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Fractional Order Boundary Value Problems
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Abstract. In this paper, we establish sufficient conditions for the existence
of at least three positive solutions for the system of (n, p)-type fractional
order boundary value problems, by employing an Avery generalization of the

Leggett–Williams fixed point theorem. And then, we establish the existence
of at least 2k − 1 positive solutions to the fractional order boundary value
problems for an arbitrary positive integer k.

1. Introduction

In recent years, the study of fractional order differential equations has emerged
as an important area of mathematics. It has wide range of applications in various
fields of science and engineering such as physics, mechanics, control systems, flow in
porous media, electromagnetics and viscoelasticity. There has been much attention
paid in developing the theory for existence of positive solutions for fractional order
differential equations satisfying initial or boundary conditions. To mention a few
references, see Miller and Ross [13], Podlubny [14], Diethelm and Ford [8], Kilbas,
Srivasthava and Trujillo [11] and the references therein. Much interest has been
created in establishing positive solutions and multiple positive solutions for two-
point, multi-point fractional order boundary value problems (BVPs). To mention
the related papers along these lines, we refer to Bai and Lü [6], Kauffman and
Mboumi [10], Benchohra, Henderson, Ntoyuas and Ouahab [7], Su and Zhang
[18], Ahmed and Nieto [2], Goodrich [9], Rehman and Khan [17], Prasad, Murali
and Devi [15], Prasad and Krushna [16].

Motivated by above papers, in this paper, we are concerned with the existence
of multiple positive solutions to the coupled system of (n, p)-type fractional order
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Key words and phrases. Boundary value problem, Cone, Fractional derivative, Green’s

function, Positive solution.
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differential equations

(1.1) Dq1
0+x(t) + f1(t, x(t), y(t)) = 0, t ∈ (0, 1),

(1.2) Dq2
0+y(t) + f2(t, x(t), y(t)) = 0, t ∈ (0, 1),

satisfying two-point boundary conditions

(1.3) x(j)(0) = 0, 0 6 j 6 n− 2, x(p)(1) = 0,

(1.4) y(j)(0) = 0, 0 6 j 6 n− 2, y(p)(1) = 0,

where n − 1 < q1, q2 6 n and n > 3, 1 6 p 6 q1 − 1, q2 − 1 is a fixed integer,
fi : [0, 1] × [0,∞) × [0,∞) → [0,∞) are continuous and Dqi

0+ , for i = 1, 2 are the
standard Riemann–Liouville fractional order derivatives.

The rest of the paper is organized as follows. In Section 2, we construct the
Green’s function for the homogeneous BVP and estimate the bounds for the Green’s
function. In Section 3, we establish sufficient conditions for the existence of at least
three positive solutions to the fractional order BVP (1.1)-(1.4), by using an Avery
generalization of the Leggett–Williams fixed point theorem. We also establish the
existence of at least 2k−1 positive solutions to the fractional order BVP (1.1)-(1.4)
for an arbitrary positive integer k. In Section 4, as an application, we demonstrate
our results with an example.

2. Green’s Function and Bounds

In this section, we construct the Green’s function for the homogeneous BVP
and estimate the bounds for the Green’s function, which are needed to establish
the main results.

Consider the homogeneous BVP corresponding to (1.1), (1.3)

(2.1) −Dq1
0+x(t) = 0, t ∈ (0, 1),

satisfying the boundary conditions (1.3).

Lemma 2.1. If h(t) ∈ C[0, 1], then the fractional order differential equation,

(2.2) Dq1
0+x(t) + h(t) = 0, t ∈ (0, 1),

satisfying the boundary conditions (1.3), has a unique solution,

x(t) =

∫ 1

0

G1(t, s)h(s)ds,

where

(2.3) G1(t, s) =

{
tq1−1(1−s)q1−1−p

Γ(q1)
, 0 6 t 6 s 6 1,

tq1−1(1−s)q1−1−p−(t−s)q1−1

Γ(q1)
, 0 6 s 6 t 6 1.

Proof. Assume that x(t) ∈ C [q1]+1[0, 1] is a solution of the fractional order
BVP (2.1), (1.3) and is uniquely expressed as

Iq10+D
q1
0+x(t) = −Iq10+h(t)
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x(t) =
−1

Γ(q1)

∫ t

0

(t− s)q1−1h(s)ds+ c1t
q1−1 + c2t

q1−2 + c3t
q1−3 + · · ·+ cnt

q1−n.

From x(j)(0) = 0, 0 6 j 6 n−2, we obtain cn = cn−1 = cn−2 = · · · = c2 = 0. Then

x(t) =
−1

Γ(q1)

∫ t

0

(t− s)q1−1h(s)ds+ c1t
q1−1,

x(p)(t) = c1

p∏
i=1

(q1 − i)tq1−1−p −
p∏

i=1

(q1 − i)
1

Γ(q1)

∫ t

0

(t− s)q1−1−ph(s)ds.

From x(p)(1) = 0, we have

c1

p∏
i=1

(q1 − i)−
p∏

i=1

(q1 − i)
1

Γ(q1)

∫ 1

0

(1− s)q1−1−ph(s)ds = 0.

Therefore,

c1 =
1

Γ(q1)

∫ 1

0

(1− s)q1−1−ph(s)ds.

Thus, the unique solution of (2.1), (1.3) is

x(t) =
−1

Γ(q1)

∫ t

0

(t− s)q1−1h(s)ds+
tq1−1

Γ(q1)

∫ 1

0

(1− s)q1−1−ph(s)ds

=

∫ 1

0

G1(t, s)h(s)ds,

where G1(t, s) is given in (2.3). �

Lemma 2.2. For t, s ∈ [0, 1], the Green’s function G1(t, s) given in (2.3) is
nonnegative.

Proof. The Green’s function G1(t, s) is given in (2.3). For 0 6 s 6 t 6 1,

G1(t, s) =
1

Γ(q1)
[tq1−1(1− s)q1−1−p − (t− s)q1−1]

> 1

Γ(q1)
[tq1−1(1− s)q1−1−p − tq1−1(1− s)q1−1]

=
1

Γ(q1)
[tq1−1(1− s)q1−1−p][1− (1− s)p] > 0.

Clearly, we observe that G1(t, s) > 0, for 0 6 t 6 s 6 1. �

Lemma 2.3. Let I = [ 14 ,
3
4 ]. Then the Green’s function G1(t, s) satisfies the

following inequalities

(2.4) G1(t, s) 6 G1(1, s), for all (t, s) ∈ [0, 1]× [0, 1],

(2.5) G1(t, s) >
1

4q1−1
G1(1, s), for all (t, s) ∈ I × [0, 1].



4 K. R. PRASAD AND B. M. B. KRUSHNA

Proof. The Green’s functionG1(t, s) is given in (2.3). We prove the inequality
in (2.4). We define

G1(1, s) =
1

Γ(q1)

[
(1− s)q1−1−p − (1− s)q1−1

]
.

For 0 6 t 6 s 6 1,

∂G1(t, s)

∂t
=

1

Γ(q1)

[
(q1 − 1)tq1−2(1− s)q1−1−p

]
> 0.

Therefore, G1(t, s) is increasing in t, which implies G1(t, s) 6 G1(1, s). Now, for
0 6 s 6 t 6 1,

∂G1(t, s)

∂t
=

1

Γ(q1)

[
(q1 − 1)tq1−2(1− s)q1−1−p − (q1 − 1)(t− s)q1−2

]
> 1

Γ(q1)

[
(q1 − 1)tq1−2(1− s)q1−1−p − (q1 − 1)(t− ts)q1−2

]
=
(q1 − 1)tq1−2

Γ(q1)

[
1−

(
1− (p− 1)s+

p− 1.p− 2

2!
s2 + · · ·

)]
(1− s)q1−1−p

=
(q1 − 1)tq1−2

Γ(q1)

[
(p− 1)s+O(s2)

]
(1− s)q1−1−p > 0.

Therefore, G1(t, s) is increasing in t, which implies G1(t, s) 6 G1(1, s). Hence the
inequality in (2.4) is proved. Now, we establish the inequality in (2.5). For 0 6 t 6
s 6 1 and t ∈ I,

G1(t, s) =
1

Γ(q1)

[
tq1−1(1− s)q1−1−p

]
> tq1−1

Γ(q1)

[
(1− s)q1−1−p − (1− s)q1−1

]
=tq1−1G1(1, s)

> 1

4q1−1
G1(1, s).

For 0 6 s 6 t 6 1 and t ∈ I,

G1(t, s) =
1

Γ(q1)

[
tq1−1(1− s)q1−1−p − (t− s)q1−1

]
> 1

Γ(q1)

[
tq1−1(1− s)q1−1−p − (t− ts)q1−1

]
=
tq1−1

Γ(q1)

[
(1− s)q1−1−p − (1− s)q1−1

]
=tq1−1G1(1, s)

> 1

4q1−1
G1(1, s).

Hence the inequality in (2.5) is proved. �
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In a similar manner, we construct the Green’s function G2(t, s) for the
homogeneous fractional order BVP corresponding to the fractional order BVP (1.2),
(1.4).

Remark 2.1. G1(t, s) > ξG1(1, s) and G2(t, s) > ξG2(1, s), for all (t, s) ∈
[0, 1]× [0, 1], where ξ = min

{
1

4q1−1 ,
1

4q2−1

}
.

3. Multiple Positive Solutions

In this section, we establish the existence of at least three positive solutions
to the fractional order BVP (1.1)-(1.4), by using an Avery generalization of the
Leggett–Williams fixed point theorem. And then, we establish the existence of
at least 2k − 1 positive solutions to the fractional order BVP (1.1)-(1.4) for an
arbitrary positive integer k.

Let P be a cone in the real Banach space B. A map α : P → [0,∞) is said to
be nonnegative continuous concave functional on P if α is continuous and

α(λx+ (1− λ)y) > λα(x) + (1− λ)α(y),

for all x, y ∈ P and λ ∈ [0, 1].
Let P be a cone in the real Banach space B. A map β : P → [0,∞) is said to

be nonnegative continuous convex functional on P if β is continuous and

β(λx+ (1− λ)y) 6 λβ(x) + (1− λ)β(y),

for all x, y ∈ P and λ ∈ [0, 1].
Let γ, β, θ be nonnegative continuous convex functionals on P and α, ψ be

nonnegative continuous concave functionals on P , then for nonnegative numbers
h′, a′, b′, d′ and c′, we define the following convex sets.

P (γ, c′) = {y ∈ P : γ(y) < c′},
P (γ, α, a′, c′) = {y ∈ P : a′ 6 α(y); γ(y) 6 c′},
Q(γ, β, d′, c′) = {y ∈ P : β(y) 6 d′; γ(y) 6 c′},

P (γ, θ, α, a′, b′, c′) = {y ∈ P : a′ 6 α(y); θ(y) 6 b′; γ(y) 6 c′},
Q(γ, β, ψ, h′, d′, c′) = {y ∈ P : h′ 6 ψ(y);β(y) 6 d′; γ(y) 6 c′}.

In obtaining multiple positive solutions of the BVP (1.1)-(1.4), the following so
called Five Functionals Fixed Point Theorem will be fundamental.

Theorem 3.1. [4] Let P be a cone in the real Banach space B. Suppose α
and ψ are nonnegative continuous concave functionals on P and γ, β, θ are non-
negative continuous convex functionals on P, such that for some positive numbers
c′ and e′, α(y) 6 β(y) and ∥ y ∥6 e′γ(y), for all y ∈ P (γ, c′). Suppose further

that T : P (γ, c′) → P (γ, c′) is completely continuous and there exist constants
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h′, d′, a′ and b′ > 0 with 0 < d′ < a′ such that each of the following is satisfied.

(B1) {y ∈ P (γ, θ, α, a′, b′, c′) : α(y) > a′} ̸= ∅ and
α(Ty) > a′ for y ∈ P (γ, θ, α, a′, b′, c′),

(B2) {y ∈ Q(γ, β, ψ, h′, d′, c′) : β(y) < d′} ≠ ∅ and
β(Ty) < d′ for y ∈ Q(γ, β, ψ, h′, d′, c′),

(B3) α(Ty) > a′ provided y ∈ P (γ, α, a′, c′) with θ(Ty) > b′,

(B4) β(Ty) < d′ provided y ∈ Q(γ, β, d′, c′) with ψ(Ty) < h′.

Then T has at least three fixed points y1, y2, y3 ∈ P (γ, c′) such that β(y1) < d′,
a′ < α(y2) and d

′ < β(y3) with α(y3) < a′.

We consider the Banach space B = E × E, where E = {x : x ∈ C[0, 1]}
equipped with the norm ∥(x, y)∥ = ∥x∥0 + ∥y∥0, for (x, y) ∈ B and we denote the
norm,

∥x∥0 = max
06t61

|x(t)|.

Define a cone P ⊂ B by

P =
{
(x, y) ∈ B | x(t) > 0, y(t) > 0, t ∈ [0, 1] and min

t∈I
[x(t) + y(t)] > ξ∥(x, y)∥

}
.

Let I1 =
[
1
3 ,

2
3

]
and define the nonnegative continuous concave functionals α,ψ

and the nonnegative continuous convex functionals β, θ, γ on P by

α(x, y) = min
t∈I

{|x|+ |y|}, ψ(x, y) = min
t∈I1

{|x|+ |y|},

γ(x, y) = max
t∈[0,1]

{|x|+ |y|}, β(x, y) = max
t∈I1

{|x|+ |y|}, θ(x, y) = max
t∈I

{|x|+ |y|}.

We observe that for any (x, y) ∈ P , we have

(3.1) α(x, y) = min
t∈I

{|x|+ |y|} 6 max
t∈I1

{|x|+ |y|} = β(x, y)

and

(3.2) ∥(x, y)∥ 6 1

ξ
min
t∈I

{|x|+ |y|} 6 1

ξ
max
t∈[0,1]

{|x|+ |y|} =
1

ξ
γ(x, y).

Let

L = min
{∫ 1

0

G1(1, s)ds,

∫ 1

0

G2(1, s)ds
}

and

M = max
{∫ 1

0

G1(1, s)ds,

∫ 1

0

G2(1, s)ds
}
.

We denote the operators T1 : P → E, T2 : P → E and defined by

T1(x, y)(t) =

∫ 1

0

G1(t, s)f1(s, x(s), y(s))ds,

T2(x, y)(t) =

∫ 1

0

G2(t, s)f2(s, x(s), y(s))ds.
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Theorem 3.2. Suppose there exist 0 < a′ < b′ < b′

ξ < c′ such that fi, for

i = 1, 2 satisfies the following conditions:

(A1) fi(t, x, y) <
a′

2M
, t ∈ [0, 1] and |x|+ |y| ∈ [ξa′, a′],

(A2) fi(t, x, y) >
b′

2ξL
, t ∈ I and |x|+ |y| ∈

[
b′,
b′

ξ

]
,

(A3) fi(t, x, y) <
c′

2M
, t ∈ [0, 1] and |x|+ |y| ∈ [0, c′].

Then the fractional order BVP (1.1)-(1.4) has at least three positive solutions,
(x1, x2), (y1, y2) and (z1, z2) such that β(x1, x2) < a′, b′ < α(y1, y2) and a′ <
β(z1, z2) with α(z1, z2) < b′.

Proof. Define the completely continuous operator T : P → B by

T (x, y)(t) =
(
T1(x, y)(t), T2(x, y)(t)

)
.

It is obvious that a fixed point of T is the solution of the fractional order BVP
(1.1)-(1.4). We seek three fixed points of T . First, we show that T : P → P . Let
(x, y) ∈ P . By Lemma 2.2 and the nonnegativity of fi, for i = 1, 2, we obtain that
T1(x, y)(t) > 0, T2(x, y)(t) > 0, for t ∈ [0, 1]. Also, for (x, y) ∈ P ,

∥T1(x, y)∥0 6
∫ 1

0

G1(1, s)f1(s, x(s), y(s))ds,

∥T2(x, y)∥0 6
∫ 1

0

G2(1, s)f2(s, x(s), y(s))ds,

and

min
t∈I

T1(x, y)(t) =min
t∈I

∫ 1

0

G1(t, s)f1(s, x(s), y(s))ds

>ξ
∫ 1

0

G1(1, s)f1(s, x(s), y(s))ds

>ξ∥T1(x, y)∥0.

Similarly, mint∈I T2(x, y)(t) > ξ∥T2(x, y)∥0. Therefore,

min
t∈I

{
T1(x, y)(t) + T2(x, y)(t)

}
> ξ∥T1(x, y)∥0 + ξ∥T2(x, y)∥0

= ξ(∥T1(x, y)∥0 + ∥T2(x, y)∥0)
= ξ∥(T1(x, y), T2(x, y))∥
= ξ∥T (x, y)∥.

Hence, T (x, y) ∈ P and so T : P → P . Moreover, T is a completely continuous
operator. From (3.1) and (3.2), for each (x, y) ∈ P , we have α(x, y) 6 β(x, y) and

∥(x, y)∥ 6 1
ξγ(x, y). We show that T : P (γ, c′) → P (γ, c′). Let (x, y) ∈ P (γ, c′).
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Then 0 6 |x|+ |y| 6 c′. We may use the condition (A3) to obtain

γ(T (x, y)(t))

= max
t∈[0,1]

[ ∫ 1

0

G1(t, s)f1(s, x(s), y(s))ds+

∫ 1

0

G2(t, s)f2(s, x(s), y(s))ds
]

<
c′

2M

∫ 1

0

G1(1, s)ds+
c′

2M

∫ 1

0

G2(1, s)ds

6 c′.

Therefore T : P (γ, c′) → P (γ, c′). Now we verify the conditions (B1) and (B2) of
Theorem 3.1 are satisfied. It is obvious that{

(x, y) ∈P
(
γ, θ, α, b′,

b′

ξ
, c′

)
: α(x, y) > b′

}
̸= ∅

and {
(x, y) ∈Q

(
γ, β, ψ, ξa′, a′, c′

)
: β(x, y) < a′

}
̸= ∅.

Next, let (x, y) ∈ P (γ, θ, α, b′, b
′

ξ , c
′) or (x, y) ∈ Q(γ, β, ψ, ξa′, a′, c′). Then, b′ 6

|x(t)|+ |y(t)| 6 b′

ξ and ξa′ 6 |x(t)|+ |y(t)| 6 a′.

Now, we may apply the condition (A2) to get

α(T (x, y)(t))

= min
t∈I

[ ∫ 1

0

G1(t, s)f1(s, x(s), y(s))ds+

∫ 1

0

G2(t, s)f2(s, x(s), y(s))ds
]

> ξ
[ ∫ 1

0

G1(1, s)f1(s, x(s), y(s))ds+

∫ 1

0

G2(1, s)f2(s, x(s), y(s))ds
]

>
b′

2L

∫ 1

0

G1(1, s)ds+
b′

2L

∫ 1

0

G2(1, s)ds

> b′.

Clearly, by the condition (A1), we have

β(T (x, y)(t))

= max
t∈I1

[ ∫ 1

0

G1(t, s)f1(s, x(s), y(s))ds+

∫ 1

0

G2(t, s)f2(s, x(s), y(s))ds
]

6
[ ∫ 1

0

G1(1, s)f1(s, x(s), y(s))ds+

∫ 1

0

G2(1, s)f2(s, x(s), y(s))ds
]

<
a′

2M

∫ 1

0

G1(1, s)ds+
a′

2M

∫ 1

0

G2(1, s)ds

6 a′.
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To see that (B3) is satisfied, let (x, y) ∈ P (γ, α, b′, c′) with θ(T (x, y)(t)) > b′

ξ . Then,

we have

α(T (x, y)(t))

= min
t∈I

[ ∫ 1

0

G1(t, s)f1(s, x(s), y(s))ds+

∫ 1

0

G2(t, s)f2(s, x(s), y(s))ds
]

> ξ
[ ∫ 1

0

G1(1, s)f1(s, x(s), y(s))ds+

∫ 1

0

G2(1, s)f2(s, x(s), y(s))ds
]

> ξ max
t∈[0,1]

[ ∫ 1

0

G1(t, s)f1(s, x(s), y(s))ds+

∫ 1

0

G2(t, s)f2(s, x(s), y(s))ds
]

> ξmax
t∈I

[ ∫ 1

0

G1(t, s)f1(s, x(s), y(s))ds+

∫ 1

0

G2(t, s)f2(s, x(s), y(s))ds
]

= ξθ(T (x, y)(t))

> b′.

Finally, we show that (B4) holds. Let (x, y) ∈ Q(γ, β, a′, c′) with ψ(T (x, y)(t))
< ξa′. Then, we have

β(T (x, y)(t))

= max
t∈I1

[ ∫ 1

0

G1(t, s)f1(s, x(s), y(s))ds+

∫ 1

0

G2(t, s)f2(s, x(s), y(s))ds
]

6 max
t∈[0,1]

[ ∫ 1

0

G1(t, s)f1(s, x(s), y(s))ds+

∫ 1

0

G2(t, s)f2(s, x(s), y(s))ds
]

6
[ ∫ 1

0

G1(1, s)f1(s, x(s), y(s))ds+

∫ 1

0

G2(b, s)f2(s, x(s), y(s))ds
]

=
1

ξ

[
ξ

∫ 1

0

G1(1, s)f1(s, x(s), y(s))ds+ ξ

∫ 1

0

G2(1, s)f2(s, x(s), y(s))ds
]

6 1

ξ
min
t∈I

[ ∫ 1

0

G1(t, s)f1(s, x(s), y(s))ds+

∫ 1

0

G2(t, s)f2(s, x(s), y(s))ds
]

6 1

ξ
min
t∈I1

[ ∫ 1

0

G1(t, s)f1(s, x(s), y(s))ds+

∫ 1

0

G2(t, s)f2(s, x(s), y(s))ds
]

=
1

ξ
ψ(T (x, y)(t))

< a′.

We have proved that all the conditions of Theorem 3.1 are satisfied. Therefore,
the fractional order BVP (1.1)-(1.4) has at least three positive solutions, (x1, x2),
(y1, y2) and (z1, z2) such that β(x1, x2) < a′, b′ < α(y1, y2) and a

′ < β(z1, z2) with
α(z1, z2) < b′. This completes the proof of the theorem. �

Now, we establish the existence of at least 2k − 1 positive solutions for the
fractional order BVP (1.1)-(1.4), by using induction on k.
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Theorem 3.3. Let k be an arbitrary positive integer. Assume that there exist
numbers ar(r = 1, 2, 3, · · ·, k) and bs(s = 1, 2, 3, · · ·, k− 1) with 0 < a1 < b1 <

b1
ξ <

a2 < b2 <
b2
ξ < · · · < ak−1 < bk−1 <

bk−1

ξ < ak such that fi, for i = 1, 2 satisfies

the following conditions:

(A4) fi(t, x, y) <
ar
2M

, t ∈ [0, 1] and |x|+ |y| ∈ [ξar, ar], r = 1, 2, 3, · · ·, k,

(A5) fi(t, x, y) >
bs
2ξL

, t ∈ I and |x|+ |y| ∈
[
bs,

bs
ξ

]
, s = 1, 2, 3, · · ·, k − 1.

Then the fractional order BVP (1.1)-(1.4) has at least 2k − 1 positive solutions in
P ak

.

Proof. We use induction on k. First, for k = 1, we know from the condition
(A4) that T : P a1 → Pa1 , then it follows from the Schauder fixed point theorem that
the fractional order BVP (1.1)-(1.4) has at least one positive solution in P a1 . Next,
we assume that this conclusion holds for k = l. In order to prove that this conclusion
holds for k = l + 1, we suppose that there exist numbers ar(r = 1, 2, 3, · · ·, l + 1)
and bs(s = 1, 2, 3, · · ·, l) with 0 < a1 < b1 <

b1
ξ < a2 < b2 <

b2
ξ < · · · < al < bl <

bl
ξ < al+1 such that fi, for i = 1, 2 satisfies the following conditions:

(3.3)

{
fi(t, x, y) <

ar
2M

, t ∈ [0, 1] and |x|+ |y| ∈ [ξar, ar],

r = 1, 2, 3, · · ·, l + 1,

(3.4)

 fi(t, x, y) >
bs
2ξL

, t ∈ I and |x|+ |y| ∈
[
bs,

bs
ξ

]
,

s = 1, 2, 3, · · ·, l.

By assumption, the fractional order BVP (1.1)-(1.4) has at least 2l − 1 positive
solutions (xi, x

∗
i ), i = 1, 2, 3, · · ·, 2l − 1 in P al

. At the same time, it follows from
Theorem 3.2, (3.3) and (3.4) that the fractional order BVP (1.1)-(1.4) has at least
three positive solutions (x1, x2), (y1, y2) and (z1, z2) in P al+1

such that β(x1, x2) <
al, bl < α(y1, y2) and al < β(z1, z2) with α(z1, z2) < bl. Obviously, (y1, y2) and
(z1, z2) are distinct from (xi, x

∗
i ), i = 1, 2, 3, · · ·, 2l − 1 in P al

. Therefore, the
fractional order BVP (1.1)-(1.4) has at least 2l + 1 positive solutions in P al+1

which shows that this conclusion also holds for k = l+1. This completes the proof
of theorem. �

4. Example

In this section, as an application, we demonstrate our results with an example.

Consider the system of fractional order two-point boundary value problem,

(4.1) D3.5
0+ x(t) + f1(t, x, y) = 0, t ∈ (0, 1),

(4.2) D3.7
0+ y(t) + f2(t, x, y) = 0, t ∈ (0, 1),
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(4.3) x(0) = 0, x′(0) = 0, x′′(0) = 0 and x′′(1) = 0,

(4.4) y(0) = 0, y′(0) = 0, y′′(0) = 0 and y′′(1) = 0,

where

f1(t, x, y) =

{
ex+y

165 + 19(x+y)4

5 , 0 6 x+ y 6 5,
ex+y

165 + (x+y)
2 + 4745

2 , x+ y > 5,

f2(t, x, y) =

{
ex+y

143 + 18(x+y)4

5 + t
50 , 0 6 x+ y 6 5,

ex+y

143 + t
50 + (x+y)

2 + 4495
2 , x+ y > 5.

Then, the Green’s functions G1(t, s) of (4.1),(4.3) and G2(t, s) of (4.2),(4.4) are
given by

G1(t, s) =

{
t2.5(1−s)0.5

Γ(3.5) , t 6 s,
t2.5(1−s)0.5−(t−s)2.5

Γ(3.5) , s 6 t,

G2(t, s) =

{
t2.7(1−s)0.7

Γ(3.7) , t 6 s,
t2.7(1−s)0.7−(t−s)2.7

Γ(3.7) , s 6 t.

Clearly, the Green’s functions G1(t, s), G2(t, s) are positive and fi, for i = 1, 2
are continuous and increasing on [0,∞). By direct calculations, one can determine
ξ = 0.02368, L = 0.053234 and M = 0.081844. If we choose a′ = 1.5, b′ = 5 and

c′ = 1500, then 0 < a′ < b′ < b′

ξ 6 c′ and fi, for i = 1, 2 satisfies

(i) fi(t, x, y) < 9.16 =
a′

2M
, t ∈ [0, 1], x+ y ∈ [0.03, 1.5]

(ii) fi(t, x, y) > 1983.21 =
b′

2ξL
, t ∈

[1
4
,
3

4

]
, x+ y ∈ [5, 211.14]

(iii) fi(t, x, y) < 9163.77 =
c′

2M
, t ∈ [0, 1], x+ y ∈ [0, 1500].

Then, all the conditions of Theorem 3.2 are satisfied. Therefore, by Theorem 3.2,
the fractional order BVP (4.1)-(4.4) has at least three positive solutions.

Acknowledgements: The authors thank the referees for their valuable
comments and suggestions.
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