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A NOTE ON EXPLICIT THREE-DERIVATIVE
RUNGE-KUTTA METHODS (ThDRK)

Mukaddes ÖKTEN TURACI 1 and Turgut ÖZİŞ2

Abstract. Recently, the Runge-Kutta methods, obtained via Taylor’s expan-

sion is exist in the literature. In this study, we have derived explicit methods

for problems of the form y′ = f(y) including second and third derivatives ,
by considering available Two-Derivative Runge-Kutta methods (TDRK). The

methods use one evaluation of first derivative, one evaluation of second de-

rivative and many evaluations of third derivative per step. The methods can
be named as Three- Derivative Runge-Kutta methods, ThDRK shortly. We

present methods with stages up to three and order up to seven. Comparisons

is made with other some existing methods on some standard problems. The
stability region of the methods are given.

1. Introduction

We consider initial value problems expressed in following form

(1.1) y′ = f(y), y(x0) = y0

where f : Rn → Rn and assuming that second and third derivative are known,

y′′ = g(y) := f ′(y)f(y), f : Rn → Rn

y′′′ = ĝ(y) := f ′′(y)(f(y), f(y)) + f ′(y)f ′(y)f(y), ĝ : Rn → Rn

(1.2)

where bi-linear operator is introduced, and we use these terms in formulation of
the method.

Most efforts have been made to improve the order of Runge- Kutta methods
via increasing the number of terms in Taylor’s expansion. The use of higher order
derivative terms has been proposed for stiff problems by many authors [2, 4, 5,
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6, 12]. Goeken and Johnson [3], presented third, fourth and fifth order method
using second derivative in internal stages. Wu and Xia [13] proposed methods
including second derivative in external stages. Akanbi et al. [9] and Wusu et al.
[1] , developed Multiderivative Explicit Runge-Kutta method utilizing both second
and third derivative in internal stages. Recently, Chan and Tsai [10] constructed
Two-Derivative Runge-Kutta methods (TDRK) incorporating second derivative in
the formulation of the methods, which use second derivative in both internal stages
and external stages.

In section 2 we presented the derivation of Three-Derivative Runge-Kutta meth-
ods (ThDRK) with minimal number of function evaluation. In section 3 stability
analysis was made. In section 4 numerical examples were given for comparing
presented methods with other existing methods on some standard problems.

2. Derivation of the methods

We consider s stage explicit methods in the following form

Y1 = yn

Yi = yn + hcif(yn) +
1

2
h2c2i g(yn) + h3

i−1∑
j=1

aij ĝ(Yj), i = 2, . . . , s(2.1)

yn+1 = yn + hf(yn) +
1

2
h2g(yn) + h3

s∑
i=1

biĝ(Yi).

It is important to note that in addition to the computation of the f values at the
internal stages in standart Runge-Kutta methods, the proposed method involves
computing g and ĝ values. Therefore, the method would be handier if the cost
considered in evaluating g and ĝ are compatible to those in evaluating f in classical
methods.

So, by taking above considerations, we seek to determine the coefficients of
the methods presented in (2.1). Hence, utilizing the Taylor series expansion and
comparing coefficients of the powers of h are obtained s stage explicit ThDRK
methods.

Butcher [7] proposed a way of deriving the coefficients that arise in the Taylor
series expansions of approximate solutions for y′ = f(y). The idea in Butcher’s
formulation is that one to one correspondence between the derivatives in the ex-
pansion and Butcher’s tableau which simplifies the determination of the coefficients
of the expansion.

Thus, for our approach, the coefficients of the ThDRK method can be expressed
by using Butcher notation in the tableau as follows:

0
c2 a21

...
...

. . .

cs as1 ass−1

b1 . . . bs−1 bs
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Assumptions in Butcher’s tableau readily simplify the order conditions to those
presented in Table 1. On the other hand, the list given in Table 2, summaries the
various counts of interest for these special explicit methods.

2.1. One stage method. With b1 = 1/6 we obtain

yn+1 = yn + hf(yn) +
1

2
h2g(yn) +

1

6
h3ĝ(yn).

This method requires one evaluation f , one evaluation g and one evaluation ĝ. This
has the same stability polynomial as three stage explicit Runge-Kutta methods with
same order (see [8]).

2.2. Two stage method. Simplifying assumption is given by

(2.2)

i−1∑
j=1

aij =
c3i
6
, i = 2, . . . , s

is useful determine order conditions in Table 1. For fourth order method we obtain
with three unknowns two equations

b1 + b2 =
1

6
, b2c2 =

1

24
.

These have one parameter family of methods. Selecting free parameter c2 we obtain

b1 =
1

24

4c2 − 1

c2
, b2 =

1

24c2
.

For fifth order method is obtained with three unknowns three equations, we have
unique solution

c2 =
2

5
, b1 =

1

16
, b2 =

5

48

which gives a unique method of order five. This method requires one evaluation f ,
one evaluation g and two evaluations ĝ.

2.3. Three stage methods. It is easy to see that there are six unknowns in
the tableau

0

c2
c32
6

c3
c33
6 − a32 a32

b1 b2 b3

There are four equation of order six. This gives

b1 =
1

120

15c22 − 10c2 + 1

c2(2c2 − 1)
, b2 =

1

120

1

5c22 − 4c2 + 1
,

b3 =
1

120

(5c2 − 2)(25c22 − 20c2 + 4)

(2c2 − 1)(5c22 − 4c2 + 1)
, c3 =

2c2 − 1

5c2 − 2
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where c2 is free parameter and a32 is independent from order conditions. Also, there
are six equation of order seven. Then there are two solutions which is conjugated
with each other. One of this solution is obtained by the following parameters:

b1 =
1

30
, b2 =

1

15
+

13
√

2

480
, b3 =

1

15
− 13

√
2

480
,

c2 =
3

7
−
√

2

7
, c3 =

3

7
+

√
2

7
, a32 =

122

7203
+

71
√

2

7203
.

This method requires one evaluation f , one evaluation g and three evaluations ĝ.

3. Stability analysis

The stability region of the method is defined using standard test problem,
y′ = λy, where λ is a complex constant. Then stability polynomial of fifth order
three-derivative Runge-Kutta method, ThDRK5, is

R(z) = 1 + z +
1

2
z2 +

1

6
z3 +

1

24
z4 +

1

120
z5 +

1

900
z6,

where z = λh. Stability polynomial of seventh order three-derivative Runge-Kutta
method, ThDRK7, is

R(z) = 1 + z +
1

2
z2 +

1

6
z3 +

1

24
z4 +

1

120
z5 +

1

720
z6 +

1

5040
z7 +

(
1

23520
−
√

2

70560

)
z8

+

(
11

1481760
−
√

2

246960

)
z9,

Figure 1. Stability Regions for RK5, TDRK5e, TDRK5f,
ThDRK5, ThDRK7, TDRK7 methods

In Figure 1 gray region is of RK5, blue region is of TDRK5f, red region is of
ThDRK5, pink region is of TDRK7, green region is of TDRK5e and magenta region
is of ThDRK7.
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Table 1. Order conditions for explicit ThDRK methods

Order Conditions

3
∑s

i=1 bi = 1
6

4
∑s

i=2 bici = 1
24

5
∑s

i=2 bic
2
i = 1

60

6
∑s

i=2 bic
3
i = 1

120

7
∑s

i=2 bic
4
i = 1

210

∑s
i=3 biaijcj = 1

5040

Table 2. Counts for special explicit ThDRK methods assuming (2.2)

s order unknowns conditions

1 3 1 1
2 4 3 2
2 5 3 3
3 6 6 4
3 7 6 6

4. Numerical Examples

In this section we applied methods of order five and seven on the some standard
problems for comparisons. In these implementations we use L∞ norm for errors.
The methods used for comparison are given in the following.

• RK6: the classical sixth order Runge-Kutta method requires seven eval-
uations of f per step in [10, 11].

• TDRK5e: the classical fifth order TDRK method requires one evaluation
of f and three evaluations of g per step (in page 180) in [10].

• TDRK7: the classical seventh order TDRK method requires one evalua-
tion of f and five evaluations of g per step (the one in the left in page
182) in [10].

• ThDRK5: the fifth order ThDRK method derived in section 2.2, which
requires one evaluation of f and one evaluation of g and two evaluations
ĝ per step.

• ThDRK7: the seventh order ThDRK method derived in section 2.3, which
requires one evaluation of f and one evaluation of g and three evaluations
ĝ per step.
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Problem 1: We consider Prothero-Robinson Problem (see [10]) is given by

y′(x) = λ(y(x)− ϕ(x)) + ϕ′(x), y(0) = ϕ(0), Re(λ) < 0,

with ϕ(x) = sinx. Its exact solution is y(x) = ϕ(x). We solve this problem for
two different λ values, -1 and -200, and integrate to 2.8π. The results are shown in
Figure 2 and Figure3.
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Figure 2. Errors versus function evaluations for Prothero-
Robinson, λ = −1, xend = 2.8π

In Figure 2 number of steps is experimented with 20, 30, 45, 68, 102, 153.
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Figure 3. Errors versus function evaluations for Prothero-
Robinson λ = −200, xend = 2.8π

In Figure 3 number of steps is experimented with 500, 750, 1125, 1688, 2532, 3798.
Problem 2:We consider Kaps Problem (see [10]) is given by

y′(x) =

[
−y1(1 + y1) + y2

λ(y2
1 − y2)− 2y2

]
, y(0) =

[
1
1

]
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where λ is a positive parameter. Its exact solution is

y(x) =

[
e−x

e−2x

]
.

We take λ = 1 and λ = 200 and integrate to x = 5. The results are shown in Figure
4 and Figure 5.
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Figure 4. Errors versus function evaluation for Kaps Problem,
λ = 1, xend = 5

In Figure 4 number of steps is experimented with 50, 75, 113, 170, 255.
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Figure 5. Errors versus function evaluation for Kaps Problem,
λ = 200, xend = 5

In Figure 5 number of steps is experimented with 500, 750, 1125, 1688, 2532.



72 M. ÖKTEN TURACI AND T. ÖZİŞ

5. Conclusion

In this study we presented a special class of explicit three-derivative Runge-
Kutta methods up to order seven. The present approach was constructed by con-
taining fewer function evaluations comparing to classical Runge-Kutta methods.
Comparing with TDRK methods ([10]) in the literature, present approach attain
higher order using for fewer stages.

Also, the numerical examples propose that the ThDRK methods can be efficient
as TDRK methods, comparing classical RK methods, for certain types of mildly
stiff problems.

As a further study, we will attempt to study higher order ThDRK methods for
diverse applications.
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