Eigenvalues for Iterative Systems of Nonlinear Second Order Boundary Value Problems on Time Scales

A. Kameswara Rao and S. Nageswara Rao

Abstract. Values of $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are determined for which there exist positive solutions of the iterative system of dynamic equations,

$$
u_{i}^{\Delta \Delta}(t)+\lambda_{i} a_{i}(t) f_{i}\left(u_{i+1}(\sigma(t))\right)=0,1 \leqslant i \leqslant n, u_{n+1}(t)=u_{1}(t)
$$

for $t \in[a, b]_{\mathbb{T}}$, and satisfying the boundary conditions, $u_{i}(a)=0=u_{i}\left(\sigma^{2}(b)\right)$, $1 \leqslant i \leqslant n$, where \mathbb{T} is a time scale. A Guo-Krasnosel'skii fixed-point theorem is applied.

1. Introduction

Let \mathbb{T} be a time scale with $a, \sigma^{2}(b) \in \mathbb{T}$. Given an interval J of \mathbb{R}, we will use the interval notation,

$$
J_{\mathbb{T}}=J \cap \mathbb{T}
$$

We are concerned with determining values of $\lambda_{i}, 1 \leqslant i \leqslant n$, for which there exist positive solutions for the iterative system of dynamic equations,

$$
\begin{gather*}
u_{i}^{\Delta \Delta}(t)+\lambda_{i} a_{i}(t) f_{i}\left(u_{i+1}(\sigma(t))\right)=0,1 \leqslant i \leqslant n, t \in[a, b]_{\mathbb{T}} \tag{1.1}\\
u_{n+1}(t)=u_{1}(t), t \in[a, b]_{\mathbb{T}}
\end{gather*}
$$

satisfying the boundary conditions,

$$
\begin{equation*}
u_{i}(a)=0=u_{i}\left(\sigma^{2}(b)\right), 1 \leqslant i \leqslant n \tag{1.2}
\end{equation*}
$$

where
(A1) $f_{i} \in C([0, \infty),[0, \infty)), 1 \leqslant i \leqslant n$;
(A2) $a_{i} \in C\left([a, \sigma(b)]_{\mathbb{T}},[0, \infty)\right), 1 \leqslant i \leqslant n$, and each does not vanish identically on any closed subinterval of $[a, \sigma(b)]_{\mathbb{T}}$;

[^0](A3) Each of $f_{i 0}:=\lim _{x \rightarrow 0^{+}} \frac{f_{i}(x)}{x}, f_{i \infty}:=\lim _{x \rightarrow \infty} \frac{f_{i}(x)}{x}, 1 \leqslant i \leqslant n$, exists as positive real number.
For several years now, there has been a great deal of activity in studying on positive solutions of boundary value problems for ordinary differential equations. Interest in such solutions is high from a theoretical sense $[\mathbf{1 0}, \mathbf{1 2}, \mathbf{1 5}, \mathbf{1 8}, \mathbf{2 5}]$ and as applications for which only positive solutions are meaningful $[\mathbf{2}, \mathbf{1 1}, \mathbf{1 9}, \mathbf{2 0}]$. These considerations are caste primarily for scalar problems, but good attention has been given to boundary value problems for systems of differential equations $[14,15,16,17,22,24,26]$.

There is a great deal of research activity devoted to positive solutions of dynamic equations on time scales; see for example $[\mathbf{1}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{7}, \mathbf{9}, \mathbf{1 3}]$. This work entails an extension of the paper by Chyan and Henderson [9] to eigenvalue problems for systems of nonlinear boundary value problems on time scales, and also, in a very real sense, an extension of recent paper by Benchohra, Henderson and Ntouyas [6]. Also, in that light, this paper is closely related to the works by Li and sun [21, 23].

The main tool in this paper is an application of the Guo-Krasnoselskii fixed point theorem for operators leaving a Banach space cone invariant [12]. A Green function plays a fundamental role in defining an appropriate operator on a suitable cone.

2. Green's Function and Bounds

In this section, we state the well-known Guo-Krasnosel'skii fixed point-theorem which we will apply to a completely continuous operator whose kernel, $G(t, s)$, is the Green's function for

$$
\begin{equation*}
-y^{\Delta \Delta}=0 \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
y(a)=0, y\left(\sigma^{2}(b)\right)=0 \tag{2.2}
\end{equation*}
$$

is given by

$$
G(t, s)= \begin{cases}\frac{(t-a)\left(\sigma^{2}(b)-\sigma(s)\right)}{\sigma^{2}(b)-a}: & a \leqslant t \leqslant s \leqslant \sigma^{2}(b) \tag{2.3}\\ \frac{(\sigma(s)-a)\left(\sigma^{2}(b)-t\right)}{\sigma^{2}(b)-a}: & a \leqslant \sigma(s) \leqslant t \leqslant \sigma^{2}(b)\end{cases}
$$

One can easily check that

$$
\begin{equation*}
G(t, s)>0,(t, s) \in\left(a, \sigma^{2}(b)\right)_{\mathbb{T}} \times(a, \sigma(b))_{\mathbb{T}} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
G(t, s) \leqslant G(\sigma(s), s)=\frac{\left(\sigma^{2}(b)-\sigma(s)\right)(\sigma(s)-a)}{\sigma^{2}(b)-a} \tag{2.5}
\end{equation*}
$$

for $t \in\left[a, \sigma^{2}(b)\right]_{\mathbb{T}}, s \in[a, \sigma(b)]_{\mathbb{T}}$, and let $I=\left[\frac{3 a+\sigma^{2}(b)}{4}, \frac{a+3 \sigma^{2}(b)}{4}\right]_{\mathbb{T}}$ then

$$
\begin{equation*}
G(t, s) \geqslant k G(\sigma(s), s)=k \frac{(\sigma(s)-a)\left(\sigma^{2}(b)-\sigma(s)\right)}{\sigma^{2}(b)-a} \tag{2.6}
\end{equation*}
$$

for $t \in I, s \in[a, \sigma(b)]_{\mathbb{T}}$, where

$$
k=\min \left\{\frac{1}{4}, \frac{\sigma^{2}(b)-a}{4\left(\sigma^{2}(b)-\sigma(a)\right)}\right\}
$$

We note that an n-tuple $\left(u_{1}(t), u_{2}(t), \ldots, u_{n}(t)\right)$ is a solution of the eigenvalue problem (1.1)-(1.2) if and only if

$$
u_{i}(t)=\lambda_{i} \int_{a}^{\sigma(b)} G(t, s) a_{i}(s) f_{i}\left(u_{i+1}(\sigma(s))\right) \Delta s, a \leqslant t \leqslant \sigma^{2}(b), 1 \leqslant i \leqslant n
$$

and

$$
u_{n+1}(t)=u_{1}(t), a \leqslant t \leqslant \sigma^{2}(b)
$$

so that, in particular,

$$
\begin{aligned}
u_{1}(t) & =\lambda_{1} \int_{a}^{\sigma(b)} G\left(t, s_{1}\right) a_{1}\left(s_{1}\right) f_{1}\left(\lambda_{2} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{1}\right), s_{2}\right) a_{2}\left(s_{2}\right) \times\right. \\
& \times f_{2}\left(\lambda_{3} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{2}\right), s_{3}\right) a_{3}\left(s_{3}\right) \ldots \times\right. \\
& \left.\left.\times f_{n-1}\left(\lambda_{n} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{n-1}\right), s_{n}\right) a_{n}\left(s_{n}\right) f_{n}\left(u_{1}\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n}\right) \ldots \Delta s_{3}\right) \Delta s_{2}\right) \Delta s_{1}
\end{aligned}
$$

Values of $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ for which there are positive solutions (positive with respect to a cone) of (1.1)-(1.2), will be determined via applications of the following fixed-point theorem [12].

Theorem 2.1. (Krasnosel'skii) Let \mathcal{B} be a Banach space, and let $\mathcal{P} \subset \mathcal{B}$ be a cone in \mathcal{B}. Assume that Ω_{1} and Ω_{2} are open subsets of \mathcal{B} with $0 \in \Omega_{1} \subset \bar{\Omega}_{1} \subset \Omega_{2}$, and let

$$
T: \mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow \mathcal{P}
$$

be a completely continuous operator such that either
(i) $\|T u\| \leqslant\|u\|, u \in \mathcal{P} \cap \partial \Omega_{1}$, and $\|T u\| \geqslant\|u\|, u \in \mathcal{P} \cap \partial \Omega_{2}$, or
(ii) $\|T u\| \geqslant\|u\|, u \in \mathcal{P} \cap \partial \Omega_{1}$, and $\|T u\| \leqslant\|u\|, u \in \mathcal{P} \cap \partial \Omega_{2}$.

Then T has a fixed point in $\mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.

3. Positive Solutions in a Cone

In this section, we apply Theorem 2.1 to obtain solutions in a cone (i.e., positive solutions) of (1.1)-(1.2). Assume throughout that $\left[a, \sigma^{2}(b)\right]_{\mathbb{T}}$ is such that

$$
\xi=\min \left\{t \in \mathbb{T}: t \geqslant \frac{3 a+\sigma^{2}(b)}{4}\right\}
$$

and

$$
\omega=\max \left\{t \in \mathbb{T}: t \leqslant \frac{a+3 \sigma^{2}(b)}{4}\right\}
$$

both exist and satisfy

$$
\frac{3 a+\sigma^{2}(b)}{4} \leqslant \xi<\omega \leqslant \frac{a+3 \sigma^{2}(b)}{4}
$$

Next, let $\tau_{i} \in[\xi, \omega]_{\mathbb{T}}$ be defied by

$$
\int_{\xi}^{\omega} G\left(\tau_{i}, s\right) a_{i}(s) \Delta s=\max _{t \in[\xi, \omega]_{\mathbb{T}}} \int_{\xi}^{\omega} G(t, s) a_{i}(s) \Delta s .
$$

Finally, we define

$$
l=\min _{s \in[a, \sigma(b)]_{\mathrm{T}}} \frac{G(\sigma(\omega), s)}{G(\sigma(s), s)},
$$

and let

$$
\begin{equation*}
\gamma=\min \{k, l\} \tag{3.1}
\end{equation*}
$$

For our construction, let $\mathcal{B}=\left\{x:\left[a, \sigma^{2}(b)\right]_{\mathbb{T}} \rightarrow \mathbb{R}\right\}$ with supremum norm $\|x\|=$ $\sup \left\{|x(t)|: t \in\left[a, \sigma^{2}(b)\right]_{\mathbb{T}}\right\}$, and define a cone $\mathcal{P} \subset \mathcal{B}$ by

$$
\mathcal{P}=\left\{x \in \mathcal{B}: x(t) \geqslant 0 \text { on }\left[a, \sigma^{2}(b)\right]_{\mathbb{T}}, \text { and } \min _{t \in[\xi, \sigma(\omega)]_{\mathbb{T}}} x(t) \geqslant \gamma\|x\|\right\} .
$$

We next define an integral operator $T: \mathcal{P} \rightarrow \mathcal{B}$, for $u \in \mathcal{P}$, by

$$
\begin{align*}
T u(t) & =\lambda_{1} \int_{a}^{\sigma(b)} G\left(t, s_{1}\right) a_{1}\left(s_{1}\right) f_{1}\left(\lambda_{2} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{1}\right), s_{2}\right) a_{2}\left(s_{2}\right) \times\right. \tag{3.2}\\
& \times f_{2}\left(\lambda_{3} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{2}\right), s_{3}\right) a_{3}\left(s_{3}\right) \ldots \times\right. \\
& \left.\left.\times f_{n-1}\left(\lambda_{n} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{n-1}\right), s_{n}\right) a_{n}\left(s_{n}\right) f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n}\right) \ldots \Delta s_{3}\right) \Delta s_{2}\right) \Delta s_{1}
\end{align*}
$$

Notice from $(A 1),(A 2)$, and (2.4) that, for $u \in \mathcal{P}, T u(t) \geqslant 0$ on $\left[a, \sigma^{2}(b)\right]_{\mathbb{T}}$. Also, for $u \in \mathcal{P}$, we have from (2.5) that

$$
\begin{aligned}
T u(t) & \leqslant \lambda_{1} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{1}\right), s_{1}\right) a_{1}\left(s_{1}\right) f_{1}\left(\lambda_{2} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{1}\right), s_{2}\right) a_{2}\left(s_{2}\right) \times\right. \\
& \times f_{2}\left(\lambda_{3} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{2}\right), s_{3}\right) a_{3}\left(s_{3}\right) \ldots \times\right. \\
& \left.\left.\times f_{n-1}\left(\lambda_{n} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{n-1}\right), s_{n}\right) a_{n}\left(s_{n}\right) f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n}\right) \ldots \Delta s_{3}\right) \Delta s_{2}\right) \Delta s_{1}
\end{aligned}
$$

so that

$$
\begin{align*}
\|T u\| & \leqslant \lambda_{1} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{1}\right), s_{1}\right) a_{1}\left(s_{1}\right) f_{1}\left(\lambda_{2} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{1}\right), s_{2}\right) a_{2}\left(s_{2}\right) \times\right. \tag{3.3}\\
& \times f_{2}\left(\lambda_{3} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{2}\right), s_{3}\right) a_{3}\left(s_{3}\right) \ldots \times\right. \\
& \left.\left.\times f_{n-1}\left(\lambda_{n} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{n-1}\right), s_{n}\right) a_{n}\left(s_{n}\right) f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n}\right) \ldots \Delta s_{3}\right) \Delta s_{2}\right) \Delta s_{1}
\end{align*}
$$

Next, if $u \in \mathcal{P}$, we have from (2.6), (3.1), and (3.3) that

$$
\begin{aligned}
& \min _{t \in[\xi, \sigma(\omega)]_{\mathbb{T}}} T u(t) \\
& =\min _{t \in[\xi, \sigma(\omega)]_{\mathbb{T}}} \lambda_{1} \int_{a}^{\sigma(b)} G\left(t, s_{1}\right) a_{1}\left(s_{1}\right) f_{1}\left(\lambda_{2} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{1}\right), s_{2}\right) a_{2}\left(s_{2}\right) \times\right. \\
& \left.\times f_{2}\left(\ldots f_{n-1}\left(\lambda_{n} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{n-1}\right), s_{n}\right) a_{n}\left(s_{n}\right) f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n}\right) \ldots \Delta s_{3}\right) \Delta s_{2}\right) \Delta s_{1} \\
& \geqslant \lambda_{1} \gamma \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{1}\right), s_{1}\right) a_{1}\left(s_{1}\right) f_{1}\left(\lambda_{2} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{1}\right), s_{2}\right) a_{2}\left(s_{2}\right) \times\right. \\
& \left.\times f_{2}\left(\ldots f_{n-1}\left(\lambda_{n} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{n-1}\right), s_{n}\right) a_{n}\left(s_{n}\right) f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n}\right) \ldots \Delta s_{3}\right) \Delta s_{2}\right) \Delta s_{1} \\
& \geqslant \gamma\|T u\| .
\end{aligned}
$$

Consequently, $T: \mathcal{P} \rightarrow \mathcal{P}$. In addition, the standard arguments shows that T is completely continuous.

By the remarks in Section 2, we seek suitable fixed points of T belonging to the cone \mathcal{P}.

For our first result, define positive numbers L_{1} and L_{2}, by

$$
L_{1}:=\max _{1 \leqslant i \leqslant n}\left\{\left[\gamma \int_{\xi}^{\omega} G\left(\tau_{i}, s\right) a_{i}(s) \Delta s f_{i \infty}\right]^{-1}\right\}
$$

and

$$
L_{2}:=\min _{1 \leqslant i \leqslant n}\left\{\left[\int_{a}^{\sigma(b)} G(\sigma(s), s) a_{i}(s) \Delta s f_{i 0}\right]^{-1}\right\}
$$

Theorem 3.1. Assume that conditions (A1)-(A3) are satisfied. Then, for each $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ satisfying

$$
\begin{equation*}
L_{1}<\lambda_{i}<L_{2}, 1 \leqslant i \leqslant n \tag{3.4}
\end{equation*}
$$

there exists an n-tuple $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ satisfying (1.1), (1.2) such that $u_{i}(t)>0$ on $\left(a, \sigma^{2}(b)\right)_{\mathbb{T}}, 1 \leqslant i \leqslant n$.

Proof. Let $\lambda_{j}, 1 \leqslant j \leqslant n$, be as in (3.4). And let $\epsilon>0$ be chosen such that

$$
\max _{1 \leqslant i \leqslant n}\left\{\left[\gamma \int_{\xi}^{\omega} G\left(\tau_{i}, s\right) a_{i}(s) \Delta s\left(f_{i \infty}-\epsilon\right)\right]^{-1}\right\} \leqslant \min _{1 \leqslant j \leqslant n} \lambda_{j}
$$

and

$$
\max _{1 \leqslant j \leqslant n} \lambda_{j} \leqslant \min _{1 \leqslant i \leqslant n}\left\{\left[\int_{a}^{\sigma(b)} G(\sigma(s), s) a_{i}(s) \Delta s\left(f_{i 0}+\epsilon\right)\right]^{-1}\right\}
$$

We seek fixed points of the completely continuous operator $T: \mathcal{P} \rightarrow \mathcal{P}$ defined by (3.2).

Now, from the definitions of $f_{i 0}, 1 \leqslant i \leqslant n$, there exists an $H_{1}>0$ such that, for each $1 \leqslant i \leqslant n$,

$$
f_{i}(x) \leqslant\left(f_{i 0}+\epsilon\right) x, 0<x \leqslant H_{1} .
$$

Let $u \in \mathcal{P}$ with $\|u\|=H_{1}$. We first have from (2.5) and choice of ϵ, for $a \leqslant s_{n-1} \leqslant \sigma(b)$,

$$
\begin{aligned}
& \lambda_{n} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{n-1}\right), s_{n}\right) a_{n}\left(s_{n}\right) f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n} \\
& \leqslant \lambda_{n} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{n}\right), s_{n}\right) a_{n}\left(s_{n}\right) f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n} \\
& \left.\leqslant \lambda \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{n}\right), s_{n}\right) a_{n}\left(s_{n}\right)\left(f_{n 0}+\epsilon\right) u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n} \\
& \leqslant \lambda_{n} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{n}\right), s_{n}\right) a_{n}\left(s_{n}\right) \Delta s_{n}\left(f_{n 0}+\epsilon\right)\|u\| \\
& \leqslant\|u\| \\
& =H_{1}
\end{aligned}
$$

It follows in a similar manner from (2.5) and choice of ϵ that, for $a \leqslant s_{n-2} \leqslant \sigma(b)$,

$$
\begin{aligned}
& \lambda_{n-1} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{n-2}\right), s_{n-1}\right) a_{n-1}\left(s_{n-1}\right) \times \\
& \times f_{n-1}\left(\lambda_{n} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{n-1}\right), s_{n}\right) a_{n}\left(s_{n}\right) f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n}\right) \Delta s_{n-1} \\
& \leqslant \lambda_{n-1} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{n-1}\right), s_{n-1}\right) a_{n-1}\left(s_{n-1}\right) \Delta s_{n-1}\left(f_{n-1,0}+\epsilon\right)\|u\| \\
& \leqslant\|u\| \\
& =H_{1}
\end{aligned}
$$

Continuing with this bootstrapping, we reach, for $a \leqslant t \leqslant \sigma^{2}(b)$,

$$
\lambda_{1} \int_{a}^{\sigma(b)} G\left(t, s_{1}\right) a_{1}\left(s_{1}\right) f_{1}\left(\ldots f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n} \ldots\right) \Delta s_{1} \leqslant H_{1}
$$

so that, for $a \leqslant t \leqslant \sigma^{2}(b)$,

$$
T u(t) \leqslant H_{1}
$$

or

$$
\|T u\| \leqslant H_{1}=\|u\|
$$

If we set

$$
\Omega_{1}=\left\{x \in \mathcal{B}:\|x\|<H_{1}\right\}
$$

then

$$
\begin{equation*}
\|T u\| \leqslant\|u\|, \text { for } u \in \mathcal{P} \cap \partial \Omega_{1} \tag{3.5}
\end{equation*}
$$

Next, from the definitions of $f_{i \infty}, 1 \leqslant i \leqslant n$, there exists $\bar{H}_{2}>0$ such that, for each $1 \leqslant i \leqslant n$,

$$
f_{i}(x) \geqslant\left(f_{i \infty}-\epsilon\right) x, x \geqslant \bar{H}_{2}
$$

Let

$$
H_{2}=\max \left\{2 H_{1}, \frac{\bar{H}_{2}}{\gamma}\right\} .
$$

Let $u \in \mathcal{P}$ and $\|u\|=H_{2}$. Then,

$$
\min _{t \in[\xi, \sigma(\omega)]_{\mathbb{T}}} u(t) \geqslant \gamma\|u\| \geqslant \bar{H}_{2} .
$$

Consequently, from (2.6) and choice of ϵ, for $a \leqslant s_{n-1} \leqslant \sigma(b)$, we have that

$$
\begin{aligned}
& \lambda_{n} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{n-1}\right), s_{n}\right) a_{n}\left(s_{n}\right) f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n} \\
& \geqslant \lambda_{n} \int_{\xi}^{\omega} G\left(\sigma\left(s_{n-1}\right), s_{n}\right) a_{n}\left(s_{n}\right) f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n} \\
& \geqslant \lambda_{n} \int_{\xi}^{\omega} G\left(\tau_{n}, s_{n}\right) a_{n}\left(s_{n}\right)\left(f_{n \infty}-\epsilon\right)\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n} \\
& \geqslant \gamma \lambda_{n} \int_{\xi}^{\omega} G\left(\tau_{n}, s_{n}\right) a_{n}\left(s_{n}\right) \Delta s_{n}\left(f_{n \infty}-\epsilon\right)\|u\| \\
& \geqslant\|u\| \\
& =H_{2} .
\end{aligned}
$$

It follows similarly from (2.6) and choice of ϵ, for $a \leqslant s_{n-2} \leqslant \sigma(b)$,

$$
\begin{aligned}
& \lambda_{n-1} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{n-2}\right), s_{n-1}\right) a_{n-1}\left(s_{n-1}\right) \times \\
& \times f_{n-1}\left(\lambda_{n} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{n-1}\right), s_{n}\right) a_{n}\left(s_{n}\right) f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n}\right) \Delta s_{n-1} \\
& \geqslant \gamma \lambda_{n-1} \int_{\xi}^{\omega} G\left(\tau_{n-1}, s_{n-1}\right) a_{n-1}\left(s_{n-1}\right) \Delta s_{n-1}\left(f_{n-1, \infty}-\epsilon\right)\|u\| \\
& \geqslant\|u\| \\
& =H_{2}
\end{aligned}
$$

Again, using a bootstrapping, we reach

$$
T u\left(\tau_{1}\right)=\lambda_{1} \int_{a}^{\sigma(b)} G\left(\tau_{1}, s_{1}\right) a_{1}\left(s_{1}\right) f_{1}\left(\ldots f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n} \ldots\right) \Delta s_{1} \geqslant\|u\|=H_{2}
$$

so that, $\|T u\| \geqslant\|u\|$. So if we set

$$
\Omega_{2}=\left\{x \in \mathcal{B}:\|x\|<H_{2}\right\}
$$

then

$$
\begin{equation*}
\|T u\| \geqslant\|u\|, \text { for } u \in \mathcal{P} \cap \partial \Omega_{2} . \tag{3.6}
\end{equation*}
$$

Applying Theorem 2.1 to (3.5) and (3.6), we obtain that T has a fixed point $u \in \mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$. As such, setting $u_{1}=u_{n+1}=u$, we obtain a positive solution
$\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ of (1.1)-(1.2) given iteratively by

$$
u_{j}(t)=\lambda_{j} \int_{a}^{\sigma(b)} G(t, s) a_{j}(s) f_{j}\left(u_{j+1}(\sigma(s))\right) \Delta s, j=n, n-1, \ldots, 1
$$

The proof is complete.
Prior to our next result, let $\xi_{i}, 1 \leqslant i \leqslant n$, be defined by

$$
\int_{a}^{\sigma(b)} G\left(\xi_{i}, s\right) a_{i}(s) \Delta s=\max _{t \in\left[a, \sigma^{2}(b)\right]_{\mathrm{T}}} \int_{a}^{\sigma(b)} G(t, s) a_{i}(s) \Delta s
$$

Then, we define positive numbers L_{3} and L_{4} by

$$
L_{3}:=\max _{1 \leqslant i \leqslant n}\left\{\left[\gamma \int_{\xi}^{\omega} G\left(\tau_{i}, s\right) a_{i}(s) \Delta s f_{i 0}\right]^{-1}\right\}
$$

and

$$
L_{4}:=\max _{1 \leqslant i \leqslant n}\left\{\left[\int_{a}^{\sigma(b)} G\left(\xi_{i}, s\right) a_{i}(s) \Delta s f_{i \infty}\right]^{-1}\right\}
$$

Theorem 3.2. Assume that conditions (A1)-(A3) are satisfied. Then, for each $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ satisfying

$$
\begin{equation*}
L_{3}<\lambda_{i}<L_{4}, 1 \leqslant i \leqslant n \tag{3.7}
\end{equation*}
$$

there exists an n-tuple $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ satisfying (1.1)-(1.2) such that $u_{i}(t)>0$ on $\left(a, \sigma^{2}(b)\right)_{\mathbb{T}}, 1 \leqslant i \leqslant n$.

Proof. Let $\lambda_{j}, 1 \leqslant j \leqslant n$ be as in (3.7). And let $\epsilon>0$ be chosen such that

$$
\max _{1 \leqslant i \leqslant n}\left\{\left[\gamma \int_{\xi}^{\omega} G\left(\tau_{i}, s\right) a_{i}(s) \Delta s\left(f_{i 0}-\epsilon\right)\right]^{-1}\right\} \leqslant \min _{1 \leqslant j \leqslant n} \lambda_{j}
$$

and

$$
\max _{1 \leqslant j \leqslant n} \lambda_{j} \leqslant \min _{1 \leqslant i \leqslant n}\left\{\left[\int_{a}^{\sigma(b)} G\left(\xi_{i}, s\right) a_{i}(s) \Delta s\left(f_{i \infty}+\epsilon\right)\right]^{-1}\right\} .
$$

Let T be the cone preserving, completely continuous operator that was defined by (3.2).

From the definition of $f_{i 0}, 1 \leqslant i \leqslant n$ there exists $\bar{H}_{3}>0$ such that, for each $1 \leqslant i \leqslant n$,

$$
f_{i}(x) \geqslant\left(f_{i 0}-\epsilon\right) x, 0<x \leqslant \bar{H}_{3} .
$$

Also, from the definitions of $f_{i 0}$, it follows that $f_{i 0}(0)=0,1 \leqslant i \leqslant n$, and so there exist $0<K_{n}<K_{n-1}<\ldots<K_{2}<\bar{H}_{3}$ such that

$$
\lambda_{i} f_{i}(t) \leqslant \frac{K_{i-1}}{\int_{a}^{\sigma(b)} G\left(\xi_{i}, s\right) a_{i}(s) \Delta s}, t \in\left[0, K_{i}\right]_{\mathbb{T}}, 3 \leqslant i \leqslant n
$$

and

$$
\lambda_{2} f_{2}(t) \leqslant \frac{\bar{H}_{3}}{\int_{a}^{\sigma(b)} G\left(\xi_{2}, s\right) a_{2}(s) \Delta s}, t \in\left[0, K_{2}\right]_{\mathbb{T}}
$$

Choose $u \in \mathcal{P}$ with $\|u\|=K_{n}$. Then, we have

$$
\begin{aligned}
& \lambda_{n} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{n-1}\right), s_{n}\right) a_{n}\left(s_{n}\right) f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n} \\
& \leqslant \lambda_{n} \int_{a}^{\sigma(b)} G\left(\xi_{n}, s_{n}\right) a_{n}\left(s_{n}\right) f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n} \\
& \leqslant \frac{\int_{a}^{\sigma(b)} G\left(\xi_{n}, s_{n}\right) a_{n}\left(s_{n}\right) K_{n-1} \Delta s_{n}}{\int_{a}^{\sigma(b)} G\left(\xi_{n}, s_{n}\right) a_{n}\left(s_{n}\right) \Delta s_{n}} \\
& \leqslant K_{n-1}
\end{aligned}
$$

Bootstrapping yields the standard iterative pattern, and it follows that

$$
\lambda_{2} \int_{a}^{\sigma(b)} G\left(\sigma\left(s_{1}\right), s_{2}\right) a_{2}\left(s_{2}\right) f_{2}(\ldots) \Delta s_{2} \leqslant \bar{H}_{3}
$$

Then,

$$
\begin{aligned}
T u\left(\tau_{1}\right) & =\lambda_{1} \int_{a}^{\sigma(b)} G\left(\tau_{1}, s_{1}\right) a_{1}\left(s_{1}\right) f_{1}\left(\lambda_{2} \ldots\right) \Delta s_{1} \\
& \geqslant \lambda_{1} \gamma \int_{\xi}^{\omega} G\left(\tau_{1}, s_{1}\right) a_{1}\left(s_{1}\right)\left(f_{1,0}-\epsilon\right)\|u\| \Delta s_{1} \\
& \geqslant\|u\| .
\end{aligned}
$$

So, $\|T u\| \geqslant\|u\|$. If we put

$$
\Omega_{1}=\left\{x \in \mathcal{B}:\|x\|<K_{n}\right\},
$$

then

$$
\begin{equation*}
\|T u\| \geqslant\|u\|, \text { for } u \in \mathcal{P} \cap \partial \Omega_{1} . \tag{3.8}
\end{equation*}
$$

Since each $f_{i \infty}$ is assumed to be a positive real number, it follows that f_{i}, $1 \leqslant i \leqslant n$, is unbounded at ∞.

For each $1 \leqslant i \leqslant n$, set

$$
f_{i}^{*}(x)=\sup _{a \leqslant s \leqslant x} f_{i}(s)
$$

Then, it is straightforward that, for each $1 \leqslant i \leqslant n$, f_{i}^{*} is a nondecreasing realvalued function, $f_{i} \leqslant f_{i}^{*}$, and

$$
\lim _{x \rightarrow \infty} \frac{f_{i}^{*}(x)}{x}=f_{i \infty}
$$

Next, by definition of $f_{i \infty}, 1 \leqslant i \leqslant n$, there exists \bar{H}_{4} such that, for each $1 \leqslant i \leqslant n$,

$$
f_{i}^{*}(x) \geqslant\left(f_{i \infty}+\epsilon\right) x, x \geqslant \bar{H}_{4} .
$$

It follows that there exists $H_{4}>\max \left\{2 \bar{H}_{3}, \bar{H}_{4}\right\}$ such that, for each $1 \leqslant i \leqslant n$,

$$
f_{i}^{*}(x) \leqslant f_{i}^{*}\left(H_{4}\right), 0<x \leqslant H_{4} .
$$

Choose $u \in \mathcal{P}$ with $\|u\|=H_{4}$. Then, using the usual bootstrapping argument, we have

$$
\begin{aligned}
T u(t) & =\lambda_{1} \int_{a}^{\sigma(b)} G\left(t, s_{1}\right) a_{1}\left(s_{1}\right) f_{1}\left(\lambda_{2} \ldots\right) \Delta s_{1} \\
& \leqslant \lambda_{1} \int_{a}^{\sigma(b)} G\left(t, s_{1}\right) a_{1}\left(s_{1}\right) f_{1}^{*}\left(\lambda_{2} \ldots\right) \Delta s_{1} \\
& \leqslant \lambda_{1} \int_{a}^{\sigma(b)} G\left(\xi_{1}, s_{1}\right) a_{1}\left(s_{1}\right) f_{1}^{*}\left(H_{4}\right) \Delta s_{1} \\
& \leqslant \lambda_{1} \int_{a}^{\sigma(b)} G\left(\xi_{1}, s_{1}\right) a_{1}\left(s_{1}\right) \Delta s_{1}\left(f_{1 \infty}+\epsilon\right) H_{4} \\
& \leqslant H_{4} \\
& =\|u\|
\end{aligned}
$$

and so $\|T u\| \leqslant\|u\|$. So, if we let

$$
\Omega_{2}=\left\{x \in \mathcal{B}:\|x\|<H_{4}\right\}
$$

then

$$
\begin{equation*}
\|T u\| \leqslant\|u\|, \text { for } u \in \mathcal{P} \cap \partial \Omega_{2} \tag{3.9}
\end{equation*}
$$

Application of part (ii) of Theorem 2.1 yields a fixed point u of T belonging to $\mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$, which in turn, with $u_{1}=u_{n+1}=u$, yields an n-tuple $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ satisfying (1.1)-(1.2) for the chosen values of $\lambda_{i}, 1 \leqslant i \leqslant n$. The proof is complete.

References

[1] R. P. Agarwal and D. O'Regan, Triple solutions to boundary value problems on time scales, Appl. Math. Lett. 13 (2000), No. 4, 7-11.
[2] R. P. Agarwal, D. O'Regan, and P. J. Y. Wong, Positive Solutions of Differential, Difference and Integral Equations, Kluwer Academic, Dordrecht, The Netherlands, 1999.
[3] D. R. Anderson, Eigenvalue intervals for a second-order mixed-conditions problem on time scale, Int. J. Nonlinear Diff. Eqns. 7 (2002), 97-104.
[4] D. R. Anderson, Eigenvalue intervals for a two-point boundary value problem on a measure chain, J. Comp. Appl. Math. 141 (2002), No. 1-2, 57-64.
[5] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, Mass, USA, 2001.
[6] M. Benchohra, J. Henderson and S. K. Ntouyas, Eigenvalue problems for systems of nonlinear boundary value problems on time scales, Adv. Difference Eqns. (2007), Aricle ID 31640, 10 pps.
[7] C. J. Chyan, J. M. Davis, J. Henderson, and W. K. C. Yin, Eigenvalue comparisons for differential equations on a measure chain, Elec. J. Diff. Eqns. 1998 (1998), No. 35, 1-7.
[8] C. J. Chyan and J. Henderson, Eigenvalue problems for nonlinear differential equations on a measure chain, J. Math. Anal. Appl. 245 (2000), No. 2, 547-559.
[9] L. H. Erbe and A. Peterson, Positive solutions for a nonlinear differential equation on a measure chain, Math. Comp. Model. 32 (2000), No. 5-6, 571-585.
[10] L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc. 120 (1994), No. 3, 743-748.
[11] J. R. Graef and B. Yang, Boundary value problems for second order nonlinear ordinary differential equations, Comm. Applied Anal. 6 (2002), No. 2, 273-288.
[12] D. J. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, vol. 5 of Notes and Reports in Mathematics in Science and Engineering, Academic Press, Boston, Mass, USA, 1988.
[13] Z. He, Double positive solutions of boundary value problems for p-Laplacian dynamic equations on time scales, Applicable Anal. 84 (2005), No. 4, 377-390.
[14] H. J. Kuiper, On positive solutions of nonlinear elliptic eigenvalue problems, Rend. Circ. Mat. Palermo. 20 (1971), 113-138.
[15] J. Henderson and H. Wang, Positive solutions for nonlinear eigenvalue problems, J. Math. Anal. Appl. 208 (1997), No. 1, 252-259.
[16] J. Henderson and H. Wang, Nonlinear eigenvalue problems for quasilinear systems, Comp. Math. Appl., 49 (2005), No. 11-12, 1941-1949.
[17] J. Henderson and H. Wang, An eigenvalue problem for quasilinear systems, Rocky. Mount. J. Math. 37 (2007), No. 1, 215-228.
[18] L. Hu and L. Wang, Multiple positive solutions of boundary value problems for systems of nonlinear second-order differential equations, J. Math. Anal. Appl. 335 (2007), No. 2, 10521060.
[19] G. Infante, Eigenvalues of some non-local boundary value problems, Proc. Edinburgh Math. Soc. 46 (2003), No. 1, 75-86.
[20] G. Infante and J. R. L. Webb, Loss of positivity in a nonlinear scalar heat equation, Nonlinear Diff. Eqns. Appl. 13 (2006), No. 2, 249-261.
[21] W. T. Li and H. R. Sun, Multiple positive solutions for nonlinear dynamical systems on a measure chain, J. Comp. Appl. Math. 162 (2004), No. 2, 421-430.
[22] R. Y. Ma, Multiple nonnegative solutions of second-order systems of boundary value problems, Nonlinear Anal(T. M. A). 42 (2000), No. 6, 1003-1010.
[23] H. R. Sun, Existence of positive solutions to second-order time scale systems, Comp. Math. Appl. 49 (2005), No. 1, 131-145.
[24] H. Wang, On the number of positive solutions of nonlinear systems, J. Math. Anal. Appl. 281 (2003), No. 1, 287-306.
[25] J. R. L. Webb, Positive solutions of some three point boundary value problems via fixed point index theory, Nonlinear Anal.(T. M. A). 47 (2001), No. 7, 4319-4332.
[26] Y. Zhou and Y. Xu, Positive solutions of three-point boundary value problems for systems of nonlinear second order ordinary differential equations, J. Math. Anal. Appl. 320 (2006), No. 2, 578-590.

Received 03.11.2011 and available online 13.02.2012
Department of Mathematics, Gayatri Vidya Parishad College of Engineering for Women, Madhurawada, Visakhapatnam-530 048, INDIA

E-mail address: kamesh_1724@yahoo.com
Department of Mathematics, Sri Prakash College of Engineering, Tuni-533 401, INDIA

E-mail address: sabbavarapu_nag@yahoo.co.in

[^0]: 2000 Mathematics Subject Classification. 39A10, 34B18, 34A40.
 Key words and phrases. Time scales, boundary value problem, iterative system of dynamic equations, nonlinear, eigenvalue intervals, positive solution, cone.

