Extension of Some Fixed Point Theorems of $\{a, b, c\}$-Type Generalized Mappings in Weakly Cauchy Normed Spaces

Pankaj Kumar Jhade, A. S. Saluja, and M. S. Khan

Abstract

Let C be a closed convex weakly Cauchy subset of a normed space X. Then we define new $\{a, b, c\}$-type generalized nonexpansive mapping and $\{a, b, c\}$-type generalized contraction mapping T from C into C. These type of mappings will be denoted respectively by $\{a, b, c\}$-gntype and $\{a, b, c\}$-gctype. The aim of this paper is to establish some strong convergence results for such type of mappings. Our results extends and generalizes some of the results given in [2].

1. Introduction

Let C be a closed convex subset of a normed space X and T be a mapping from C into C such that

$$
\|T(x)-T(y)\| \leqslant a\|x-y\|+b\|y-T(y)\|\|+c\| x-T(x) \|
$$

for all $x, y \in C$ and for some real numbers $a, b, c \in[0,1]$.
When $0<a<1, b=c=0, T$ is said to be a contraction mapping, if X is complete, S. Banach gave his famous Banach contraction principle, namely, T has a unique fixed point.

When $a=1, b=c=0, T$ is said to be a nonexpansive mapping, if C is a bounded closed convex subset of a Banach space X, W.A. Kirk proved fixed point theorems concerning this type of mappings [9].

Recently, the existence of fixed points of T when the domain of T is unbounded discussed in [7]. If $a=0, T$ is said to be Kannan type mapping [8]. If $a+b+c<1$

[^0]a unique fixed point of T defined on a closed convex subset of a weakly Cauchy normed space is proved [4].

Theorem 1.1. ([4]) Let X be a normed space, C be a closed convex and weakly Cauchy subset of X and T be a mapping from C into C which satisfies

$$
\|T(x)-T(y)\| \leqslant a\|x-y\|+b\|y-T(y)\|\|+c\| x-T(x) \|
$$

for all $x, y \in C$ and for some real numbers $a, b, c \in[0,1]$ with $a+b+c<1$. Then T has a unique fixed point $y \in C$.

If $0<a<1, b, c \geqslant 0 \& a+b+c=1, T$ becomes Gregus type mapping, M. Gregus [6] proved the existence of a unique fixed point of such a mapping provided that C is closed convex subset of a Banach space X.

Theorem 1.2. ([6]) Let C be a closed convex subset of a Banach space X and T be a mapping from C into C which satisfies

$$
\|T(x)-T(y)\| \leqslant a\|x-y\|+b\|y-T(y)\|\|+c\| x-T(x) \|
$$

for all $x, y \in C$ and for some real numbers $a, b, c \in[0,1]$ with $0<a<1 \& a+b+$ $c=1$. Then T has a unique fixed point $y \in C$.

More general contraction type mapping was given in [5], [10], [11]. It is proved that

Theorem 1.3. ([5]) Let (X, d) be a complete metric space and T be a mapping from X into X which satisfies

$$
d(T(x), T(y)) \leqslant a d(x, y)+b d(y, T y)+c d(x, T x)+e d(x, T y)+f d(y, T x)
$$

for all $x, y \in C$ and for some real numbers $a, b, c, e, f \in[0,1]$ with $a+b+c+e+f<1$. Then T has a unique fixed point.

If $a+b+c=1, T$ becomes $\{a, b, c\}$-Generalized nonexpansive type mapping, Sahar Ali proved the existence of a unique fixed point of such a mapping when C is containing contraction point, closed, convex and weakly Cauchy subset of a normed space $X[\mathbf{1}]$.

The purpose of this paper is to introduce a new $\{a, b, c\}$-gntype and $\{a, b, c\}$ gctype mappings defined on a closed convex weakly Cauchy subset of a normed space not necessarily Banach in general and prove some strong convergence result for such mappings. Our result extends and generalizes some of the results given in [2].

2. Preliminaries

Definition 2.1. Let X be normed space. Then a subset C of X is said to be weakly Cauchy if and only if every Cauchy sequence in C has a subsequence converging weakly to some point in X

Definition 2.2. Let C be a subset of a normed space X and T be a mapping from C into C satisfying

$$
\begin{aligned}
\|T(x)-T(y)\| \leqslant & a\|x-y\|+b \max \{\|x-T(x)\|,\|y-T(y)\|\} \\
& +c[\|x-T(y)\|+\|y-T(x)\|]
\end{aligned}
$$

for all $x, y \in C$ and some real numbers $a, b, c \in[0,1]$. Then
(a) T is said to be $\{a, b, c\}$-gntype mapping, if $0<a<1,0<b, 0 \leqslant c<1$ and $a+b+2 c=1$
(b) T is said to be $\{a, b, c\}$-gctype mapping, if $0 \leqslant c<\frac{1}{3}$ and $a+b+2 c<1$

Lemma 2.1. ([2]) Let X be a normed space, C be a closed convex subset of X, $\left\{x_{n}\right\}_{n \in \mathcal{N}}$ be a Cauchy sequence in C that has a subsequence converging weakly to some point $y \in X$. Then $\left\{x_{n}\right\}_{n \in \mathcal{N}}$ has a subsequence converging strongly to y and $y \in C$.

Lemma 2.2. ([2]) Let X be a normed space and T be a mapping from X into X, if there is a real number $t, t<1$ which satisfies that for every $x \in X$ there exists $y \in X$ such that

$$
\|T(y)-y\| \leqslant t\|T(x)-x\|
$$

Then $\inf \{\|T(x)-x\|: x \in X\}=0$

3. Main Results

Lemma 3.1. Let X be a normed space, T be a mapping from X into X satisfying

$$
\begin{aligned}
\|T(x)-T(y)\| \leqslant & a\|x-y\|+b \max \{\|x-T(x)\|,\|y-T(y)\|\} \\
& +c[\|x-T(y)\|+\|y-T(x)\|]
\end{aligned}
$$

for all $x, y \in C$ and some positive real numbers $a, b, c \in[0,1]$. Then for any $x \in X$, the sequence of iterates $\left\{T_{n}(x)\right\}_{n \in \mathcal{N}}$ satisfy

$$
\begin{equation*}
\left\|T^{n+1}(x)-T^{n}(x)\right\| \leqslant k^{n}\|T(x)-x\| \tag{3.1}
\end{equation*}
$$

Proof. Let $x \in X$, we have

$$
\begin{aligned}
\left\|T^{2}(x)-T(x)\right\| \leqslant & a\|T(x)-x\|+b \max \{\|T(x)-T(T(x))\|,\|x-T(x)\|\} \\
& +c[\|T(x)-T(x)\|+\|x-T(T(x))\|] \\
\leqslant & a\|T(x)-x\|+b \max \{\|T(x)-T(T(x))\|,\|x-T(x)\|\} \\
& +c[\|x-T(x)\|+\|T(x)-T(T(x))\|]
\end{aligned}
$$

Now there are two cases
i.e., If $\max \{\|T(x)-T(T(x))\|,\|x-T(x)\|\}=\|T(x)-T(T(x))\|$, then

$$
\left\|T^{2}(x)-T(x)\right\| \leqslant(a+c)\|T(x)-x\|+(b+c)\|T(x)-T(T(x))\|
$$

$$
\begin{equation*}
\leqslant\left(\frac{a+c}{1-(b+c)}\right)\|T(x)-x\| \tag{3.2}
\end{equation*}
$$

Again, if $\max \{\|T(x)-T(T(x))\|,\|x-T(x)\|\}=\|T(x)-x\|$, then

$$
\begin{align*}
\left\|T^{2}(x)-T(x)\right\| & \leqslant(a+b+c)\|T(x)-x\|+c\|T(x)-T(T(x))\| \\
& \leqslant\left(\frac{a+b+c}{1-c}\right)\|T(x)-x\| \tag{3.3}
\end{align*}
$$

Again since

$$
\begin{aligned}
\left\|T^{3}(x)-T^{2}(x)\right\|= & \left\|T\left(T^{2}(x)\right)-T(T(x))\right\| \\
\leqslant & a\left\|T^{2}(x)-T(x)\right\| \\
& +b \max \left\{\left\|T^{2}(x)-T\left(T^{2}(x)\right)\right\|,\|T(x)-T(T(x))\|\right\} \\
& +c\left[\left\|T^{2}(x)-T(T(x))\right\|+\left\|T(x)-T\left(T^{2}(x)\right)\right\|\right] \\
\leqslant & a\left\|T^{2}(x)-T(x)\right\|+b \max \left\{\left\|T^{2}(x)-T^{3}(x)\right\|,\left\|T(x)-T^{2}(x)\right\|\right\} \\
& +c\left[\left\|T(x)-T^{2}(x)\right\|+\left\|T^{2}(x)-T^{3}(x)\right\|\right]
\end{aligned}
$$

Again we have two cases.
i.e. If $\max \left\{\left\|T^{2}(x)-T^{3}(x)\right\|,\left\|T(x)-T^{2}(x)\right\|\right\}=\left\|T^{2}(x)-T^{3}(x)\right\|$, then

$$
\begin{align*}
\left\|T^{2}(x)-T^{3}(x)\right\| & \leqslant\left(\frac{a+c}{1-(b+c)}\right)\left\|T^{2}(x)-T(x)\right\| \\
& \leqslant\left(\frac{a+c}{1-(b+c)}\right)^{2}\|T(x)-x\| \\
& \leqslant K_{1}^{2}\|T(x)-x\| \tag{3.4}
\end{align*}
$$

where $K_{1}^{2}=\left(\frac{a+c}{1-(b+c)}\right)$
Also, ifmax $\left\{\left\|T^{2}(x)-T^{3}(x)\right\|,\left\|T(x)-T^{2}(x)\right\|\right\}=\left\|T(x)-T^{2}(x)\right\|$, then we have

$$
\begin{align*}
\left\|T^{2}(x)-T^{3}(x)\right\| & \leqslant\left(\frac{a+b+c}{1-c}\right)\left\|T^{2}(x)-T(x)\right\| \\
& \leqslant\left(\frac{a+b+c}{1-c}\right)^{2}\|T(x)-x\| \\
& \leqslant K_{2}^{2}\|T(x)-x\| \tag{3.5}
\end{align*}
$$

$$
\text { where } K_{2}^{2}=\left(\frac{a+b+c}{1-c)}\right)
$$

Continuing in this way, we get

$$
\left\|T^{n+1}(x)-T^{n}(x)\right\| \leqslant k^{n}\|T(x)-x\|
$$

where $k=\max \left\{K_{1}^{2}, K_{2}^{2}\right\}$

This completes the proof of the Lemma.

Theorem 3.1. Let C be a closed convex and weakly Cauchy subset of a normed space X, T be $\{a, b, c\}$-gntype mapping, then $\inf \{\|T(x)-x\|: x \in X\}=0$, accordingly T has a unique fixed point. Moreover, any sequence $\left\{x_{n}\right\}_{n \in \mathcal{N}}$ in C with $\lim _{n \rightarrow \infty}\left\|T\left(x_{n}\right)-x_{n}\right\|=0$ has a subsequence strongly convergent to the unique fixed point of T.

Proof. Using Lemma (3.1) with the fact that $k=1$ as $a+b+2 c=1$, the inequality (3.1) insure that for every $x \in C$ and $n \in \mathcal{N}$, we have

$$
\left\|T^{n+1}(x)-T^{n}(x)\right\| \leqslant\left\|T^{n}(x)-T^{n-1}(x)\right\| \leqslant\|T(x)-x\|
$$

On the other hand

$$
\begin{aligned}
\left\|T^{3}(x)-T(x)\right\| \leqslant & \left.a\left\|T^{2}(x)-x\right\|+b \max \left\{\| T^{2}(x)-T^{3}(x)\right)\|,\| x-T(x) \|\right\} \\
& +c\left[\left\|T^{2}(x)-T(x)\right\|+\left\|x-T^{3}(x)\right\|\right] \\
\leqslant & a\left\|T^{2}(x)-x\right\|+b\|T(x)-x\| \\
& +c\left[\left\|T^{2}(x)-T(x)\right\|+\|T(x)-x\|\right. \\
& \left.+\left\|T(x)-T^{2}(x)\right\|+\left\|T^{2}(x)-T^{3}(x)\right\|\right] \\
\leqslant & (a+b+4 c)\|T(x)-x\|=(1+2 c)\|T(x)-x\|
\end{aligned}
$$

Since C is convex, the element $y=\frac{1}{2}\left(T^{2}(x)+T^{3}(x)\right)$ is in C, one has

$$
\begin{aligned}
\|y-T(x)\| & \leqslant \frac{1}{2}\left[\left\|T(x)-T^{2}(x)\right\|+\left\|T(x)-T^{3}(x)\right\|\right] \\
& \leqslant \frac{1}{2}[\|T(x)-x\|+(1+2 c)\|T(x)-x\|] \\
& \leqslant \frac{1}{2}(2+2 c)\|T(x)-x\| \leqslant(1+c)\|T(x)-x\| \\
\left\|y-T^{2}(x)\right\| & =\frac{1}{2}\left\|T^{3}(x)-T^{2}(x)\right\| \leqslant \frac{1}{2}\|T(x)-x\| \\
\left\|y-T^{3}(x)\right\| & =\frac{1}{2}\left\|T^{3}(x)-T^{2}(x)\right\| \leqslant \frac{1}{2}\|T(x)-x\|
\end{aligned}
$$

Then

$$
\begin{aligned}
2\|T(y)-y\| \leqslant & \left\|T(y)-T^{2}(x)\right\|+\left\|T(y)-T^{3}(x)\right\| \\
\leqslant & a\|y-T(x)\|+b \max \left\{\|y-T(y)\|,\left\|T(x)-T^{2}(x)\right\|\right\} \\
& +c\left[\left\|y-T^{2}(x)\right\|+\|T(x)-T(y)\|\right] \\
& +a\left\|y-T^{2}(x)\right\|+b \max \left\{\|y-T(y)\|,\left\|T^{2}(x)-T^{3}(x)\right\|\right\} \\
& +c\left[\left\|y-T^{2}(x)\right\|+\left\|T^{2}(x)-T(y)\right\|\right] \\
\leqslant & a(1+c)\|T(x)-x\|+b \max \{\|y-T(y)\|,\|x-T(x)\|\} \\
& +c\left[\left(\frac{1}{2}\right)\|T(x)-x\|+(1+c)\|T(x)-x\|+\|y-T(y)\|\right] \\
& +a\left(\frac{1}{2}\right)\|T(x)-x\|+c\left[\left(\frac{1}{2}\right)\|T(x)-x\|\right. \\
& \left.+\left(\frac{1}{2}\right)\|T(x)-x\|+\|y-T(y)\|\right] \\
\leqslant & \left(\frac{1}{2}\right)\{2 a(a+c)+c+2 c(1+c)+a+2 c\}\|T(x)-x\| \\
& +2 c\|y-T(y)\|+b \max \{\|y-T(y)\|,\|x-T(x)\|\}
\end{aligned}
$$

Now there are two cases.
i.e. If $\max \{\|y-T(y)\|,\|x-T(x)\|\}=\|x-T(x)\|$, then

$$
\begin{aligned}
2\|T(y)-y\| \leqslant & \left(\frac{1}{2}\right)\{2 a(a+c)+3 c+2 c(1+c) a+2 b\}\|T(x)-x\| \\
& +2 c\|y-T(y)\| \\
\|T(y)-y\| \leqslant & \left\{\frac{3 a+2 b+5 c+2 a c+2 c^{2}}{4(1-c)}\right\}\|T(x)-x\| \\
\leqslant & \left\{\frac{4(1-c)-\{1+b+c(3+2 a+2 c)\}}{4(1-c)}\right\}\|T(x)-x\| \\
\leqslant & \left\{1-\frac{(1+b+c(3+2 a+2 c)}{4(1-c)}\right\}\|T(x)-x\|
\end{aligned}
$$

Also, if $\max \{\|y-T(y)\|,\|x-T(x)\|\}=\|y-T(y)\|$, then

$$
\begin{aligned}
2\|T(y)-y\| \leqslant & \left(\frac{1}{2}\right)\{2 a(1+c)+c+2 c(1+c)+a+2 c\}\|T(x)-x\| \\
& +(b+2 c)\|T(y)-y\|
\end{aligned}
$$

$$
\begin{align*}
\|T(y)-y\| & \leqslant\left(\frac{1}{2}\right)\left\{\frac{3 a+2 a c+5 c+2 c^{2}}{2-b-2 c}\right\}\|T(x)-x\| \\
& \leqslant\left\{\frac{2 a+2 a c+3 c+2 c^{2}+1-b}{2(1+2 a)}\right\}\|T(x)-x\| \\
& \leqslant\left\{\frac{2(1+2 a)-1-b-2 a+3 c+2 a c+2 c^{2}}{2(1+2 a)}\right\}\|T(x)-x\| \\
& \leqslant\left\{1-\frac{(1+b+2 a+c(3+2 a+2 c)}{2(1+2 a)}\right\}\|T(x)-x\| \tag{3.7}
\end{align*}
$$

In both of the cases (3.6) and (3.7), we can write

$$
\begin{equation*}
\|T(y)-y\| \leqslant t\|T(x)-x\| \tag{3.8}
\end{equation*}
$$

where t is a positive real number with $t<1$. Now using the Lemma (2.2), we see that $\inf \{\|T(x)-x\|: x \in X\}=0$.
Pick any sequence $\left\{x_{n}\right\}_{n \in \mathcal{N}}$ with $\lim _{n \rightarrow \infty}\left\|T\left(x_{n}\right)-x_{n}\right\|=0$. We claim that such a sequence is Cauchy sequence in C.
In fact, we have

$$
\begin{aligned}
\left\|x_{m}-x_{n}\right\| \leqslant & \left\|T\left(x_{m}\right)-x_{m}\right\|+\left\|x_{n}-T\left(x_{n}\right)\right\|+\left\|T\left(x_{m}\right)-T\left(x_{n}\right)\right\| \\
\leqslant & \left\|T\left(x_{m}\right)-x_{m}\right\|+\left\|x_{n}-T\left(x_{n}\right)\right\|+a\left\|x_{m}-x_{n}\right\| \\
& +b \max \left\{\left\|x_{m}-T\left(x_{m}\right)\right\|,\left\|x_{n}-T\left(x_{n}\right)\right\|\right\} \\
& +c\left[\left\|x_{m}-T\left(x_{n}\right)\right\|+\left\|x_{n}-T\left(x_{m}\right)\right\|\right] \\
\leqslant & \left\|T\left(x_{m}\right)-x_{m}\right\|+\left\|x_{n}-T\left(x_{n}\right)\right\|+a\left\|x_{m}-x_{n}\right\| \\
& +b \max \left\{\left\|x_{m}-T\left(x_{m}\right)\right\|,\left\|x_{n}-T\left(x_{n}\right)\right\|\right\} \\
& +c\left[\left\|x_{m}-x_{n}\right\|+\left\|x_{n}-T\left(x_{n}\right)\right\|+\left\|x_{n}-x_{m}\right\|+\left\|x_{m}-T\left(x_{m}\right)\right\|\right] \\
\leqslant & \left\|T\left(x_{m}\right)-x_{m}\right\|+\left\|x_{n}-T\left(x_{n}\right)\right\|+(a+2 c)\left\|x_{m}-x_{n}\right\| \\
& +b \max \left\{\left\|x_{m}-T\left(x_{m}\right)\right\|,\left\|x_{n}-T\left(x_{n}\right)\right\|\right\} \\
& +c\left[\left\|x_{n}-T\left(x_{n}\right)\right\|+\left\|x_{m}-T\left(x_{m}\right)\right\|\right]
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
\left\|x_{m}-x_{n}\right\| \leqslant & \frac{1}{1-(a+2 c)}\left\{\left\|T\left(x_{m}\right)-x_{m}\right\|+\left\|x_{n}-T\left(x_{n}\right)\right\|\right. \\
& \left.+b \max \left\{\left\|x_{m}-T\left(x_{m}\right)\right\|,\left\|x_{n}-T\left(x_{n}\right)\right\|\right\}\right\} \\
& +c\left[\left\|x_{n}-T\left(x_{n}\right)\right\|+\left\|x_{m}-T\left(x_{m}\right)\right\|\right]
\end{aligned}
$$

Taking limit as $n \rightarrow \infty$ proves that $\left\{x_{n}\right\}_{n \in \mathcal{N}}$ is a Cauchy sequence in C. Since C is weakly Cauchy subset of X, the sequence $\left\{x_{n}\right\}_{n \in \mathcal{N}}$ has subsequence converging weakly to some point $y_{0} \in X$, since C is closed convex, using Lemma (2.1), we see that $\left\{x_{n}\right\}_{n \in \mathcal{N}}$ has subsequence converging strongly to y_{0} and $y_{0} \in C$.

Now,

$$
\begin{aligned}
\left\|T\left(y_{0}\right)-y_{0}\right\| \leqslant & \left\|T\left(y_{0}\right)-T\left(x_{n}\right)\right\|+\left\|T\left(x_{n}\right)-x_{n}\right\|+\left\|x_{n}-y_{0}\right\| \\
\leqslant & a\left\|y_{0}-x_{n}\right\|+b \max \left\{\left\|y_{0}-T\left(y_{0}\right)\right\|,\left\|x_{n}-T\left(x_{n}\right)\right\|\right\} \\
& +c\left[\left\|y_{0}-T\left(x_{n}\right)\right\|+\left\|x_{n}-T\left(y_{0}\right)\right\|+\left\|T\left(x_{n}\right)-x_{n}\right\|\right. \\
& +\left\|x_{n}-y_{0}\right\|
\end{aligned}
$$

Now, if $\max \left\{\left\|y_{0}-T\left(y_{0}\right)\right\|,\left\|x_{n}-T\left(x_{n}\right)\right\|\right\}=\left\|x_{n}-T\left(x_{n}\right)\right\|$, then we see that

$$
\left\|T\left(y_{0}\right)-y_{0}\right\| \leqslant \frac{1}{1-c}\left\{(a+2 c+1)\left\|y_{0}-x_{n}\right\|+(b+c+1)\left\|x_{n}-T\left(x_{n}\right)\right\|\right\}
$$

Taking limit as $n \rightarrow \infty$ yields $T\left(y_{0}\right)=y_{0}$.
Similarly, if $\max \left\{\left\|y_{0}-T\left(y_{0}\right)\right\|,\left\|x_{n}-T\left(x_{n}\right)\right\|\right\}=\left\|y_{0}-T\left(y_{0}\right)\right\|$, then

$$
\left\|T\left(y_{0}\right)-y_{0}\right\| \leqslant \frac{1}{1-(b+c)}\left\{(a+2 c+1)\left\|y_{0}-x_{n}\right\|+(c+1)\left\|x_{n}-T\left(x_{n}\right)\right\|\right\}
$$

Taking limit as $n \rightarrow \infty$ yields $T\left(y_{0}\right)=y_{0}$.
Uniqueness:Let y and z be two distinct fixed point of T, then

$$
\begin{aligned}
\|y-z\|= & \|T(y)-T(z)\| \\
\leqslant & a\|y-z\|+b \max \{\|y-T(y)\|,\|z-T(z)\|\} \\
& +c[\|y-T(z)\|+\|z-T(y)\|] \\
= & (a+2 c)\|y-z\|<\|y-z\|
\end{aligned}
$$

This completes the proof of the Theorem.
Theorem 3.2. Let C be a closed convex and weakly Cauchy subset of a normed space X, T be $\{a, b, c\}$-gctype mapping from C into C, then T has a unique fixed point. Moreover, for any $x \in C$ the sequence of iterates $\left\{T^{n}(x)\right\}_{n \in \mathcal{N}}$ has a subsequence strongly convergent to the unique fixed point of T.

Proof. Using Lemma (3.1) with the fact that $k<1$, the inequality (3.1) insure that for every $m, n \in \mathcal{N}$ and $n \leqslant m$, we have

$$
\left\|T^{m}(x)-T^{n}(x)\right\| \leqslant\left[\frac{k^{n}}{1-k}\right]\|T(x)-x\|
$$

Taking limit as $n \rightarrow \infty$ proves that the sequence of iterates $\left\{T^{n}(x)\right\}_{n \in \mathcal{N}}$ is a Cauchy sequence in C, since C is weakly Cauchy, the sequence $\left\{T^{n}(x)\right\}_{n \in \mathcal{N}}$ has subsequence $\left\{T^{i_{n}}(x)\right\}_{n \in \mathcal{N}}$ converging weakly to some point $y \in X$, since C is closed convex, the sequence $\left\{T^{i_{n}}(x)\right\}_{n \in \mathcal{N}}$ is strongly convergent to y and $y \in C$. Taking the limit of each side of the inequality (3.1) as $n \rightarrow \infty$ and using the fact that $k<1$, we prove that $\lim _{n \rightarrow \infty}\left\|T^{i_{n+1}}(x)-T^{i_{n}}(x)\right\|=0$, hence

$$
\lim _{n \rightarrow \infty}\left\|T^{i_{n+1}}(x)-T^{i_{n}}(x)\right\|=0
$$

On the other hand

$$
\begin{aligned}
\left\|T(y)-T^{i_{n+1}}(x)\right\| \leqslant & a\left\|y-T^{i_{n}}(x)\right\|+b \max \left\{\|y-T(y)\|,\left\|T^{i_{n}}(x)-T^{i_{n+1}}(x)\right\|\right\} \\
& +c\left[\left\|y-T^{i_{n+1}}(x)\right\|+\left\|T^{i_{n}}(x)-T(y)\right\|\right] \\
\leqslant & a\left\|y-T^{i_{n}}(x)\right\|+b \max \left\{\|y-T(y)\|,\left\|T^{i_{n}}(x)-T^{i_{n+1}}(x)\right\|\right\} \\
& +c\left[\left\|y-T^{i_{n+1}}(x)\right\|+2\left\|T(y)-T^{i_{n}}(x)\right\|\right. \\
& \left.+\left\|T^{i_{n}}(x)-T(y)\right\|\right]
\end{aligned}
$$

Accordingly, we have

$$
\begin{aligned}
\|T(y)-y\| \leqslant & \left\|T(y)-T^{i_{n+1}}(x)\right\|+\left\|T^{i_{n+1}}(x)-T^{i_{n}}(x)\right\|+\left\|T^{i_{n}}(x)-y\right\| \\
\leqslant & {\left[\frac{1}{1-2 c}\right]\left\{a\left\|y-T^{i_{n}}(x)\right\|+b \max \left\{\|y-T(y)\|,\left\|T^{i_{n}}(x)-T^{i_{n+1}}(x)\right\|\right\}\right.} \\
& \left.+c\left[\|y-T(y)\|+\left\|T^{i_{n}}(x)-T(y)\right\|\right]\right\} \\
\leqslant & {\left[\frac{1}{1-2 c}\right]\left\{a\left\|y-T^{i_{n}}(x)\right\|+b \max \left\{\|y-T(y)\|,\left\|T^{i_{n}}(x)-T^{i_{n+1}}(x)\right\|\right\}\right.} \\
& \left.+c\left\|T^{i_{n}}(x)-T(y)\right\|\right\}+\left[\frac{c}{1-2 c}\right]\|y-T(y)\|
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\|T(y)-y\| \leqslant & {\left[\frac{1}{1-3 c}\right]\left\{a\left\|y-T^{i_{n}}(x)\right\|+b \max \left\{\|y-T(y)\|,\left\|T^{i_{n}}(x)-T^{i_{n+1}}(x)\right\|\right\}\right.} \\
& \left.+c\left\|T^{i_{n}}(x)-T(y)\right\|\right\}
\end{aligned}
$$

Taking the limit as $n \rightarrow \infty$, we get

$$
\begin{aligned}
\|T(y)-y\| & \leqslant\left[\frac{1}{1-3 c}\right][b\|y-T(y)\|] \\
& \leqslant\left[\frac{b}{1-3 c}\right]\|y-T(y)\|
\end{aligned}
$$

which proves that $T(y)=y$. The uniqueness of fixed point follows from the last part of the Theorem (3.1).
This completes the proof of the theorem.

References

[1] S.M. Ali, On fixed point theorem of $\{a, b, c\}$-generalized nonexpansive mappings in normed spaces, J. Egypt. Math. Soc., 17 (2009), 1-13.
[2] S.M. Ali, Extension of some fixed point theorems of $\{a, b, c\}$-type mappings in weakly Cauchy normed spaces, Proc. of 6th International Conference on Nonlinear Analysis and Convex Analysis (Tokyo, Japan, 2009), 1-10.
[3] E.M. El-Shobaky, S.M. Ali and W. Takahashi, On the projection constant problems and existence of the metric projections in normed spaces, Abstr. Appl. Anal., 6 (2001), 401-410.
[4] E.M. El-Shobaky, S.M. Ali and M.S. Ali, Generalization of Banach contraction principle in two directions, International J. Math. Stats. USA, 3 (2007), 112-115.
[5] G.E. Hardy and T.D. Rogers, A Generalization of a Fixed Point Theorem of Reich, Canada. Math. Bull., 16 (1973), 201-206.
[6] M. Gregus, A fixed point theorem in Banach spaces, Bollettion Unione mathematica Iteliana A Series, vol. 17 (1980), 193-198.
[7] A. Kaewcharoen and W.A. Kirk, Nonexpansive mappings defined on unbounded domains, Fixed Point Theory and Applications, (2006), Article ID 82080, 13 pages.
[8] R. Kannan, Some results on fixed points III, Fundamenta Mathematicae, 70 (1971), 169-177.
[9] W.A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72 (1965), 1004-1006.
[10] S. Park, On generalized contraction-type conditions, J. Korean Math. Soc., 17 (1980/81), 131-140.
[11] B.E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 226 (1977), 257-290.
[12] C.S. Wong, On Kannan maps, Proceeding of the American Mathematical Society, 47 (1975), 105-116.

Received by editors 24.05.2013; Revised version 05.07.2014. Available online 20.07.2015.
Department of Mathematics, NRI Institute of Information Science and Technology, Bhopal, INDIA-462021

E-mail address: pmathsjhade@gmail.com
Department of Mathematics, J H Government Post Graduate College, Betul, INDIA-460001

E-mail address: dssaluja@rediffmail.com
Department of Mathematics \& Statistics, Sultan Qaboos University, P. O. Box 36, Al-Khoud 123, Muscat, Sultanate of Oman, Oman

E-mail address: mohammad@squ.edu.om

[^0]: 2010 Mathematics Subject Classification. Primary 47H10; Secondary 47H09.
 Key words and phrases. Fixed points, $\{a, b, c\}$-type mappings, weakly Cauchy normed space

