)) > x((W(3,3)) > x(W3) = 4.
Hence ¢(W(3,3)) = 4.

Case 3: When t = 4.

w
o
%2

Subcase 1: n = 3: If we assign the proper coloring for the graph W (4,
C(U%) =1, C(U%) = 2, C(ULI),) =5, C(’U%) = 3, C(”%) =3, C(U?%) =4, C(’Ug) =4,
c(vd) = 5, c(vy) = 1, c(v3) =4, c(v3) = 1, c(v3) = 1, c(u) = 4 and c(uy) = 2,
this gives the b-vertices v{, v?, v{, v3 and v} for the color classes 1,2,3,4 and 5
respectively. ©(W(4,3)) = 5.

Sub case 2: n # 3: If we assign the proper coloring for the graph W(4,n) as
C(u) =4, C(”%) =1, C(U%) =2, C(U%) =9, c(véll) =3, C(U%) =5, C(U%) =3, C(Ug) =4,
c(vy) = 2, c(v}) = 3, c(v?) = 4, c(v3) = 1, c(vl) = 4, c(vd) = 2, c(ug) = 1,
c(uz) = 3, ¢(un) = 5 (for the remaining vertices assign proper coloring) we get
b-vertices v{, vZ, v}, u and v} for the color classes 1,2,3,4 and 5 respectively.
e(W(4,n)) = 5.

Case 4: When t > 5. If we assign the proper coloring for the graph W (5,n) as
c(vl) =1, c(v?) =2, c(v3) = 5, c(v]) = 3, c(v]) = 4, c(u) = 4, c(vl) =5, c(v?) = 3,
=2, c(v}) = 3, c(v?) = 4, c(v3) = 1, c(vi) = 2, c(v3) = 5,

c(u1) = 1 (for the remaining vertices assign proper coloring) we get b-vertices v7,

v?, v}, v} and v} for the color classes 1,2,3,4 and 5 respectively. (W (5,n)) = 5.
When ¢ > 5, we repeat the coloring as above. It is obvious that (W (t,n)) =5
as m(W(t,n)) = 5. Hence the theorem. O

3. Concluding Remarks

In this paper we investigate b- chromatic numbers of shell, gear and generalised
web graphs. The shell and generalised web graphs are obviously b-continuous while
the b-continuity of gear graph is discussed in detail. To investigate similar results
for other graphs or graph families is an open area of research.
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