
BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE
ISSN (p) 2303-4874, ISSN (o) 2303-4955
www.imvibl.org /JOURNALS / BULLETIN
Vol. 5(2015), 25-31

Former
BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA

ISSN 0354-5792 (o), ISSN 1986-521X (p)

Edge Scattering Number of Gear Graphs
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Abstract. The edge scattering number of a noncomplete connected graph G
is defined to be es(G) = max{ω(G−S)−|S| : S ⊆ E(G), ω(G−S) > 1} where

ω(G−S) denote the number of components in G−S. A set S ⊆ E(G), is said
to be the es-set of G, if es(G) = ω(G−S)− |S|. In this paper contains results
on bounds for the edge scattering number. Moreover we give some results

about the edge scattering number of graphs obtained from graph operations
between gear graphs and K2 complete graphs.

1. Introduction

In a communication network, the vulnerability measures the resistance of the net-
work to disruption of operation after the failure of certain stations or communi-
cation links. To measure the vulnerability we have some parameters which are
connectivity and edge-connectivity [16], integrity and edge-integrity [3], toughness
and edge-toughness [6, 12], tenacity and edge-tenacity [7, 13], scattering number
[8] and edge scattering number [8, 1].

Terminology and notation not defined in this paper can be found in [5]. Let G
be a finite simple graph with vertex set V(G) and edge set E(G).

If the network does get disconnected, then remaining components should con-
tinue to function with reduced capacity. We would prefer a network which would
disconnect in such a way that its capacity is almost seem as before. That is, we
have the fundamental question: ”How difficult is it to reconstruct the network?.”
This question is analyzed by considering the number of components of the remain-
ing graph. Therefore, we are concerned with the edge scattering number of a graph
as a measure of graph vulnerability.

Definition 1.1. [1] The edge scattering number of a noncomplete connected
graph G is defined to be
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es(G) = max{ω(G− S)− |S| : S ⊆ E(G), ω(G− S) > 1}
where ω(G − S) denote the number of components in G − S. A set S ⊆ E(G), is
said to be the es-set of G, if

es(G) = ω(G− S)− |S|.

Next we give some lower and upper bounds for the edge scattering number in
terms of well known graph parameters.

Theorem 1.1. [1] Let G be a connected graph. Then,

es(G) 6 1.

Theorem 1.2. [1] In the graph G, n and m denote the number of vertices and
the number of edges, respectively. Let G be a connected graph. Then,

es(G) > n−m.

Theorem 1.3. [1] Let G be a graph. If G is λ-edge-connected then,

es(G) > 2− λ.

Theorem 1.4. [1] Let G be a connected graph and δ(G) be the minimum degree
of G. Then,

es(G) > 2− δ(G).

Geared systems are used in dynamic modelling. These are graph theoretic
models that are obtained by using gear graphs. Similarly the complement of a gear
graph, the cartesian product of gear graphs and the sequential join of gear graphs
can be used to design a gear network.

Consequently these considerations motivated us to investigate the vulnerability
of gear graphs by using the edge scattering number. Now we give the following
definition.

Definition 1.2. [3] The gear graph is a wheel graph with a vertex added
between each pair adjacent graph vertices of the outer cycle. The gear graph Gn

has 2n+ 1 vertices and 3n edges.

In Section 2 we compute the edge scattering number of a gear graph. Also we
give some results about the edge scattering number of graphs obtained from graph
operations between gear graphs and K2 complete graphs.

2. Gear Graphs and Graph Operations

In this section we first calculate the edge scattering number of a gear graph.

Theorem 2.1. The edge scattering number of the gear graph Gn (n > 3) is 0.

Proof. Let S be an edge cut set of Gn. If |S| = r, then we have at most r
components. From the definition of edge scattering number we have,

ω(Gn − S)− |S| 6 r − r = 0
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and when we take the maximum of both sides we have,

(2.1) es(Gn) 6 0.

On the other hand it is easy see that δ(Gn) = 2. Then, by Theorem 1.4, we get

(2.2) es(Gn) > 2− δ(Gn) = 2− 2 = 0.

By (2.1) and (2.2) we have,

es(Gn) = 0.

The proof is completed.

Theorem 2.2. Let Gn be a complement graph of a gear graph Gn (n > 3).
Then,

es(Gn) = 2− n.

Proof. The graph Gn has two complete subgraphs, namely Kn1 and Kn2. Each
vertices of Kn1 is joined to the vertices of Kn2 with (n − 2) edges. Let S be an
edge cut set of Gn and |S| = r. Then we have two cases:
Case 1: Suppose that if 1 6 r < n then,

ω(Gn − S) = 1.

This is not satisfying for the definition of edge scattering number. Namely, it should
have,

ω(Gn − S) > 1

Case 2: If n 6 r < E(G), then we have at most ⌊ r
n⌋+ 1 components. Hence

ω(Gn − S)− |S| 6 ⌊ r
n⌋+ 1− r

and when we take the maximum of both sides we have,

es(Gn) 6 max{⌊ r
n⌋+ 1− r}.

The function f(r) = ⌊ r
n⌋+ 1− r takes its maximum value at r = n and we get

es(Gn) 6 2− n.

It can be easily seen that there is an edge cut set S∗ of G, such that |S∗| = n and
ω(Gn − S) = 2. Therefore

es(Gn) = 2− n.

The proof is completed.

Definition 2.1. [5] The Cartesian product G1 ×G2 of graphs G1 and G2 has
V (G1)×V (G2) as its vertex set and (u1, u2) is adjacent to (v1, v2) if either u1 = v1
and u2 is adjacent to v2 or u2 = v2 and u1 is adjacent to v1.

Theorem 2.3. Let Gn (n > 3) be a gear graph. Then,

es(K2 ×Gn) = −1.
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Proof. The graph K2×Gn has 4n+2 vertices and has two subgraphs, namely Gn1

and Gn2 . Gear graph contains vertices set of whell graph. Let S be an edge cut
set of graph K2 ×Gn and |S| = r. Since λ(K2 ×Gn) edge-connected for K2 ×Gn

and λ(K2 ×Gn) = 3. By Theorem 1.3 we have

(2.3) es(K2 ×Gn) > 2− 3 = −1.

If r < 3 then ω(K2 ×Gn − S) = 1 it is a contradiction.
If r > 3 then

ω((K2 ×Gn)− S) 6 ⌊ r+1
3 ⌋+ 1.

Thus

ω((K2 ×Gn)− S)− |S| 6 ⌊ r+1
3 ⌋+ 1− r

and when we take the maximum of both sides we have

es(K2 ×Gn) 6 max{⌊ r+1
3 ⌋+ 1− r}.

The function f(r) = ⌊ r+1
3 ⌋+ 1− r takes its maximum value at r = 3 and we get

(2.4) es(K2 ×Gn) 6 −1.

By (2.3) and (2.4) we get

es(K2 ×Gn) = −1.

The proof is completed.

Theorem 2.4. Let m > 3 and n > 3 be positive integers. Then,

es(Gm ×Gn) = −3.

Proof. Let λ(Gm ×Gn) be edge-connected for Gm ×Gn. Then, we know that

λ(Gm ×Gn) = 5.

By Theorem 1.3 and we get,

(2.5) es(Gm ×Gn) > 2− λ(Gm ×Gn) = 2− 5 = −3.

If r < 5 then ω(Gm ×Gn − S) = 1 it is a contradiction.
On the other hand let S be an edge cut set of Gm ×Gn and |S| = r. If r > 5 then,

ω((Gm ×Gn)− S) 6 ⌊ r
5⌋+ 1

Therefore

ω((Gm ×Gn)− S)− |S| 6 ⌊ r
5⌋+ 1− r

and when we take the maximum of both sides we have,

es(Gm ×Gn) 6 max{⌊ r
5⌋+ 1− r}

The function f(r) = ⌊ r
5⌋+ 1− r takes its maximum value at r = 5 and we get

(2.6) es(Gm ×Gn) 6 −3

From (2.5) and (2.6) we have

es(Gm ×Gn) = −3.

We complete the proof.
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Definition 2.2. [2] Let G1 and G2 be two graphs. The union G = G1 ∪ G2

has V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2). The join is denoted
V (G1) + V (G2) and consist of V (G1) ∪ V (G2) and all edges joining V (G1) with
V (G2). For three or more disjoint graphs G1, G2, . . . , Gn, the sequential join G1 +
G2 + . . .+Gn is (G1 +G2) ∪ (G2 +G3) ∪ . . . ∪ (Gn−1 +Gn).

Theorem 2.5. Let 3 6 m 6 n be positive integers. Then,

es(Gm +Gn) = −2m− 1.

Proof. Let δ(Gm +Gn) be the minimum degree of Gm +Gn. Then,

δ(Gm +Gn) = 2m+ 3

By Theorem 1.4 and we have,

(2.7) es(Gm +Gn) > 2− δ(Gm +Gn) = 2− (2m+ 3) = −2m− 1.

On the other hand let S be an edge cut set of Gm +Gn and |S| = r. If r > 2m+3
then we have

ω((Gm +Gn)− S) 6 ⌊ r
2m+1+2⌋+ 1.

Thus

ω((Gm +Gn)− S)− |S| 6 ⌊ r
2m+3⌋+ 1− r

and when we take the maximum of both sides we have,

es(Gm +Gn) 6 max{⌊ r
2m+3⌋+ 1− r}.

The function f(r) = ⌊ r
2m+3⌋ + 1 − r takes its maximum value at r = 2m + 3 and

we get

(2.8) es(Gm +Gn) 6 −2m− 1

By (2.7) and (2.8) we have,

es(Gm +Gn) = −2m− 1

The proof is completed.

Proposition 2.1. One can easily show that es(G3 +G4) = −7.

Theorem 2.6. Let n > 5 be a positive integer. Then,

es(G3 +G4 + . . .+Gn) = −9.

Proof. Let S be an edge cut set of graph G3 +G4 + . . .+Gn and set |S| = r. It is
easy see that λ(G3 +G4 + . . .+Gn) = 11. By Theorem 1.3 and we have two cases:

(2.9) es(G3 +G4 + . . .+Gn) > 2− λ(G3 +G4 + . . .+Gn) = −9.

Case 1: If r < 11 then ω(G3 +G4 + . . .+Gn) = 1. It is a contradiction.

Case 2: If r > 11 then,

ω((G3 +G4 + . . .+Gn)− S) 6 ⌊ r
11⌋+ 1.

So

ω((G3 +G4 + . . .+Gn)− S)− |S| 6 ⌊ r
11⌋+ 1− r
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when we take the maximum of both sides we have,

es(G3 +G4 + . . .+Gn) 6 max{⌊ r
11⌋+ 1− r}

The function f(r) = ⌊ r
11⌋+ 1− r takes its maximum value at r = 11 and we get

(2.10) es(G3 +G4 + . . .+Gn) 6 −9

By (2.9) and (2.10) we have

es(G3 +G4 + . . .+Gn) = −9.

We complete the proof.

3. Conclusion

A network has often as considerable an impact on network’s performance as the
edges or vertices themselves. Performance measures for the networks are essential
to guide the designer in choosing an appropriate topology. In order to measure the
performance we are interested the following performance metrics:

1. The number of elements that are not functioning,
2. The number of the components of the remaining network,
Many graph-theoretical parameters have been used in the past to describe

the stability of communication networks. We can say that the disruption is more
successful if the disconnected network contains more components. In order to re-
construct a disrupted network easily, the number of connected components, formed
after the edges deleted, should be possibly small.
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