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d−congruences of Almost Distributive Lattices

N. Rafi, Ravi Kumar Bandaru and G.C. Rao

Abstract. In this paper two kinds of congruences are proposed in an Almost
distributive lattice(ADL), first one is considered in terms of ideals generated by

derivations and second one is followed by in terms of images of derivations. An
equivalent condition is derived for the corresponding quotient ADL to become
a Boolean algebra. An another equivalent condition is also established for the
existence of a derivation.

1. Introduction

After Booles axiomatization of two valued propositional calculus as a Boolean
algebra, a number of generalizations both ring theoretically and lattice theoretically
have come into being. The concept of an Almost Distributive Lattice(ADL) was
introduced by Swamy and Rao [10] as a common abstraction of many existing
ring theoretic generalizations of a Boolean algebra on one hand and the class of
distributive lattices on the other. In that paper, the concept of an ideal in an ADL
was introduced analogous to that in a distributive lattice and it was observed that
the set PI(L) of all principal ideals of L forms a distributive lattice. This enables
us to extend many existing concepts from the class of distributive lattices to the
class of ADLs. Swamy, G.C. Rao and G.N. Rao introduced the concept of Stone
ADL and characterized it in terms of its ideals. H.E. Bell, L.C. Kappe [2] and
K. Kaya [5] have studied derivations in rings and prime rings after Posner [6] had
given the definition of the derivation in ring theory. Szasz have introduced and
developed the theory of derivations in lattice structure. In a series of papers [11]
and [12] he established the main properties of derivations of lattices. L. Ferrari
[3] extended these concepts to lattices and he embedded any lattice having some
additional properties into the lattice of its derivations. G. Birkhoff [1], George
Gratzer, G. Szasz and many authors have studied about various types of ideals and
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congruences all intimated to some extent the behavior of ideals in a distributive
lattice. In [7], Rafi, Ravi Kumar and Rao introduced the concept of d−ideal in an
ADL, where d is derivation on ADL. In that paper they have studied the structure
of certain classes of ideals in an ADL with respect to a derivation. The concepts of
d−ideals and injective ideals are introduced. A necessary and sufficient condition
is established for a d−ideal to become an injective ideal. They have obtained
the relations between the class of all injective ideals and the class of all d−prime
ideals. Recently, Sambasiva rao [9] was introduced the concepts of congruences
with the help of derivation in distributive lattice and studied their properties. In
this paper we introduced two types of congruences in an ADL. First congruence
is defined with the help of ideal generated by derivation and second congruence
is given by derivation image. We introduced the term θd and derived that θd is a
congruence relation on an ADL. We defined kernel elements in an ADL with respect
to derivation and proved that the setKd of all kernel elements of an ADL is a filter of
an ADL. It is observed that θd is the largest congruence relation having congruence
class Kd when ever quotient ADL L/θd is Boolean algebra. Also we introduced an
another term θd is given by derivation image and observed that θd is a congruence
relation on an ADL. In addition to this, we proved thatKer θd = Ker d. Finally, we
observed that an equivalent condition is obtained for the existence of a derivation.

2. Preliminaries

Definition 2.1. [10] An Almost Distributive Lattice with zero or simply ADL
is an algebra (L,∨,∧, 0) of type (2, 2, 0) satisfying:
1. (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)
2. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
3. (x ∨ y) ∧ y = y
4. (x ∨ y) ∧ x = x
5. x ∨ (x ∧ y) = x
6. 0 ∧ x = 0
7. x ∨ 0 = x, for all x, y, z ∈ L.

Every non-empty set X can be regarded as an ADL as follows. Let x0 ∈ X.
Define the binary operations ∨,∧ on X by

x ∨ y =

{
x if x ̸= x0

y if x = x0

x ∧ y =

{
y if x ̸= x0

x0 if x = x0.

Then (X,∨,∧, x0) is an ADL (where x0 is the zero) and is called a discrete ADL.
If (L,∨,∧, 0) is an ADL, for any a, b ∈ L, define a 6 b if and only if a = a ∧ b (or
equivalently, a ∨ b = b), then 6 is a partial ordering on L.

Theorem 2.1. [10] If (L,∨,∧, 0) is an ADL, for any a, b, c ∈ L, we have the
following:

(1). a ∨ b = a ⇔ a ∧ b = b
(2). a ∨ b = b ⇔ a ∧ b = a
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(3). ∧ is associative in L
(4). a ∧ b ∧ c = b ∧ a ∧ c
(5). (a ∨ b) ∧ c = (b ∨ a) ∧ c
(6). a ∧ b = 0 ⇔ b ∧ a = 0
(7). a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)
(8). a ∧ (a ∨ b) = a, (a ∧ b) ∨ b = b and a ∨ (b ∧ a) = a
(9). a 6 a ∨ b and a ∧ b 6 b
(10). a ∧ a = a and a ∨ a = a
(11). 0 ∨ a = a and a ∧ 0 = 0
(12). If a 6 c, b 6 c then a ∧ b = b ∧ a and a ∨ b = b ∨ a
(13). a ∨ b = (a ∨ b) ∨ a.

It can be observed that an ADL L satisfies almost all the properties of a dis-
tributive lattice except the right distributivity of ∨ over ∧, commutativity of ∨,
commutativity of ∧. Any one of these properties make an ADL L a distributive
lattice. That is

Theorem 2.2. [10] Let (L,∨,∧, 0) be an ADL with 0. Then the following are
equivalent:

1). (L,∨,∧, 0) is a distributive lattice
2). a ∨ b = b ∨ a, for all a, b ∈ L
3). a ∧ b = b ∧ a, for all a, b ∈ L
4). (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c), for all a, b, c ∈ L.

As usual, an element m ∈ L is called maximal if it is a maximal element in the
partially ordered set (L,6). That is, for any a ∈ L, m 6 a ⇒ m = a.

Theorem 2.3. [10] Let L be an ADL and m ∈ L. Then the following are
equivalent:

1). m is maximal with respect to 6
2). m ∨ a = m, for all a ∈ L
3). m ∧ a = a, for all a ∈ L
4). a ∨m is maximal, for all a ∈ L.

As in distributive lattices [1, 4], a non-empty sub set I of an ADL L is called an
ideal of L if a∨b ∈ I and a∧x ∈ I for any a, b ∈ I and x ∈ L. Also, a non-empty sub-
set F of L is said to be a filter of L if a∧b ∈ F and x∨a ∈ F for a, b ∈ F and x ∈ L.

The set I(L) of all ideals of L is a bounded distributive lattice with least element
{0} and greatest element L under set inclusion in which, for any I, J ∈ I(L), I∩J is
the infimum of I and J while the supremum is given by I∨J := {a∨b | a ∈ I, b ∈ J}.
A proper ideal P of L is called a prime ideal if, for any x, y ∈ L, x ∧ y ∈ P ⇒
x ∈ P or y ∈ P . A proper ideal M of L is said to be maximal if it is not
properly contained in any proper ideal of L. It can be observed that every maximal
ideal of L is a prime ideal. Every proper ideal of L is contained in a maximal
ideal. For any subset S of L the smallest ideal containing S is given by (S] :=



50 N. RAFI, RAVI KUMAR BANDARU AND G.C. RAO

{(
n∨

i=1

si) ∧ x | si ∈ S, x ∈ L and n ∈ N}. If S = {s}, we write (s] instead of (S].

Similarly, for any S ⊆ L, [S) := {x∨(
n∧

i=1

si) | si ∈ S, x ∈ L and n ∈ N}. If S = {s},

we write [s) instead of [S).

Theorem 2.4. [10] For any x, y in L the following are equivalent:
1). (x] ⊆ (y]
2). y ∧ x = x
3). y ∨ x = y
4). [y) ⊆ [x).

For any x, y ∈ L, it can be verified that (x]∨(y] = (x∨y] and (x]∧(y] = (x∧y].
Hence the set PI(L) of all principal ideals of L is a sublattice of the distributive
lattice I(L) of ideals of L.

Theorem 2.5 ([8]). Let I be an ideal and F a filter of L such that I ∩ F = ∅.
Then there exists a prime ideal P such that I ⊆ P and P ∩ F = ∅.

3. d−congrurnces of ADLs

In [9], M.S. Rao was introduced the concepts of congruences with the help of
derivation in distributive lattice and studied their properties. We introduced θd to
an ADL,analogously. Though many results look similar, the proofs are not similar
because of the lack of the properties like commutativity of ∨, commutativity of
∧ and the right distributivity of ∨ over ∧ in an ADL. Through out this paper L
represents an ADL with 0.

First, we recall the following definition and result.

Definition 3.1. [7] Let L be an ADL. A self-mapping d : L −→ L is called a
derivation of L if it satisfies the following properties:
(i). d(x ∧ y) = d(x) ∧ y
(ii). d(x ∨ y) = d(x) ∨ d(y), for all x, y ∈ L.

The kernel of a derivation is defined as Ker d = {x ∈ L | d(x) = 0}.
We have the following result.

Lemma 3.1. [7] Let L be an ADL and d, any derivation of L. Then we have
(1). d(0) = 0
(2). d2(x) = d(x)
(3). d(x) 6 x, for all a ∈ L
(4). Ker d is an ideal of L.

Proof. Now d2(x) = d(d(x)) = d(d(x ∧ x)) = d(d(x) ∧ x) = d(x ∧ d(x) ∧ x) =
d(x ∧ d(x)) = d(x) ∧ d(x) = d(x). �

Now we have the following definition of θd.
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Definition 3.2. Let d be a derivation of an ADL L. For any a ∈ L, define the
set (a)d = {x ∈ L | x ∧ a ∈ Ker d}.

We prove the following properties.

Lemma 3.2. Let d be a derivation of an ADLL. Then for any a, b, c ∈ L, the
following conditions hold:
1. Ker d ⊆ (x)d, for all x ∈ L
2. If a ∈ Ker d then (a)d = L
3. If a = 0 then a ∈ (a)d

4. (a)d is an ideal of L
5. If a 6 b then (b)d ⊆ (a)d

6. (a ∨ b)d = (b ∨ a)d and (a ∧ b)d = (b ∧ a)d

7. (a ∨ b)d = (a)d ∩ (b)d

8. If (a)d = bd then (a ∧ c)d = (b ∧ c)d and (a ∨ c)d = (b ∨ c)d.

Proof. 1. Let t ∈ Ker d and x ∈ L. Then t ∧ x ∈ Ker d, since Ker d is an
ideal of L. That implies t ∈ (x)d. Therefore Ker d ⊆ (x)d, for all x ∈ L.
2. Let a ∈ Ker d. Since Ker d is an ideal of L, we get x∧ a ∈ Ker d, for all x ∈ L.
Therefore x ∈ (a)d and hence (a)d = L.
3. Clear.
4. Clearly 0 ∈ (a)d. Therefore (a)d ̸= ∅. Let x, y ∈ (a)d. Then x∧ a, y ∧ a ∈ Ker d.
Since Ker d is an ideal of L, we get (x∨ y)∧a ∈ Ker d and hence x∨ y ∈ (a)d. Let
x ∈ (a)d and r ∈ L. Then x ∧ a ∈ Ker d and hence x ∧ r ∧ a ∈ Ker d. Therefore
x ∧ r ∈ (a)d. Thus (a)d is an ideal of L.
5. Let a 6 b. we prove that (b)d ⊆ (a)d. Let x ∈ (b)d. Then x ∧ b ∈ Ker d and
hence x ∧ b = x ∧ (a ∨ b) = (x ∧ a) ∨ (x ∧ b) ∈ Ker d. Since Ker d is an ideal of L,
we get x ∧ a ∈ Ker d. Therefore x ∈ (a)d. Thus (b)d ⊆ (a)d.
6. It is obtained easily.
7. Clearly we have (a∨b)d ⊆ (a)d∩(b)d. Let x ∈ (a)d∩(b)d. Then x∧a, x∧b ∈ Ker d
and hence x ∧ (a ∨ b) ∈ Ker d. That implies x ∈ (a ∨ b)d. Therefore (a)d ∩ (b)d ⊆
(a ∨ b)d. Thus (a ∨ b)d = (a)d ∩ (b)d.
8. Assume that (a)d = (b)d. Now, x ∈ (a ∧ c)d ⇔ x ∧ a ∧ c ∈ Ker d ⇔ x ∧ c ∧ a ∈
Ker d ⇔ x∧c ∈ (a)d = (b)d ⇔ x∧c∧b ∈ Ker d ⇔ x∧b∧c ∈ Ker d ⇔ x ∈ (b∧c)d.
Therefore (a∧c)d = (b∧c)d. Now we prove that (a∨c)d = (b∨c)d. Let x ∈ (a∨c)d.
Then x ∧ (a ∨ c) ∈ Ker d ⇒ (x ∧ a) ∨ (x ∧ c) ∈ Ker d ⇒ x ∧ a, x ∧ c ∈ Ker d ⇒
x ∈ (a)d = (b)d ⇒ x∧ b ∈ Ker d and hence (x∧ b)∨ (x∧ c) ∈ Ker d. That implies
x ∧ (b ∨ c) ∈ Ker d. Therefore x ∈ (b ∨ c)d. Hence (a ∨ c)d ⊆ (b ∨ c)d. Similarly, we
get (b ∨ c)d ⊆ (a ∨ c)d. Therefore (a ∨ c)d = (b ∨ c)d. �

We have the following definition.

Definition 3.3. Let d be a derivation of L. for any x, y ∈ L, define a relation
on L with respect to d, as (x, y) ∈ θd iff (x)d = (y)d.

It is observed that θd is a congruence relation on L. For any x ∈ L, the con-
gruence class θ(x) of L with respect to θ, i.e. θ(x) = {t ∈ L | (x, t) ∈ θ}. Let us
denote the set of all congruence classes of L by Lθ.
Now we prove the following result.
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Theorem 3.1. Let θ be a congruence relation on an ADL L and
Lθ = {θ(x) | x ∈ L}. Define binary operations ∨, ∧ on Lθ by θ(x)∧θ(y) = θ(x∧y)
and θ(x) ∨ θ(y) = θ(x ∨ y), then (Lθ;∨,∧) is an ADL.

Proof. Let θ be a congruence relation on an ADL L. For any x ∈ L, θ(x) =
{y ∈ L | (x, y) ∈ θ}. Write Lθ = {θ(x) | x ∈ L}. Define binary operations ∨, ∧ on
Lθ by θ(x) ∧ θ(y) = θ(x ∧ y) and θ(x) ∨ θ(y) = θ(x ∨ y).

1. ∨,∧ are well defined: Let θ(x) = θ(x1), θ(y) = θ(y1) ⇒ (x, x1), (y, y1) ∈
θ ⇒ (x ∨ y;x1 ∨ y1) ∈ θ ⇒ (x ∨ y)(θ) = (x1 ∨ y1)(θ) ⇒ x(θ) ∨ y(θ) = x1(θ) ∨ y1(θ).
Similarly, we can prove θ(x) ∧ θ(y) = θ(x1) ∧ θ(y1). Therefore θ is well defined.

2.RD ∧: Let θ(x), θ(y), θ(z) ∈ Lθ. Consider (θ(x)∨θ(y))∧θ(z) = θ(x∨y)∧θ(z) =
θ((x∨y)∧z)) = θ((x∧z)∨(y∧z)) = θ(x∧z)∨θ(y∧z) = (θ(x)∧θ(z))∨(θ(y)∧θ(z)).

(3). LD ∧: Consider θ(x) ∧ (θ(y) ∨ θ(z)) = θ(x) ∧ θ(y ∨ z) = θ(x ∧ (y ∨ z)) =
θ((x ∧ y) ∨ (x ∧ z)) = θ(x ∧ y) ∨ θ(x ∧ z) = (θ(x) ∧ θ(y)) ∨ (θ(x) ∧ θ(z)).

(4). LD ∨: Consider θ(x) ∨ (θ(y) ∧ θ(z)) = θ(x) ∨ θ(y ∧ z) = θ(x ∨ (y ∧ z)) =
θ((x ∨ y) ∧ (x ∨ z)) = θ(x ∨ y) ∧ θ(x ∨ z) = (θ(x) ∨ θ(y)) ∧ (θ(x) ∨ θ(z)).

(5). A1 : Consider (θ(x) ∨ θ(y)) ∧ θ(y) = θ(x ∨ y) ∧ θ(y) = θ((x ∨ y) ∧ y) = θ(y).

(6). A2 : (θ(x) ∨ θ(y)) ∧ θ(x) = θ(x).

(7). A3 : θ(x) ∨ (θ(x) ∧ θ(y)) = θ(x).

(8). θ(x) ∨ 0 = θ(x) ∨ θ(0) = θ(x ∨ 0) = θ(x).

(9). θ(x) ∧ 0 = θ(x) ∧ θ(0) = θ(x ∧ 0) = θ(0) = 0.
Therefore (Lθ,∨,∧, 0) is an ADL.

�

We have the following definition.

Definition 3.4. An element x of an ADL L is said to be kernel if (x)d = Ker d.
The set of all kernel elements of L is denoted by Kd.

Now we have the following.

Lemma 3.3. Let L be an ADL with maximal elements.Then for any derivation
d of L, we have the following:
1. Kd is a congruence class with respect to θd
2. Kd is closed under ∧ and ∨
3. Kd is a filter of L.

Proof. 1. Clear.
2. Obvious.
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3. Let m be any maximal element of an ADL L. Clearly, m is a kernel element
of L. So that Kd ̸= ∅. Let a ∈ Kd and x ∈ L. Then (a)d = Ker d. Clearly,
Ker d ⊆ (x ∨ a)d. Let t ∈ (x ∨ a)d. Then t ∧ (x ∨ a) ∈ Ker d. That implies
t ∧ x, t ∧ a ∈ Ker d. So that t ∈ (a)d = Ker d. Therefore (x ∨ a)d ⊆ Ker d and
hence (x ∨ a)d = Ker d. Thus Kd is a filter of L. �

In the following, a necessary and sufficient condition is derived for the quotient
algebra L/θd to become a Boolean algebra.

Theorem 3.2. Let d be a derivation of L. Then L/θd is a Boolean algebra if
and only if to each x ∈ L, there exists y ∈ L such that x∧y ∈ Ker d and x∨y ∈ Kd.

Proof. We first prove that Ker d is the smallest congruence class and Kd

is the largest congruence class in L/θd. Clearly, Ker d is a congruence class of
L/θd. Since Ker d is an ideal, we get that for any a ∈ Ker d and x ∈ L, we have
a ∧ x ∈ Ker d. Hence θd(a) ∧ θd(x) = θd(a ∧ x) = θd(a) = Ker d. This is true
for all x ∈ L. Therefore θd(a) = Ker d is the smallest congruence class of L/θd.
Again, clearly Kd is a congruence class of L/θd. Let a ∈ Kd and x ∈ L. Since Kd

is a filter, we get that x ∨ a ∈ Kd. Therefore (x ∨ a)d = Ker d. We now prove that
Kd is the greatest congruence class of L/θd. For any a ∈ Kd and x ∈ L, we get
that θd(x) ∨ θd(a) = θd(x ∨ a) = θd(a). Therefore Kd is the greatest congruence
class of L/θd. We now prove the main part of the Theorem. Assume that L/θd
is a Boolean algebra. Let x ∈ L so that θd(x) ∈ L/θd. Since L/θd is a Boolean
algebra, there exists θd(y) ∈ L/θd such that θd(x∧ y) = θd(x)∩ θd(y) = Ker d and
θd(x∨ y) = θd(x)∨ θd(y) = Kd. Hence x∧ y ∈ Ker d and x∨ y ∈ Kd. Converse can
be proved in a similar way. �

Theorem 3.3. Let d be a derivation of L. If L/θdis a Boolean algebra, then θd
is the largest congruence relation having congruence class Kd.

Proof. Clearly, θd is a congruence with Kd as a congruence class. Let θ be
any congruence with Kd as a congruence class. Let (x, y) ∈ θ. Then for any a ∈ L,
we can have (x, y) ∈ θ ⇒ (x∨a, y∨a) ∈ θ ⇒ x∨a ∈ Kd iff y∨a ∈ Kd ⇒ (x∨a)d =
Ker d iff (y ∨ a)d = Ker d ⇒ (x)d ∩ (a)d = Ker d iff (y)d ∩ (a)d = Ker d. Since
L/θd is a Boolean algebra, there exists x′, a′ ∈ L such that x ∧ x′, a ∧ a′ ∈ Ker d
and (x ∨ x′)d = Ker d, (a ∨ a′)d = Ker d. Hence x′ ∈ (x)d and a′ ∈ (a)d which
implies that x′ ∧ a′ ∈ (x)d ∩ (a)d = Ker d. Therefore a′ ∈ (x′)d. Similarly, we can
get a′ ∈ (y′)d for a suitable y′ ∈ L. Then, we get
a′ ∈ (x′)d iff a′ ∈ (y′)d ⇒ (x′)d = (y′)d ⇒ (x′, y′) ∈ θd ⇒ x′ ∈ Kd iff y′ ∈ Kd ⇒
(x′)d = Ker diff (y′)d = Ker d ⇒ (x ∨ x′)d = (x)d iff (y ∨ y′)d = (y)d ⇒ (x)d =
Ker d iff (y)d = Ker d ⇒ (x)d = (y)d ⇒ (x, y) ∈ θd. �

Now we give the following definition.

Definition 3.5. Let d be a derivation of an ADL L. Then define a relation θd

with respect to d on L by (x, y) ∈ θd iff d(x) = d(y), for all x, y ∈ L.

Lemma 3.4. For any derivation d of an ADL L, we have the following:
1. θd is a congruence relation on L
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2. Ker θd = Ker d.

Proof. 1. Clearly θd is an equivalence relation on L and hence it is easy to
prove θd is congruence on L.
2. Ker θd = {x ∈ L | (x, 0) ∈ θd} = {x ∈ L | d(x) = d(0) = 0} = Ker d. �

Lemma 3.5. Let d be a derivation of an ADL L. Then we have the following:
1. d(x) = x, for all x ∈ d(L)
2. If (x, y) ∈ θd and x, y ∈ d(L), then x = y.

Proof. 1. Let x ∈ d(L). Then x = d(a), for some a ∈ L. That implies
x = d(a) = d(d(a)) = d(x). Therefore d(x) = x.
2. Let x, y ∈ d(L) with (x, y) ∈ θd. Then d(x) = d(y) and x = d(a), y = d(b), for
some a, b ∈ L. That implies that x = d(a) = d(y) = d(b) = y and hence x = y. �

Now, we conclude this paper with the following theorem.

Theorem 3.4. Let I be an ideal of an ADL L. Then there exists a derivation
d on L such that d(L) = I if and only if there exists a congruence relation θ on L
such that I ∩ [x]θ is a singleton set for all x ∈ L.

Proof. Let d be a derivation of L such that d(L) = I. For any x ∈ L, we have
d(x) = d(d(x)). That implies that (x, d(x)) ∈ θd. Hence d(x) ∈ I ∩ [x]θd . Therefore
I∩ [x]θd ̸= ∅. We prove that I∩ [x]θd is a singleton set. Suppose that a, b ∈ I∩ [x]θd .
Then a, b ∈ I = d(L) and a, b ∈ [x]θd . By the above lemma we get a = b. Therefore
I ∩ [x]θd is a singleton set. Conversely assume that there exists a congruence θ on
L such that I ∩ [x]θd is a singleton set for any x ∈ L. Then choose x0 is the single
element of I ∩ [x]θd . Define a map d : L −→ L by d(x) = x0, for all x ∈ L. Let
a, b ∈ L. Then d(a∨ b) = x0 = x0 ∨x0 = d(a)∨d(b). Now, d(a∧ b) = x0 ∈ I ∩ [x]θd .
Clearly, we have (d(a), a) ∈ θd and hence (d(a) ∧ b, a ∧ b) ∈ θd. That implies
d(a) ∧ b ∈ I ∩ [a ∧ b]θd . Therefore d(a ∧ b) = d(a) ∧ b. Hence d is a derivation on
L. �
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