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Abstract. Values of λ1, λ2, ..., λn are determined for which there exist posi-
tive solutions of the iterative system of dynamic equations,

u∆∆
i (t) + λiai(t)fi(ui+1(σ(t))) = 0, 1 6 i 6 n, un+1(t) = u1(t),

for t ∈ [a, b]T, and satisfying the boundary conditions, ui(a) = 0 = ui(σ
2(b)),

1 6 i 6 n, where T is a time scale. A Guo-Krasnosel’skii fixed-point theorem
is applied.

1. Introduction

Let T be a time scale with a, σ2(b) ∈ T. Given an interval J of R, we will use
the interval notation,

JT = J ∩ T.

We are concerned with determining values of λi, 1 6 i 6 n, for which there
exist positive solutions for the iterative system of dynamic equations,

(1.1)
u∆∆

i (t) + λiai(t)fi(ui+1(σ(t))) = 0, 1 6 i 6 n, t ∈ [a, b]T,

un+1(t) = u1(t), t ∈ [a, b]T,

satisfying the boundary conditions,

(1.2) ui(a) = 0 = ui(σ2(b)), 1 6 i 6 n,

where
(A1) fi ∈ C([0,∞), [0,∞)), 1 6 i 6 n;
(A2) ai ∈ C([a, σ(b)]T, [0,∞)), 1 6 i 6 n, and each does not vanish identically

on any closed subinterval of [a, σ(b)]T;
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48 A. K. RAO AND S. N. RAO

(A3) Each of fi0 := limx→0+
fi(x)

x , fi∞ := limx→∞
fi(x)

x , 1 6 i 6 n, exists as
positive real number.

For several years now, there has been a great deal of activity in studying on
positive solutions of boundary value problems for ordinary differential equations.
Interest in such solutions is high from a theoretical sense [10, 12, 15, 18, 25] and
as applications for which only positive solutions are meaningful [2, 11, 19, 20].
These considerations are caste primarily for scalar problems, but good attention
has been given to boundary value problems for systems of differential equations
[14, 15, 16, 17, 22, 24, 26].

There is a great deal of research activity devoted to positive solutions of dy-
namic equations on time scales; see for example [1, 3, 4, 5, 7, 9, 13]. This work
entails an extension of the paper by Chyan and Henderson [9] to eigenvalue prob-
lems for systems of nonlinear boundary value problems on time scales, and also,
in a very real sense, an extension of recent paper by Benchohra, Henderson and
Ntouyas [6]. Also, in that light, this paper is closely related to the works by Li and
sun [21, 23].

The main tool in this paper is an application of the Guo-Krasnoselskii fixed
point theorem for operators leaving a Banach space cone invariant [12]. A Green
function plays a fundamental role in defining an appropriate operator on a suitable
cone.

2. Green’s Function and Bounds

In this section, we state the well-known Guo-Krasnosel’skii fixed point-theorem
which we will apply to a completely continuous operator whose kernel, G(t, s), is
the Green’s function for

(2.1) −y∆∆ = 0,

(2.2) y(a) = 0, y(σ2(b)) = 0

is given by

(2.3) G(t, s) =

{
(t−a)(σ2(b)−σ(s))

σ2(b)−a : a 6 t 6 s 6 σ2(b)
(σ(s)−a)(σ2(b)−t)

σ2(b)−a : a 6 σ(s) 6 t 6 σ2(b).

One can easily check that

(2.4) G(t, s) > 0, (t, s) ∈ (a, σ2(b))T × (a, σ(b))T

and

(2.5) G(t, s) 6 G(σ(s), s) =
(σ2(b)− σ(s))(σ(s)− a)

σ2(b)− a

for t ∈ [a, σ2(b)]T, s ∈ [a, σ(b)]T, and let I = [ 3a+σ2(b)
4 , a+3σ2(b)

4 ]T then

(2.6) G(t, s) > kG(σ(s), s) = k
(σ(s)− a)(σ2(b)− σ(s))

σ2(b)− a
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for t ∈ I, s ∈ [a, σ(b)]T, where

k = min
{

1
4
,

σ2(b)− a

4(σ2(b)− σ(a))

}
.

We note that an n-tuple (u1(t), u2(t), ..., un(t)) is a solution of the eigenvalue
problem (1.1)-(1.2) if and only if

ui(t) = λi

∫ σ(b)

a

G(t, s)ai(s)fi(ui+1(σ(s)))∆s, a 6 t 6 σ2(b), 1 6 i 6 n,

and
un+1(t) = u1(t), a 6 t 6 σ2(b),

so that, in particular,

u1(t) = λ1

∫ σ(b)

a

G(t, s1)a1(s1)f1

(
λ2

∫ σ(b)

a

G(σ(s1), s2)a2(s2)×

× f2

(
λ3

∫ σ(b)

a

G(σ(s2), s3)a3(s3)...×

× fn−1

(
λn

∫ σ(b)

a

G(σ(sn−1), sn)an(sn)fn(u1(σ(sn)))∆sn

)
...∆s3

)
∆s2

)
∆s1.

Values of λ1, λ2, ..., λn for which there are positive solutions (positive with
respect to a cone) of (1.1)-(1.2), will be determined via applications of the following
fixed-point theorem [12].

Theorem 2.1. (Krasnosel’skii) Let B be a Banach space, and let P ⊂ B be
a cone in B. Assume that Ω1 and Ω2 are open subsets of B with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2,
and let

T : P ∩ (Ω2\Ω1) → P
be a completely continuous operator such that either

(i) ‖Tu‖ 6 ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ > ‖u‖, u ∈ P ∩ ∂Ω2, or
(ii) ‖Tu‖ > ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ 6 ‖u‖, u ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2\Ω1).

3. Positive Solutions in a Cone

In this section, we apply Theorem 2.1 to obtain solutions in a cone (i.e., positive
solutions) of (1.1)-(1.2). Assume throughout that [a, σ2(b)]T is such that

ξ = min
{

t ∈ T : t > 3a + σ2(b)
4

}
,

and

ω = max
{

t ∈ T : t 6 a + 3σ2(b)
4

}

both exist and satisfy

3a + σ2(b)
4

6 ξ < ω 6 a + 3σ2(b)
4

.
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Next, let τi ∈ [ξ, ω]T be defied by
∫ ω

ξ

G(τi, s)ai(s)∆s = max
t∈[ξ,ω]T

∫ ω

ξ

G(t, s)ai(s)∆s.

Finally, we define

l = min
s∈[a,σ(b)]T

G(σ(ω), s)
G(σ(s), s)

,

and let

(3.1) γ = min{k, l}.
For our construction, let B =

{
x : [a, σ2(b)]T → R

}
with supremum norm ‖x‖ =

sup{|x(t)| : t ∈ [a, σ2(b)]T}, and define a cone P ⊂ B by

P =
{

x ∈ B : x(t) > 0 on [a, σ2(b)]T, and min
t∈[ξ,σ(ω)]T

x(t) > γ‖x‖
}

.

We next define an integral operator T : P → B, for u ∈ P, by
(3.2)

Tu(t) = λ1

∫ σ(b)

a

G(t, s1)a1(s1)f1

(
λ2

∫ σ(b)

a

G(σ(s1), s2)a2(s2)×

× f2

(
λ3

∫ σ(b)

a

G(σ(s2), s3)a3(s3)...×

× fn−1

(
λn

∫ σ(b)

a

G(σ(sn−1), sn)an(sn)fn(u(σ(sn)))∆sn

)
...∆s3

)
∆s2

)
∆s1.

Notice from (A1), (A2), and (2.4) that, for u ∈ P, Tu(t) > 0 on [a, σ2(b)]T.
Also, for u ∈ P, we have from (2.5) that

Tu(t) 6 λ1

∫ σ(b)

a

G(σ(s1), s1)a1(s1)f1

(
λ2

∫ σ(b)

a

G(σ(s1), s2)a2(s2)×

× f2

(
λ3

∫ σ(b)

a

G(σ(s2), s3)a3(s3)...×

× fn−1

(
λn

∫ σ(b)

a

G(σ(sn−1), sn)an(sn)fn(u(σ(sn)))∆sn

)
...∆s3

)
∆s2

)
∆s1.

so that
(3.3)

‖Tu‖ 6 λ1

∫ σ(b)

a

G(σ(s1), s1)a1(s1)f1

(
λ2

∫ σ(b)

a

G(σ(s1), s2)a2(s2)×

× f2

(
λ3

∫ σ(b)

a

G(σ(s2), s3)a3(s3)...×

× fn−1

(
λn

∫ σ(b)

a

G(σ(sn−1), sn)an(sn)fn(u(σ(sn)))∆sn

)
...∆s3

)
∆s2

)
∆s1.
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Next, if u ∈ P, we have from (2.6), (3.1), and (3.3) that

min
t∈[ξ,σ(ω)]T

Tu(t)

= min
t∈[ξ,σ(ω)]T

λ1

∫ σ(b)

a

G(t, s1)a1(s1)f1

(
λ2

∫ σ(b)

a

G(σ(s1), s2)a2(s2)×

× f2

(
...fn−1

(
λn

∫ σ(b)

a

G(σ(sn−1), sn)an(sn)fn(u(σ(sn)))∆sn

)
...∆s3

)
∆s2

)
∆s1

> λ1γ

∫ σ(b)

a

G(σ(s1), s1)a1(s1)f1

(
λ2

∫ σ(b)

a

G(σ(s1), s2)a2(s2)×

× f2

(
...fn−1

(
λn

∫ σ(b)

a

G(σ(sn−1), sn)an(sn)fn(u(σ(sn)))∆sn

)
...∆s3

)
∆s2

)
∆s1

> γ‖Tu‖.
Consequently, T : P → P. In addition, the standard arguments shows that T is
completely continuous.

By the remarks in Section 2, we seek suitable fixed points of T belonging to
the cone P.

For our first result, define positive numbers L1 and L2, by

L1 := max
16i6n

{[
γ

∫ ω

ξ

G(τi, s)ai(s)∆sfi∞
]−1

}
,

and

L2 := min
16i6n

{[ ∫ σ(b)

a

G(σ(s), s)ai(s)∆sfi0

]−1
}

.

Theorem 3.1. Assume that conditions (A1)-(A3) are satisfied. Then, for each
λ1, λ2, ..., λn satisfying

(3.4) L1 < λi < L2, 1 6 i 6 n

there exists an n-tuple (u1, u2, ..., un) satisfying (1.1), (1.2) such that ui(t) > 0 on
(a, σ2(b))T, 1 6 i 6 n.

Proof. Let λj , 1 6 j 6 n, be as in (3.4). And let ε > 0 be chosen such that

max
16i6n

{[
γ

∫ ω

ξ

G(τi, s)ai(s)∆s(fi∞ − ε)
]−1

}
6 min

16j6n
λj ,

and

max
16j6n

λj 6 min
16i6n

{[∫ σ(b)

a

G(σ(s), s)ai(s)∆s(fi0 + ε)
]−1

}
.

We seek fixed points of the completely continuous operator T : P → P defined by
(3.2).

Now, from the definitions of fi0, 1 6 i 6 n, there exists an H1 > 0 such that,
for each 1 6 i 6 n,

fi(x) 6 (fi0 + ε)x, 0 < x 6 H1.
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Let u ∈ P with ‖u‖ = H1. We first have from (2.5) and choice of ε, for
a 6 sn−1 6 σ(b),

λn

∫ σ(b)

a

G(σ(sn−1), sn)an(sn)fn(u(σ(sn)))∆sn

6 λn

∫ σ(b)

a

G(σ(sn), sn)an(sn)fn(u(σ(sn)))∆sn

6 λ

∫ σ(b)

a

G(σ(sn), sn)an(sn)(fn0 + ε)u(σ(sn)))∆sn

6 λn

∫ σ(b)

a

G(σ(sn), sn)an(sn)∆sn(fn0 + ε)‖u‖
6 ‖u‖
= H1.

It follows in a similar manner from (2.5) and choice of ε that, for a 6 sn−2 6 σ(b),

λn−1

∫ σ(b)

a

G(σ(sn−2), sn−1)an−1(sn−1)×

× fn−1

(
λn

∫ σ(b)

a

G(σ(sn−1), sn)an(sn)fn(u(σ(sn)))∆sn

)
∆sn−1

6 λn−1

∫ σ(b)

a

G(σ(sn−1), sn−1)an−1(sn−1)∆sn−1(fn−1,0 + ε)‖u‖
6 ‖u‖
= H1.

Continuing with this bootstrapping, we reach, for a 6 t 6 σ2(b),

λ1

∫ σ(b)

a

G(t, s1)a1(s1)f1(...fn(u(σ(sn)))∆sn...)∆s1 6 H1,

so that, for a 6 t 6 σ2(b),
Tu(t) 6 H1,

or
‖Tu‖ 6 H1 = ‖u‖.

If we set
Ω1 = {x ∈ B : ‖x‖ < H1},

then

(3.5) ‖Tu‖ 6 ‖u‖, for u ∈ P ∩ ∂Ω1.

Next, from the definitions of fi∞, 1 6 i 6 n, there exists H2 > 0 such that, for
each 1 6 i 6 n,

fi(x) > (fi∞ − ε)x, x > H2.
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Let

H2 = max
{

2H1,
H2

γ

}
.

Let u ∈ P and ‖u‖ = H2. Then,

min
t∈[ξ,σ(ω)]T

u(t) > γ‖u‖ > H2.

Consequently, from (2.6) and choice of ε, for a 6 sn−1 6 σ(b), we have that

λn

∫ σ(b)

a

G(σ(sn−1), sn)an(sn)fn(u(σ(sn)))∆sn

> λn

∫ ω

ξ

G(σ(sn−1), sn)an(sn)fn(u(σ(sn)))∆sn

> λn

∫ ω

ξ

G(τn, sn)an(sn)(fn∞ − ε)(u(σ(sn)))∆sn

> γλn

∫ ω

ξ

G(τn, sn)an(sn)∆sn(fn∞ − ε)‖u‖

> ‖u‖
= H2.

It follows similarly from (2.6) and choice of ε, for a 6 sn−2 6 σ(b),

λn−1

∫ σ(b)

a

G(σ(sn−2), sn−1)an−1(sn−1)×

× fn−1

(
λn

∫ σ(b)

a

G(σ(sn−1), sn)an(sn)fn(u(σ(sn)))∆sn

)
∆sn−1

> γλn−1

∫ ω

ξ

G(τn−1, sn−1)an−1(sn−1)∆sn−1(fn−1,∞ − ε)‖u‖

> ‖u‖
= H2.

Again, using a bootstrapping, we reach

Tu(τ1) = λ1

∫ σ(b)

a

G(τ1, s1)a1(s1)f1(...fn(u(σ(sn)))∆sn...)∆s1 > ‖u‖ = H2,

so that, ‖Tu‖ > ‖u‖. So if we set

Ω2 = {x ∈ B : ‖x‖ < H2},
then

(3.6) ‖Tu‖ > ‖u‖, for u ∈ P ∩ ∂Ω2.

Applying Theorem 2.1 to (3.5) and (3.6), we obtain that T has a fixed point
u ∈ P ∩ (Ω2\Ω1). As such, setting u1 = un+1 = u, we obtain a positive solution
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(u1, u2, ..., un) of (1.1)-(1.2) given iteratively by

uj(t) = λj

∫ σ(b)

a

G(t, s)aj(s)fj(uj+1(σ(s)))∆s, j = n, n− 1, ..., 1.

The proof is complete. ¤

Prior to our next result, let ξi, 1 6 i 6 n, be defined by
∫ σ(b)

a

G(ξi, s)ai(s)∆s = max
t∈[a,σ2(b)]T

∫ σ(b)

a

G(t, s)ai(s)∆s.

Then, we define positive numbers L3 and L4 by

L3 := max
16i6n

{[
γ

∫ ω

ξ

G(τi, s)ai(s)∆sfi0

]−1
}

,

and

L4 := max
16i6n

{[ ∫ σ(b)

a

G(ξi, s)ai(s)∆sfi∞
]−1

}
.

Theorem 3.2. Assume that conditions (A1)-(A3) are satisfied. Then, for each
λ1, λ2, ..., λn satisfying

(3.7) L3 < λi < L4, 1 6 i 6 n

there exists an n-tuple (u1, u2, ..., un) satisfying (1.1)-(1.2) such that ui(t) > 0 on
(a, σ2(b))T, 1 6 i 6 n.

Proof. Let λj , 1 6 j 6 n be as in (3.7). And let ε > 0 be chosen such that

max
16i6n

{[
γ

∫ ω

ξ

G(τi, s)ai(s)∆s(fi0 − ε)
]−1

}
6 min

16j6n
λj ,

and

max
16j6n

λj 6 min
16i6n

{[∫ σ(b)

a

G(ξi, s)ai(s)∆s(fi∞ + ε)
]−1

}
.

Let T be the cone preserving, completely continuous operator that was defined
by (3.2).

From the definition of fi0, 1 6 i 6 n there exists H3 > 0 such that, for each
1 6 i 6 n,

fi(x) > (fi0 − ε)x, 0 < x 6 H3.

Also, from the definitions of fi0, it follows that fi0(0) = 0, 1 6 i 6 n, and so there
exist 0 < Kn < Kn−1 < ... < K2 < H3 such that

λifi(t) 6 Ki−1∫ σ(b)

a
G(ξi, s)ai(s)∆s

, t ∈ [0,Ki]T, 3 6 i 6 n,

and

λ2f2(t) 6 H3∫ σ(b)

a
G(ξ2, s)a2(s)∆s

, t ∈ [0, K2]T.
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Choose u ∈ P with ‖u‖ = Kn. Then, we have

λn

∫ σ(b)

a

G(σ(sn−1), sn)an(sn)fn(u(σ(sn)))∆sn

6 λn

∫ σ(b)

a

G(ξn, sn)an(sn)fn(u(σ(sn)))∆sn

6
∫ σ(b)

a
G(ξn, sn)an(sn)Kn−1∆sn∫ σ(b)

a
G(ξn, sn)an(sn)∆sn

6 Kn−1.

Bootstrapping yields the standard iterative pattern, and it follows that

λ2

∫ σ(b)

a

G(σ(s1), s2)a2(s2)f2( . . . )∆s2 6 H3.

Then,

Tu(τ1) = λ1

∫ σ(b)

a

G(τ1, s1)a1(s1)f1(λ2 . . . )∆s1

> λ1γ

∫ ω

ξ

G(τ1, s1)a1(s1)(f1,0 − ε)‖u‖∆s1

> ‖u‖.
So, ‖Tu‖ > ‖u‖. If we put

Ω1 = {x ∈ B : ‖x‖ < Kn},
then

(3.8) ‖Tu‖ > ‖u‖, for u ∈ P ∩ ∂Ω1.

Since each fi∞ is assumed to be a positive real number, it follows that fi,
1 6 i 6 n, is unbounded at ∞.

For each 1 6 i 6 n, set

f∗i (x) = sup
a6s6x

fi(s).

Then, it is straightforward that, for each 1 6 i 6 n, f∗i is a nondecreasing real-
valued function, fi 6 f∗i , and

lim
x→∞

f∗i (x)
x

= fi∞.

Next, by definition of fi∞, 1 6 i 6 n, there exists H4 such that, for each 1 6 i 6 n,

f∗i (x) > (fi∞ + ε)x, x > H4.

It follows that there exists H4 > max{2H3, H4} such that, for each 1 6 i 6 n,

f∗i (x) 6 f∗i (H4), 0 < x 6 H4.
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Choose u ∈ P with ‖u‖ = H4. Then, using the usual bootstrapping argument,
we have

Tu(t) = λ1

∫ σ(b)

a

G(t, s1)a1(s1)f1(λ2. . . )∆s1

6 λ1

∫ σ(b)

a

G(t, s1)a1(s1)f∗1 (λ2. . . )∆s1

6 λ1

∫ σ(b)

a

G(ξ1, s1)a1(s1)f∗1 (H4)∆s1

6 λ1

∫ σ(b)

a

G(ξ1, s1)a1(s1)∆s1(f1∞ + ε)H4

6 H4

= ‖u‖,
and so ‖Tu‖ 6 ‖u‖. So, if we let

Ω2 = {x ∈ B : ‖x‖ < H4},
then

(3.9) ‖Tu‖ 6 ‖u‖, for u ∈ P ∩ ∂Ω2.

Application of part (ii) of Theorem 2.1 yields a fixed point u of T belonging to
P ∩ (Ω2\Ω1), which in turn, with u1 = un+1 = u, yields an n-tuple (u1, u2, ..., un)
satisfying (1.1)-(1.2) for the chosen values of λi, 1 6 i 6 n. The proof is complete.

¤
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