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ON WEAK CONVERGENCE THEOREM

FOR NONSELF I-QUASI-NONEXPANSIVE MAPPINGS

IN BANACH SPACES

Pankaj Kumar Jhade and and A. S. Saluja

Abstract. In this paper, we construct Ishikawa iteration scheme with error
for nonself I-quasi nonexpansive maps and establish the weak convergence of
a sequence of Ishikawa iteration of nonself I-quasi nonexpansive maps in a
Banach space which satisfies Opial’s condition.

1. Introduction and Preliminaries

Let K be a nonempty convex subset of a real Banach space E. The map
T : K → K is nonexpansive if ‖Tx− Ty‖ 6 ‖x− y‖ for all x, y ∈ K. Nonexpan-
sive selfmaps ever since their introduction, remained a papular area of research in
various fields. Iterative construction of fixed points of these maps is a fascinating
field of research. In 1967, Browder [3] studied the iterative construction of fixed
points of nonexpansive self maps on closed and convex subset of a Hilbert space.

Two most popular iteration procedure for obtaining fixed points of T , if they
exists, are : Mann iteration [12], defined by

(1.1) x1 ∈ K,
xn+1 = (1− αn) xn + αnTxn n > 1

and, Ishikawa Iteration [8], defined by

(1.2)
x1 ∈ K,
xn+1 = (1− αn) xn + αnTyn

yn = (1− βn) xn + βnTxn, n > 1
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for certain choices of {αn} , {βn} ⊂ [0, 1]. If we take βn = 0 in (1.2) then we obtain
iteration (1.1). In sequel, let F (T ) = {x ∈ K : Tx = x} be the set of fixed points
of a mapping T .

The first nonlinear ergotic theorem was proved by Baillon [5] for general nonex-
pansive mappings in Hilbert space H: If K is a closed and convex subset of Hand T
has a fixed point, then for all x ∈ K, {Tnx}is weakly almost convergent, as n →∞,
to a fixed point of T . It was also shown by Pazy [1] that if His a real Hilbert space
and

(
1
n

) ∑n−1
i=0 T ix converges weakly, as n →∞, to y ∈ K, then y ∈ F (T ).

The concept of quasi-nonexpansive mapping was initiated by Tricomi in 1941
for real functions. Diaz and Metcalf ([6]) and Dotson ([11]) studied quasi-nonexpan-
sive mappings in Banach spaces. Kirk ([10]) gave this concept in metric spaces
which we adopt to a normed space as follows: T is called a quasi-nonexpansive
mapping provided ‖Tx− p‖ 6 ‖x− p‖ for all x ∈ K and p ∈ F (T ).

Recall that a Banach space Eis said to be uniformly convex if for each r with
0 6 r 6 2, the modulus of convexity of Egiven by

δ (r) = inf
{

1− 1
2
‖x + y‖ : ‖x‖ 6 1, ‖y‖ 6 1, ‖x− y‖ > r

}

satisfies the inequality δ (r) > 0.
The space Eis said to satisfy Opial’s condition ([14]) if, for each sequence

{xn}in E, the condition xn → x implies that lim
n→∞

‖xn − x‖ < lim
n→∞

‖xn − y‖ for
all y ∈ E with y 6= x.
The following definitions and Lemma will be needed for the proof of our result.

Let Kbe a subset of a normed space E = (E, ‖.‖) and T and I are self mappings
of K. Then T is called I-nonexpansive on K if ‖Tx− Ty‖ 6 ‖Ix− Iy‖.

T is called I- quasi-nonexpansive on K if ‖Tx− p‖ 6 ‖Ix− p‖ for all x, y ∈ K
and p ∈ F (T )

⋂
F (I).

Let E be a real Banach space and K be a closed convex subset of E. A mapping
T : K → K is said to be demi-closed at the origin if, for any sequence {xn} in K,
the condition xn → x0 weakly Txn → 0 strongly imply Tx0 = 0.

Remark 1.1. If I is an identity map then I- nonexpansive maps and I -quasi
nonexpansive mappings reduces to nonexpansive and quasi nonexpansive mappings.

A subset K of E is said to be a retract of E if there exists a continuous map
P : E → K such that Px = x for allx ∈ K. A map P : E → E is a retraction
if P 2 = P . It easily follows that if a map P is a retraction, then Py = y for all
y in the range of P . A set K is optimal if each point outside Kcan be moved to
be closer to all points of K. Note that every nonexpansive retract is optimal. In
strictly convex Banach spaces, optimal sets are closed and convex. However, every
closed convex subset of a Hilbert space is optimal and also a nonexpansive retract.

Lemma 1.1. ([15]) Let {sn} and {tn} be two nonnegative real sequences satis-
fying sn+1 6 sn + tn for all n > 1. If

∑∞
n=1 tn < ∞, then lim

n→∞
sn exists.
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Lemma 1.2. ([3]) Let K be a nonempty closed convex subset of a uniformly
convex Banach space and let T : K → E be a nonexpansive map. Then I − T is
demi-closed at 0.

Lemma 1.3. ([16]) Suppose that E is a uniformly convex Banach space and
0 < p 6 tn 6 q < 1 for all n ∈ N . Suppose further that {xn} and {yn}
are sequences in E such that lim supn→∞ ‖xn‖ 6 r, limsupn→∞ ‖yn‖ 6 r and
limn→∞ ‖tnxn + (1− tn) yn‖ = r hold for some r > 0. Then limn→∞ ‖xn − yn‖ =
0

There are many results on fixed points on nonexpansive and quasi-nonexpansive
mappings in Banach spaces and metric spaces. For example Petryshyn and William-
son ([13]) studied the weak and strong convergence to a fixed points of quasi-
nonexpansive maps. Their analysis was related to the convergence of Mann iterates
studied by Dotson ([11]). Subsequently, Ghosh and Debnath ([7]) discussed the
convergence of Ishikawa iterates of quasi-nonexpansive mappings in Banach spaces.
In [9], the weak convergence theorem for I-asymptotically quasi-nonexpansive map-
ping defined in Hilbert space was proved.

In [2], Rhoades and Temir considered T and I self mappings of K, where T is
an I -nonexpansive mapping. They established the weak convergence of sequence
of Mann iterates to a common fixed point of T and I. Subsequently, Kiziltunc
and Ozdemir [4] considered T and I be nonself mappings of K with T is I-
nonexpansive mapping and establish the weak convergence theorem of the sequence
of Ishikawa iterates to a common fixed point of T and I.

In this paper, we consider T and Inonself mappings of K, where T is an I-
quasi nonexpansive mapping and establish the weak convergence of the sequence
of Ishikawa iterates with error to a common fixed point of T and I.

Iteration Scheme 1.4 [Ishikawa Iteration with error]: Let E be a uniformly convex
Banach space, let K be a nonempty convex subset of E with Pas a nonexpansive
retraction. Let T : K → E be a given nonself mapping. The Ishikawa iterative
scheme with error is defined as follows:

(1.3)





x1 ∈ K
xn+1 = P (αnxn + βnTyn + γnun)
yn = P (α′nxn + β′nTxn + γ′nvn) , n > 1

Where {αn} , {βn} , {γn} , {α′n} , {β′n} and {γ′n} are real sequences in [0, 1] such
that αn + βn + γn = 1 = α′n + β′n + γ′n; and {un} , {vn} are bounded sequences in
K.

2. Main Results

Before proving our main result we begin with the following lemmas.

Lemma 2.1. Let Kbe a closed convex bounded subset of a uniformly convex
Banach space Eand let T, I be two nonself mappings with T be I-quasi-nonexpansive
mapping, I a nonexpansive mapping on K. If {xn}is defined as in (1.3) where
{αn} , {βn} , {γn} , {α′n} , {β′n} and {γ′n} are real sequences in [0, 1] such that αn +
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βn + γn = 1 = α′n + β′n + γ′n ;
∑∞

n=1 γn < ∞,
∑∞

n=1 γ′n < ∞ ; {un} and {vn} are
bounded sequences in K, then limn→∞ ‖xn − p‖ exists.

Proof. For p ∈ F (T ) ∩ F (I), we have

‖xn+1 − p‖ = ‖P (αnxn + βnTyn + γnun)− p‖
6 αn ‖xn − p‖+ βn ‖Tyn − p‖+ γn ‖un − p‖
6 αn ‖xn − p‖+ βn ‖Iyn − p‖+ γn ‖un − p‖
6 αn ‖xn − p‖+ βn ‖yn − p‖+ γn ‖un − p‖(2.1)

where

‖yn − p‖ = ‖P (α′nxn + β′nTxn + γ′nvn)− p‖
6 α′n ‖xn − p‖+ β′n ‖Txn − p‖+ γ′n ‖vn − p‖
6 α′n ‖xn − p‖+ β′n ‖Ixn − p‖+ γ′n ‖vn − p‖
6 α′n ‖xn − p‖+ β′n ‖xn − p‖+ γ′n ‖vn − p‖(2.2)

Substituting the value of (2.2) into (2.1) we obtain,

‖xn+1 − p‖ 6 (αn + α′nβn + βnβ′n) ‖xn − p‖+ γn ‖un − p‖+ βnγ′n ‖vn − p‖
6 ((1− βn) + (1− β′n)βn + βnβ′n) ‖xn − p‖+ γn ‖un − p‖+ βnγ′n ‖vn − p‖
6 ‖xn − p‖+ dn

where dn = γn ‖un − p‖+ βnγ′n ‖vn − p‖
Since

∑∞
n=1 γn < ∞, and

∑∞
n=1 γ′n < ∞ implies that

∑∞
n=1 dn < ∞ and by

Lemma (1.1) limn→∞ ‖xn − p‖ exists. This completes the proof of the lemma. ¤

Lemma 2.2. Let E be a uniformly convex Banach space and let K be a nonempty
closed convex subset of E . Let T : K → E be a I-quasi-nonexpansive mapping
with F (T ) ∩ F (I) 6= φand I a nonexpansive mapping. Let {αn} , {βn} , {γn}
{α′n} , {β′n} and {γ′n} are real sequences in [0, 1] such that αn + βn + γn = 1 =
α′n +β′n +γ′n and ε 6 βn, β′n 6 1− ε for all n ∈ N and some ε > 0 ;{un} and {vn}
are bounded sequences in K. Then for the sequence {xn} given by (1.3) , we have
limn→∞ ‖xn − Txn‖ = 0.

Proof. For any p ∈ F (T ) ∩ F (I), set

r1 = sup {‖un − p‖ : n > 1} ,

r2 = sup {‖vn − p‖ : n > 1} ,

r3= sup {‖xn − p‖ : n > 1} ,

r = max {ri : 1 6 i 6 3}
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Now consider

‖yn − p‖ = ‖P (α′nxn + β′nTxn + γ′nvn)− p‖
6 α′n ‖xn − p‖+ β′n ‖Txn − p‖+ γ′n ‖vn − p‖
6 α′n ‖xn − p‖+ β′n ‖Ixn − p‖+ γ′n ‖vn − p‖
6 α′n ‖xn − p‖+ β′n ‖xn − p‖+ γ′n ‖vn − p‖
6 (α′n + β′n) ‖xn − p‖+ γ′n ‖vn − p‖
6 ‖xn − p‖+ γ′nr(2.3)

Since by Lemma (2.1) limn→∞ ‖xn − p‖exists. Let limn→∞ ‖xn − p‖ = c, then by
the continuity of T the conclusion follows.
Now, let c > 0. We claim that limn→∞ ‖xn − Txn‖ = 0.
Since {un} and {vn} are bounded, it follows that {un − xn} and {vn − xn} are
bounded.
Taking limit sup on both sides in the inequality (2.3), we have

lim sup
n→∞

‖yn − p‖ < c(2.4)

Next consider,

‖Tyn − p + γn (un − xn)‖ 6 ‖Tyn − p‖+ γn ‖un − xn‖
6 ‖Iyn − p‖+ γnr

6 ‖yn − p‖+ γnr

Taking limit sup on both sides in the above inequality and using (2.4), we get

lim sup
n→∞

‖Tyn − p + γn (un − xn)‖ 6 c

Then ‖xn − p + γn (un − xn)‖ 6 ‖xn − p‖+ γn ‖un − xn‖ 6 ‖xn − p‖+ γnr yields

lim sup
n→∞

‖xn − p + γn (un − xn)‖ 6 c

Again limn→∞ ‖xn+1 − p‖ = c means that

lim inf
n→∞

‖βn (Tyn − p + γn (un − xn)) + (1− βn) (xn − p + γn (un − xn))‖ > c

(2.5)

On the other hand we have

‖βn (Tyn − p + γn (un − xn)) + (1− βn) (xn − p + γn (un − xn))‖
6 βn ‖Tyn − p‖+ (1− βn) ‖xn − p‖+ γn ‖un − xn‖
6 βn ‖Iyn − p‖+ (1− βn) ‖xn − p‖+ γn ‖un − xn‖
6 βn ‖yn − p‖+ (1− βn) ‖xn − p‖+ γn ‖un − xn‖

6 βn (‖xn − p‖+ γ′nr) + (1− βn) ‖xn − p‖+ γn ‖un − xn‖
6 ‖xn − p‖+ γ′nr + γnr
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Therefore we obtain

lim sup
n→∞

‖βn (Tyn − p + γn (un − xn)) + (1− βn) (xn − p + γn (un − xn))‖ 6 c

(2.6)

From (2.5) and (2.6) we get

lim
n→∞

‖βn (Tyn − p + γn (un − xn)) + (1− βn) (xn − p + γn (un − xn))‖ = c

Hence applying Lemma (1.3) we have limn→∞ ‖Tyn − xn‖ = 0.

Since P is a nonexpansive retraction we have

‖xn − Txn‖ 6 ‖xn − Tyn‖+ ‖Txn − Tyn‖
6 ‖xn − Tyn‖+ ‖Ixn − Iyn‖
6 ‖xn − Tyn‖+ ‖xn − yn‖
6 ‖xn − Tyn‖+ ‖Pxn − P (α′nxn + β′nTxn + γ′nvn)‖
6 ‖xn − Tyn‖+ ‖xn − (α′nxn + β′nTxn + γ′nvn)‖
6 ‖xn − Tyn‖+ β′n ‖xn − Txn‖+ γ′n ‖xn − vn‖
6 ‖xn − Tyn‖+ β′n ‖xn − Txn‖+ γ′nr

That is (1− β′n) ‖xn − Txn‖ 6 ‖xn − Tyn‖+ γ′nr
On taking limit as n → ∞ both sides we get limn→∞ ‖xn − Txn‖ = 0.This com-
pletes the proof of the lemma. ¤

Now we prove our main result.

Theorem 2.1. Let E be a uniformly convex Banach space satisfying the Opial’s
property and let K, T and {xn} be as in Lemma (2.2). If F (T ) ∩ F (I) 6= φ, then
{xn} converges weakly to a fixed point of F (T ) ∩ F (I).

Proof. For any p ∈ F (T ) ∩ F (I), it follows from Lemma (2.1) that

limn→∞ ‖xn − p‖
exists. We now prove that {xn}has a unique weak sub sequential limit in F (T ).
By Lemmas (1.2) and(2.2), we know that p ∈ F (T ).

Let {xnk
} and {xmk

}be two sub sequences of {xn} which converges weakly to
p and q, respectively. We will show that p = q.

Suppose that E satisfies Opial’s property and that p 6= q is in weak limit
set of the sequence {xn}. Then {xnk

} → p and {xmk
} → q, respectively. Since

limn→∞ ‖xn − p‖ exists for any p ∈ F (T ) ∩ F (I), then by Opial’s property we
conclude that

limn→∞ ‖xn − p‖ =
limk→∞ ‖xnk

− p‖ < limk→∞ ‖xnk
− q‖ < limj→∞

∥∥xmj − p
∥∥ =

limn→∞ ‖xn − p‖
a contradiction. This proves that {xn} converges weakly to a fixed point of F (T )∩
F (I). This completes the proof of the theorem. ¤
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