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Grading Wild Blocks via Stable Equivalences

Dusko Bogdanic

Abstract. In this paper we show how to construct a non-trivial Z-grading on
a wild block of group algebras by using stable equivalences between categories

of graded modules.

1. Introduction and preliminaries

Let A and B be algebras over a field k, and let us assume that there is a stable
equivalence between A and B, and that the algebra B is graded. A natural question
to ask is if there is a graded structure on A that is compatible with the stable
equivalence between A and B, i.e. if there is a grading on A such that there is a
stable equivalence between categories of graded A-modules and graded B-modules.
In other words, is there a way to non-trivially grade algebras by using transfer of
gradings between algebras via stable equivalences? In [8], Rouquier introduced the
idea of transfer of gradings via stable equivalences, and proved that it is possible
to construct non-trivial gradings in such a way.

The question of how to effectively transfer gradings from B to A arises, because
it is very difficult to conduct these computations in concrete situations. This is the
main topic of this paper. We show how to recover the graded quiver of A and effec-
tively transfer gradings between algebras via stable equivalences in the case when
the stable equivalence between A and B is of Morita type. We achieve such a trans-
fer via stable equivalences between Brauer correspondents of a group algebra, with
algebras in question being wild blocks of group algebras whose Sylow p-subgroups
satisfy the trivial intersection property. In this case, a stable equivalence between
the corresponding blocks is given by Green correspondence.

1.1. Notation. Throughout this text k will denote a field. All algebras will
be defined over the field k, and all modules will be left modules. The category
of finite dimensional A–modules is denoted by A–mod, and the stable category of
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the category A–mod is denoted by A-mod. The space of morphisms in the stable
category between A-modules M and N is denoted by HomA(M,N). For a given
module M , the projective cover of M is denoted by PM (see [9] for more details).

1.2. Graded modules. We say that an algebra A is a graded algebra if A
is the direct sum of subspaces A =

⊕
i∈Z Ai, such that AiAj ⊂ Ai+j , i, j ∈ Z. If

Ai = 0 for i < 0, we say that A is positively graded. An A-module M is graded if
it is the direct sum of subspaces M =

⊕
i∈Z Mi, such that AiMj ⊂ Mi+j , for all

i, j ∈ Z. If M is a graded A–module, then N = M⟨i⟩ denotes the graded module
given by Nj = Mi+j , j ∈ Z. An A-module homomorphism f between two graded
modules M and N is a homomorphism of graded modules if f(Mi) ⊆ Ni, for all
i ∈ Z. For a graded algebra A, we denote by A–modgr the category of graded fi-
nite dimensional A–modules. We set HomgrA(M,N) :=

⊕
i∈Z HomA−gr(M,N⟨i⟩),

where HomA−gr(M,N⟨i⟩) denotes the space of all graded homomorphisms be-
tween M and N⟨i⟩ (the space of homogeneous morphisms of degree i). There
is an isomorphism of vector spaces HomA(M,N) ∼= HomgrA(M,N) that gives us
a grading on HomA(M,N) (cf. [6], Corollary 2.4.4). By Corollary 2.4.7 in [6],
there is an isomorphism of vector spaces Ext1A(M,N) ∼= Extgr1A(M,N), where
Extgr1A(M,N) :=

⊕
i∈Z Ext

1
A−gr(M,N⟨i⟩), which gives us a grading on the space

Ext1A(M,N). Here, Ext1A−gr(M,N⟨i⟩) denotes the Ext–space computed in the cat-
egory of graded A–modules.

We note here that if we have two different gradings on an indecomposable
module, then they differ only by a shift (cf. [3], Lemma 2.5.3). Unless otherwise
stated, for a graded algebra A given by a quiver and relations, we will assume that
the projective indecomposable A-modules are graded in such a way that the top of
a projective indecomposable A-module is in degree 0.

2. Transfer of gradings

The main theorem that enables us to transfer gradings via stable equivalences
is due to Rouquier.

Theorem 2.1 ([8], Theorem 6.1). Let M be an (A,B)-bimodule and let N be a
(B,A)-bimodule inducing mutually inverse stable equivalences between self-injective
k-algebras A and B, where k is an algebraically closed field of positive characteristic.
If B is graded, then A admits a grading and there is a graded structure on the
bimodules M and N . Moreover, the graded bimodules M and N induce mutually
inverse equivalences between the stable categories of graded A-modules and graded
B-modules.

Let F be an equivalence between the stable categories of A-mod and B-mod.
By [4, Section 4.1], for A-modules S and T , there is an isomorphism of vector spaces

Ext1A(S, T )
∼= Ext1B(F (S), F (T )).

Having in mind Theorem 2.1, if S and T are graded modules, then the graded
version of the above isomorphism holds as well, i.e. we have a graded isomorphism
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Ext1A−gr(S, T )
∼= Ext1B−gr(F (S), F (T )). It follows that

Ext1A(S, T )
∼=

⊕
i∈Z

Ext1A−gr(S, T ⟨i⟩) ∼=
⊕
i∈Z

Ext1B−gr(F (S), F (T )⟨i⟩).

From this isomorphism it follows that if there is a stable equivalence between
two symmetric algebras A and B, then we can determine the quiver of A by calcu-
lating Ext-spaces in B. This is true because the dimension of Ext1A(S, T ) is equal
to the number of arrows in the quiver of A from the vertex corresponding to the
simple module T to the vertex corresponding to the simple module S. Moreover,
if B is graded then we can put a grading on A as well by Theorem 2.1. By this
theorem, the corresponding stable categories of graded A-modules and graded B-
modules are equivalent and the last graded isomorphism above gives us Ext1A(S, T )
as a graded space, hence giving us a grading on the quiver of A, i.e. giving us a
grading on A.

It follows that all we have to do to transfer gradings via stable equivalences
from B to A is to compute the graded space⊕

i∈Z
Ext1B−gr(F (S), F (T )⟨i⟩)

for all simple A-modules S and T . This graded space is the graded space spanned
by all arrows from T to S in the path algebra of the quiver of A. The resulting
grading on A is unique up to shifts of graded correspondents of simple A-modules.
We will assume that these modules are graded in such a way that their tops are in
degree 0. It is very difficult to conduct these computations in concrete situations,
but in some cases it is possible to do so, as we present it in the following section.

2.1. Green correspondence. If a stable equivalence between algebras A and
B is of Morita type, then the functor F inducing the stable equivalence between
A and B is given by a bimodule AMB , i.e. F =B M∗

A ⊗ −, where M∗ is the dual
of M , and its quasi-inverse is given by AMB ⊗−. We note here that we disregard
the projective summands, because they do not contribute to the extension spaces.
The idea of transfer is to put a grading on Ext1B(M

∗ ⊗A S,M∗ ⊗A T ) and use
the same grading to grade Ext1A(S, T ), i.e. to grade the corresponding arrows of
the quiver of A. In order to transfer gradings via stable equivalences of Morita
type between A and B we need to have: a bimodule AMB that induces a stable
equivalence of Morita type, the images of simple A-modules under this equivalence,
and a structure of graded modules on these images.

The trivial intersection case is the typical situation where we have stable equiv-
alences of Morita type. For a given group G and a prime number p, we say that the
Sylow p-subgroups of G have the trivial intersection property if g /∈ NG(P ) implies
that P ∩ P g = 1, for every Sylow p-subgroup P of G.

In the case of the trivial intersection Sylow p-subgroups, by Theorem 3.10.1
and Theorem 3.10.3 in [1] there is a stable equivalence of Morita type between kG
and kL induced by Green correspondence (which is given either by restriction or
induction (i.e. with a bimodule kG), and taking non-projective summands), where
L = NG(P ) and P is a Sylow p-subgroup of G. Here, char k = p.
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In the next section we give an example of such a correspondence where the
transfer of gradings via stable equivalences can be done explicitly. The blocks in
question are blocks of wild representation type.

3. The principal block of A6 and its Brauer correspondent

Throughout this section k will be a field of characteristic 3. For the alternating
group A6, a Sylow 3-subgroup P is isomorphic to C3 × C3 and the normalizer
NA6(P ) of P is isomorphic to P o C4, where the action of C4 on P is given as
follows (cf. [7], Appendix). If C3 × C3 = ⟨x⟩ × ⟨y⟩, then the action of a generator
f of C4 on a set of generators {x, y} of P is given by xf = xy and yf = xy2.

Let B := kP o C4. The quiver of B is given by

0•

δ0,1
tt

δ0,3

��1•
δ1,2

��

δ1,0

44

3•

δ3,2
tt

δ3,0

^^

2•
δ2,1

^^
δ2,3

44

and the relations are δi,i+1δi+1,i = δi,i−1δi−1,i, for i = 0, 1, 2, 3, and δi,jδj,i+2 = 0,
for i = 0, 1, 2, 3 and j = i+1, i− 1 (cf. [7], Section 4). Here, the addition in indices
is modulo 4. We recommend [2] as a good introduction to path algebras of quivers.

We will assume that B is graded in such a way that the vertices and the arrows
of the quiver of Q are homogeneous. Furthermore, we assume that deg(δi,j) = di,j .
From the relations of B we see that di,j + dj,i must be constant, independent of i
and j. In particular, if di,j = 1, then we get a tight grading on B, i.e. we have that
(see [5]):

B ∼=
⊕
i>0

radi(B)/radi+1(B).

The simple B-module corresponding to the vertex i of the quiver of B will be
denoted by Ti. The radical layers of the corresponding projective indecomposable
B-module Pi are given by

Ti

Ti−1 Ti+1

Ti+2 Ti Ti+2

Ti−1 Ti+1

Ti

,

where i ∈ {0, 1, 2, 3} and the addition in indices is modulo 4.

3.1. The principal block of kA6. The Sylow 3-subgroups of A6 have the
trivial intersection property. There is a stable equivalence between B0, the principal
block of kA6, and its Brauer correspondent B, the principal block of kP o C4,
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given by Green correspondence, i.e. by induction and restriction, and taking non-
projective summands (see [1]). Let Si, i = 1, 2, 3, 4, be the simple B0-modules,
where we set a convention that Si is the simple B0-module such that the top of its
Green correspondent is isomorphic to Ti. Then the Green correspondents of these
simple modules are given by (cf. [7], Section 4)

X0 := T0, X1 :=
T1

T0

T3

, X2 :=
T2

T1 T3

T2

, X3 :=
T3

T0

T1

.

The module Xi is a graded module because it is a quotient of a projective
indecomposable B-module by a homogeneous submodule. As a graded module, X0

is just the simple module T0 concentrated in degree 0, and for the other Green
correspondents we have

T1 0
T0 d0,1
T3 d3,0 + d0,1

,
T2 0

d1,2 T1 T3 d3,2
T2 d3,2 + d2,3

,
T3 0
T0 d0,3
T1 d1,3 + d0,3

,

where the numbers to the left or to the right of a composition factor denote the
degree of that composition factor.

We will use a stable equivalence between B and B0 to recover the quiver of B0

and to transfer gradings from B to B0. In order to do that we need to compute

Ext1B(Si ↓B , Sj ↓B)
for i, j ∈ {0, 1, 2, 3}, in the category of graded B-modules. For a simple B0-module
Si we have

Si ↓B∼= Xi ⊕Qi,

where Qi is a projective B-module. Since the bifunctor Ext1B(−,−) is additive and
Ext1B(M,P ) = Ext1B(P,M) = 0 for any B-module M and any projective B-module
P , we have that

Ext1B(Si ↓B , Sj ↓B) ∼= Ext1B(Xi, Xj).

Therefore, we need to compute Ext1B(Xi, Xj) for i, j ∈ {0, 1, 2, 3}, to recover the
quiver of B0. We notice here that these projective summands Qi are not equal to
zero.

We start our computation by constructing a projective resolution of X0:

· · · // P1⟨r⟩ ⊕ P0⟨s⟩ ⊕ P3⟨t⟩
G // P1⟨−d1,0⟩ ⊕ P3⟨−d3,0⟩

F // P0
// T0 ,

where r, s, t are the necessary shifts, and Pi is the projective cover of Ti.
If we apply the functor HomB−gr(−, T0⟨j⟩) to the above resolution, we get that

Extgr1B(T0, T0) = 0, because HomB(P1 ⊕ P3, T0) = 0. This tells us that there are
no loops starting and ending at S0 in the quiver of B0.

To compute Ext1B−gr(T0, X2⟨j⟩) we apply the functor HomB−gr(−, X2⟨j⟩) to
the above resolution. It is obvious that HomB(P0, X2) = 0, because T0 is not a
composition factor of X2. Since for any homomorphism f ∈ HomB(P1 ⊕ P3, X2)
we have that f ◦G = 0, it follows that Ext1B−gr(T0, X2⟨j⟩) is isomorphic to

HomB−gr(P1⟨−d1,0⟩ ⊕ P3⟨−d3,0⟩, X2⟨j⟩).
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From this we conclude that Extgr1B(T0, X2) ∼= k⟨d3,0 − d3,2⟩ ⊕ k⟨d1,0 − d1,2⟩. This
tells us that there are two arrows in the quiver of B0 starting at S2 and ending at
S0. These arrows are in degrees d3,2 − d3,0 and d1,2 − d1,0.

To compute Ext1B−gr(T0, X1⟨j⟩) we apply the functor HomB−gr(−, X1⟨j⟩) to
the above resolution. The space HomB(P1⊕P3, X1) is 2-dimensional. For any non-
zero map g ∈ HomB(P1, X1) we have that g ◦G ̸= 0. Also, we have that f ◦ F ̸= 0
for all non-zero f ∈ HomB(P0, X1). From this we conclude that Ext1B(X0, X1) = 0.
By interchanging the roles of X1 and X3, and using the same arguments we get
that Ext1B(X0, X3) = 0. This means that there are no arrows from S1 to S0, nor
from S3 to S0 in the quiver of B0.

We have recovered all arrows (and computed their degrees) in the quiver of B0

that have S0 as their target.
We now proceed by recovering the arrows of the quiver of B0 that have S2 as

their target. To do this we write a projective resolution of X2:

· · · // P1⟨n1⟩ ⊕ P2⟨n2⟩ ⊕ P3⟨n3⟩
G // P0⟨l2⟩ ⊕ P0⟨l1⟩

F // P2
// X2 ,

where l1 = −d0,3 − d3,2, l2 = −d0,1 − d1,2, and n1, n2, n3 are the necessary shifts.

Since HomB(P0, X2) = 0, it follows that Extgr1B(X2, X2⟨j⟩) = 0 for all j, i.e.
there are no loops starting and ending at S2 in the quiver of B0.

To compute Ext1B−gr(X2, X0⟨j⟩) we apply the functor HomB−gr(−, X0⟨j⟩) to
the above resolution. Since HomB(P2, T0) = 0 and since for every f ∈ HomB(P0, T0)
it holds that f ◦G = 0, we have that

Ext1B−gr(X2, X0⟨j⟩) ∼= HomB−gr(P0⟨l2⟩ ⊕ P0⟨l1⟩, T0⟨j⟩).

It follows that Extgr1B(X2, X0) ∼= k⟨d0,1 + d1,2⟩ ⊕ k⟨d0,3 + d3,2⟩. This tells us
that there are two arrows from S0 to S2 in the quiver of B0. Their degrees are
−(d0,1 + d1,2) and −(d0,3 + d3,2).

We now apply the functor HomB−gr(−, X1⟨j⟩) to the above resolution. From

HomB(P2, X1) = 0 it follows that Ext1B−gr(X2, X1⟨j⟩) is isomorphic to the subspace
of HomB−gr(P0⟨l2⟩ ⊕ P0⟨l1⟩, X1⟨j⟩) consisting of the maps f such that f ◦G = 0.
The latter space is isomorphic to HomB−gr(P0⟨l1⟩, X1⟨j⟩). When composed withG,
the non-zero maps from HomB−gr(P0⟨l2⟩, X2⟨j⟩) give non-zero maps. We conclude

that Extgr1B(X2, X1) ∼= k⟨d0,3 + d3,2 + d0,1⟩, i.e. in the quiver of B0, the arrow
starting at S1 and ending at S2 is in degree −d0,3 − d3,2 − d0,1.

By interchanging the roles of X1 and X3, and using the same arguments we get
that Extgr1B(X2, X3) ∼= k⟨d0,1 + d1,2 + d0,3⟩. We conclude that the arrow starting
at S3 and ending at S2 is in degree −d0,1 − d1,2 − d0,3.

We have recovered all arrows (and computed their degrees) in the quiver of B0

that have S2 as their target.
We are left to recover the arrows of the quiver of B0 that have S1 or S3 as their

target. Due to the symmetry of the arguments used for X1 and X3, we need to do
our computation only for one of them, say X1.
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We start by writing a projective resolution of X1:

· · · // P0⟨n3⟩
G // P2⟨−d2,1⟩

F // P1
// X1 ,

where n3 = −(d2,1 + d3,2 + d0,3).

Since HomB(P2, X0) = 0, we have that Ext1B(X1, X0) = 0. In other words,
there are no arrows from S0 to S1 in the quiver of B0. Similarly, Ext1B(X3, X0) = 0
and there are no arrows from S0 to S3 in the quiver of B0.

From HomB(P2, X1) = 0 it follows that Ext1B(X1, X1) = 0, and similarly from
HomB(P2, X3) = 0 it follows that Ext1B(X1, X3) = 0. This means that there are no
loops starting and ending at S1, and that there are no arrows starting at S3 and
ending at S1. The same holds if we interchange X1 and X3, i.e. there are no loops
starting and ending at S3, and there are no arrows starting at S1 and ending at S3.

We are left to compute Ext1B−gr(X1, X2⟨j⟩), for all j. After applying the
functor HomB−gr(−, X2⟨j⟩) to the above projective resolution of X1, we notice
that HomB−gr(P0, X2⟨j⟩) = 0. The dimension of the vector space HomB(P2, X2)
is 2, and the dimension of HomB(P1, X2) is 1. Every non-surjective map f ∈
HomB(P2, X2) can be written in the form f = g ◦ F , for some g ∈ HomB(P1, X2).
The surjective maps from HomB(P2, X2) cannot be written in such a way. It follows
that Extgr1B(X1, X2) ∼= k⟨d2,1⟩. The degree of the corresponding arrow from S2 to
S1 in the quiver of B0 is −d2,1. By interchanging the roles of X1 and X3 we get

that Extgr1B(X3, X2) ∼= k⟨d2,3⟩. The degree of the corresponding arrow from S2 to
S3 in the quiver of B0 is −d2,3.

From the above computation, we see that we have managed to compute the
quiver of B0, and to put a grading on it. Before we draw the graded quiver of B0,
we will rescale this grading by multiplying all degrees by −1 in order to get rid of
the minus signs. The resulting graded quiver of B0 is given by

0•

r4

��

r3

��
1•

r5
** 2•

d2,1

jj

r1

JJ

r2

JJ

d2,3

** 3•
r6

jj

where r6 = d0,1+d1,2+d0,3, r5 = d0,3+d3,2+d0,1, r4 = d0,3+d3,2, r3 = d0,1+d1,2,
r2 = d3,0 − d3,2 and r1 = d1,0 − d1,2.

Theorem 3.1. Let B and B0 be as above. Let us assume that B is graded, and
that we transferred this grading to B0 via stable equivalence. There exists a grading
on B such that the resulting grading on B0 is positive. Moreover, the resulting
grading on B0 can be tight. In particular, the resulting grading can be such that the
homogeneous elements from the radical are in strictly positive degrees.
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Proof. For a suitably chosen strictly positive grading on B, e.g. if we set d1,0 > d1,2
and d3,0 > d3,2, we get a strictly positive grading on B0, i.e. such a grading where
all arrows are in positive degrees. Hence, all homogeneous elements from the radical
of B0 are in positive degrees. For example, if we set d3,0 = d1,0 = d2,1 = d2,3 = 2
and d0,3 = d0,1 = d1,2 = d3,2 = 1 we get a strictly positive grading on B0. If we set
d1,0 = d3,0 = 2, d1,2 = d2,1 = d2,3 = d3,2 = 1 and d0,1 = d1,0 = 0, we get a tight
grading on B0. �
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