IJRST

A Study on the Local Property of indexed Summability of a factored Fourier Series

B.P.Padhy¹,S.K.Nayak², Mahendra Misra³, U.K.Misra⁴

¹ Department of Mathematics, Roland Institute of Technology, Golanthara-760008, Odisha, India.
² Department of Mathematics, Jeevan Jyoti Mahavidyalaya, Raikia, Khandhamal, Odisha, India
³Department of Mathematics, Binayak Science College, Berhampur, Odisha, India
³Department of Mathematics, National Institute of Science and Technology, Berhampur, Odisha, India

Article Info

ABSTRACT

Article history:

Received on 7th March 2015 Accepted on 11th March 2015 Published on 18th March 2015 In this paper we have established a theorem on the local property of $\overline{N}, p_n, \alpha_n; \delta$ summability of a factored Fourier series.

Keyword:

 $\begin{aligned} & \left| \overline{N}, p_n \right|_k \text{ - summability ,} \\ & \left| \overline{N}, p_n, \alpha_n \right|_k \text{ - summability ,} \\ & \left| \overline{N}, p_n, \alpha_n; \delta \right|_k \text{ - summability ,} \end{aligned}$ Fourier series.

AMS Classification No: 40D25

Copyright © 2015 International Journal of Research in Science & Technology All rights reserved.

Corresponding Author:

Prof. U.K.Misra Department of Mathematics, National Institute of Science and Technology, Pallur Hills, Berhampur, India Email Id: <u>umakanta_msra@yahoo.com</u>

I. INTRODUCTION

Let $\sum a_n$ be a given infinite series with sequence of partial sums $\{s_n\}$.Let $\{p_n\}$ be a sequence of positive real constants such that

(1.1)
$$P_n = \sum_{\nu=0}^n p_\nu \to \infty \text{ as } n \to \infty \ (P_{-i} = p_{-i} = 0, i \ge 1)$$

The sequence -to-sequence transformation

(1.2)
$$t_n = \frac{1}{P_n} \sum_{\nu=0}^n p_{\nu} s_{\nu}$$

defines the sequence $\{t_n\}$ of the $|\overline{N}, p_n|$ -means of the sequence $\{s_n\}$ generated by the sequence of coefficients $\{p_n\}$. The series $\sum a_n$ is said to be summable $|\overline{N}, p_n|_k$, $k \ge 1$, if

(1.3)
$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{k-1} \left| t_n - t_{n-1} \right|^k < \infty .$$

For k=1, $\left|\overline{N}, p_n\right|_k$ - summability is same as $\left|\overline{N}, p_n\right|$ -summability.

When $p_n = 1$ for all *n* and k = 1, $|\overline{N}, p_n|_k$ - summability is same as |C,1|-summability.

Also if we take k = 1 and $p_n = \frac{1}{(n+1)}$, $|\overline{N}, p_n|_k$ summability is equivalent to the summability $|R, \log n, 1|$. Let $\{\alpha_n\}$ be any sequence of positive numbers. The series $\sum a_n$ is said to be summable $|\overline{N}, p_n, \alpha_n|_k$, $k \ge 1$, if

(1.4)
$$\sum_{n=1}^{\infty} \alpha_n^{k-1} |t_n - t_{n-1}| < \infty,$$

where $\{t_n\}$ is as defined in (1.2). The series $\sum a_n$ is said to be $\left|\overline{N}, p_n, \alpha_n; \delta, \gamma\right|_k, k \ge 1, \delta \ge 0$, summable if

(1.5) $\sum_{n=1}^{\infty} \alpha_n^{\delta k+k-1} \left| t_n - t_{n-1} \right|^k < \infty.$

For $\delta = 0$, the summability metod

$$\left|\overline{N}, p_n, \alpha_n; \delta\right|_k, k \ge 1, \delta \ge 0$$
, reduces to the summability

method
$$\left|\overline{N}, p_n, \alpha_n\right|_k, k \ge 1.$$

For any real number γ , the series $\sum a_n$ is said to be summable by the summability method

$$\left|\overline{N}, p_n, \alpha_n; \delta, \gamma\right|_k, k \ge 1, \delta \ge 0$$
, if

(1.6)
$$\sum_{n=1}^{\infty} \alpha_n^{\gamma(\delta k+k-1)} \left| t_n - t_{n-1} \right|^k < \infty.$$

For $\gamma = 1$, the summability method

$$\left|\overline{N}, p_{n}, \alpha_{n}; \delta, \gamma\right|_{k}, k \ge 1, \delta \ge 0$$
, any real γ , reduces to
the method $\left|\overline{N}, p_{n}, \alpha_{n}; \delta, \gamma\right|_{k}, k \ge 1, \delta \ge 0$.

For any sequence $\{c_n\}$ we use the following

notation:

$$\Delta c_n = c_n - c_{n-1} , \ \Delta^2 c_n = \Delta(\Delta c_n) .$$

A sequence $\{\lambda_n\}$ is said to be convex if $\Delta^2 \lambda_n \ge 0$ for every positive integer 'n'.

Let f(t) be a periodic function with period 2π and integrable in the sense of Lebesgue over $(-\pi, \pi)$. Without loss of generality we may assume that the constant term in the Fourier series of f(t) is zero, so that

$$f(t) \sim \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) = \sum_{n=1}^{\infty} A_n(t).$$

II. KNOWN THEOREMS

Dealing with $\left|\overline{N}, p_n\right|_k$ -summability of an infinite series Bor[1] proved the following theorem:

2.1. THEOREM-1:

Let
$$k \ge 1$$
 and let the sequences $\{p_n\}$ and $\{\lambda_n\}$

be such that

(2.1.3)

$$\Delta X_n = O\left(\frac{1}{n}\right)$$

(2.1.2)
$$\sum_{n=1}^{\infty} X_n^{k-1} \frac{\left|\lambda_n\right|^k + \left|\lambda_{n+1}\right|^k}{n} < \infty$$

$$\sum_{n=1}^{\infty} (X_n^k + 1) \left| \Delta \lambda_n \right| < \infty,$$

Where
$$X_n = \frac{P_n}{np_n}$$
. Then the summability $\left|\overline{N}, p_n\right|_k$ of the

series $\sum_{n=1}^{\infty} A_n(t) \lambda_n X_n$ at a point can be ensured by the local property.

Subsequently, extending the result of Bor, Misra et al [2] established the following theorem on summabilty

$$\left|\overline{N},p_{n},\alpha_{n}\right|_{k}$$
:

2.2. THEOREM- 2:

Let $k \ge 1$. Suppose $\{\lambda_n\}$ be a convex

sequence such that $\sum n^{-1}\lambda_n$ is convergent. Let $\{p_n\}$ and $\{\alpha_n\}$ be any sequence of positive numbers such that

$$\Delta X_n = O\left(\frac{1}{n}\right),$$

(2.2.2)
$$\sum_{n=\nu+1}^{m+1} \alpha_n^{k-1} \left(\frac{p_n}{P_n}\right)^k \left(\frac{1}{P_{n-1}}\right) = O\left(\frac{1}{P_{\nu}}\right),$$

 $\sum_{n=1}^{\infty} (X_n^k + 1) |\Delta \lambda_n| < \infty,$

(2.2.3)

$$\sum_{n=1}^{\infty} X_n^{k-1} \frac{\left|\lambda_n\right|^k + \left|\lambda_{n+1}\right|^k}{n} < \infty ,$$

(2.2.4)

and

(2.2.5)
$$\sum_{n=2}^{m+1} \alpha_n^{k-1} \frac{\left|\lambda_n\right|^k}{n^k} < \infty,$$

where
$$X_n = \frac{P_n}{np_n}$$
. Then the summability $\left|\overline{N}, p_n, \alpha_n\right|_k$ of

the series $\sum_{n=1}^{\infty} A_n(t) \lambda_n X_n$ at a point can be ensured by the

local property.

Further, extending to
$$\left|\overline{N}, p_n, \alpha_n; \delta\right|_k$$

-summability, Padhy et al [3] established the following theorem:

2.3. THEOREM- 3:

Let $k \ge 1$. Suppose $\{\lambda_n\}$ be a convex sequence such that $\sum n^{-1}\lambda_n$ is convergent. Let $\{\alpha_n\}$ and $\{p_n\}$ be a sequence of positive numbers such that

$$\Delta X_n = O\left(\frac{1}{n}\right),$$

(2.3.2)

$$\sum_{\nu=\nu+1}^{m+1} \alpha_n^{(\delta k+k-1)} \left(\frac{p_n}{P_n}\right)^k \left(\frac{1}{P_{n-1}}\right) = O\left(\frac{1}{P_{\nu}}\right),$$

(23.3)

$$\sum_{n=1}^{\infty} X_n^{k-1} \frac{\left|\lambda_n\right|^k + \left|\lambda_{n+1}\right|^k}{n} < \infty ,$$

(2.3.4)
$$\sum_{n=1}^{\infty} (X_n^k + 1) \left| \Delta \lambda_n \right| < \infty$$

and

(2.3.5)
$$\sum_{n=2}^{\infty} \alpha_n^{\delta k+k-1} \frac{\left|\lambda_n\right|^k}{n^k} < \infty,$$

where $X_n = \frac{P_n}{np_n}$. Then the summability

$$\left|\overline{N}, p_n, \alpha_n; \delta\right|_k, k \ge 1, \delta \ge 0$$
 of the series $\sum_{n=1}^{\infty} A_n(t) \lambda_n X_n$

at a point can be ensured by the local property.

In what follows in the present paper, extending the above theorems to $\left|\overline{N}, p_n, \alpha_n; \delta, \gamma\right|_k$ summability, we establish the following theorem:

III.MAIN THEOREM

Let $k \ge 1$. Suppose $\{\lambda_n\}$ be a convex sequence such that $\sum n^{-1}\lambda_n$ is convergent. Let $\{\alpha_n\}$ and $\{p_n\}$ be a sequence of positive numbers such that

$$\Delta X_n = O\left(\frac{1}{n}\right),$$

(3.2)

$$\sum_{n=\nu+1}^{m+1} \alpha_n^{\gamma(\delta k+k-1)} \left(\frac{p_n}{P_n}\right)^k \left(\frac{1}{P_{n-1}}\right) = O\left(\frac{1}{P_\nu}\right),$$
(3.3)
$$\sum_{n=1}^{\infty} X_n^{k-1} \frac{|\lambda_n|^k}{n} < \infty$$

(3.4)
$$\sum_{n=1}^{\infty} (X_n^k + 1) |\Delta \lambda_n| < \infty,$$

and

(3.5)
$$\sum_{n=2}^{\infty} \alpha_n^{\gamma(\delta k+k-1)} \frac{\left|\lambda_n\right|^k}{n^k} < \infty,$$

where $X_n = \frac{P_n}{np_n}$. Then the

$$\left|\overline{N}, p_n, \alpha_n; \delta\right|_k, k \ge 1, \delta \ge 0$$
 of the series $\sum_{n=1}^{\infty} A_n(t) \lambda_n X_n$

at a point can be ensured by the local property.

In order to prove the above theorem we require the following lemma:

IV.LEMMA

Let $k \ge 1$. Suppose $\{\lambda_n\}$ be a convex sequence such that $\sum n^{-1}\lambda_n$ is convergent and $\{p_n\}$ be a sequence such that the conditions (3.1)-(3.5) are satisfied. If $\{s_n\}$ is

bounded then the series
$$\sum_{n=1}^{\infty} a_n \lambda_n X_n$$
 is

$$\left|\overline{N}, p_n, \alpha_n; \delta\right|_k, k \ge 1, \delta \ge 0$$
-summable when $\{\alpha_n\}$ is any

sequence of positive numbers.

V.PROOF OF THE LEMMA

Let
$$\{T_n\}$$
 denote the $|\overline{N}, p_n|$ -mean of the series

$$\sum_{n=1}^{\infty} a_n \lambda_n X_n$$
 .Then by definition we have

$$T_n = \frac{1}{P_n} \sum_{\nu=0}^n p_\nu \sum_{r=0}^\nu a_r \lambda_r X_r$$

$$=\frac{1}{P_n}\sum_{\nu=0}^n (P_{\nu} - P_{\nu-1})a_{\nu}\lambda_{\nu}X_{\nu} , X_0 = 0.$$

For $n \ge 1$, we have

$$T_{n} - T_{n-1} = \frac{p_{n}}{P_{n}P_{n-1}} \sum_{\nu=1}^{n} P_{\nu-1}a_{\nu}\lambda_{\nu}X_{\nu}.$$

So,

summability

$$T_{n} - T_{n-1} = -\frac{p_{n}}{P_{n}P_{n-1}} \sum_{\nu=1}^{n-1} p_{\nu}s_{\nu}\lambda_{\nu}X_{\nu} + \frac{p_{n}}{P_{n}P_{n-1}} \sum_{\nu=1}^{n-1} P_{\nu}s_{\nu}X_{\nu}\Delta\lambda$$
$$+ \frac{p_{n}}{P_{n}P_{n-1}} \sum_{\nu=1}^{n-1} P_{\nu}s_{\nu}\lambda_{\nu+1}\Delta X_{\nu} + \frac{p_{n}s_{n}\lambda_{n}X_{n}}{P_{n}}.$$
(by Abel's transformation)

$$=T_{n,1} + T_{n,2} + T_{n,3} + T_{n,4} \quad (say)$$

To complete the proof of the Lemma using Minokowski's inequality, it is sufficient to show that

$$\sum_{n=1}^{\infty} \alpha_n^{\gamma(\delta k+k-1)} \left| T_{n,i} \right|^k < \infty \quad for \ i=1,2,3,4.$$

Now, we have

$$\sum_{n=2}^{m+1} \alpha_n^{\gamma(\delta k+k-1)} \left| T_{n,1} \right|^k$$

$$\begin{split} &= \sum_{n=2}^{n=1} \alpha_n^{\gamma(d+k-1)} \left| \frac{p_n}{p_n P_{n-1}} \sum_{\nu=1}^{n=1} \rho_\nu s_\nu \lambda_\nu X_\nu \right|^k &= O(1) \sum_{\nu=1}^m |\Delta \lambda_\nu| X_\nu^k , \text{ by } (3.2) \\ &= O(1) \quad as \ m \to \infty , \text{ by } (3.4). \end{split}$$

Since

 X_n

$$\sum_{r=1}^{n-1} P_{\nu} \left| \Delta \lambda_r \right| \le P_{n-1} \sum_{\nu=1}^{n-1} \left| \Delta \lambda_{\nu} \right| \Longrightarrow \frac{1}{P_{n-1}} \sum_{r=1}^{n-1} P_{\nu} \left| \Delta \lambda_r \right| \le \sum_{\nu=1}^{n-1} \left| \Delta \lambda_{\nu} \right| = O(1)$$

$$= O(1) \sum_{\nu=1}^{m} P_{\nu} \left| \Delta \lambda_{\nu} \right| X_{\nu}^{k} \sum_{n=\nu+1}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)} \left(\frac{P_{n}}{P_{n}} \right)^{k} \left(\frac{1}{P_{n-1}} \right)$$

Now,

 $= O(1) \sum_{\nu=1}^{m} X_{\nu}^{k-1} \frac{\left| \lambda_{\nu+1} \right|^{k}}{\nu}$

= O(1) as $m \to \infty$, by (3.3).

$$\begin{split} \sum_{n=2}^{m+1} \alpha_n^{\delta k+k-1} \left| T_{n,4} \right|^k &= \sum_{n=2}^{m+1} \alpha_n^{\delta k+k-1} \left| \frac{p_n s_n \lambda_n X_n}{P_n} \right|^k \\ &= O(1) \sum_{n=2}^{m+1} \alpha_n^{\delta k+k-1} X_n^k \left| \lambda_n \right|^k \left(\frac{p_n}{P_n} \right)^k \\ &= O(1) \sum_{n=2}^{m+1} \alpha_n^{\delta k+k-1} \left(\frac{P_n}{np_n} \right)^k \left| \lambda_n \right|^k \left(\frac{p_n}{P_n} \right)^k \quad \text{, as} \\ X_n &= \frac{P_n}{np_n} \\ &= O(1) \sum_{n=2}^{m+1} \alpha_n^{\delta k+k-1} \frac{\left| \lambda_n \right|^k}{n^k} \\ &= O(1) \quad as \ m \to \infty \text{, by (3.5) .} \end{split}$$

This completes the proof of the Lemma.

VI. PROOF OF THE THEOREM

Since the behavior of the Fourier series, as far as convergence is concerned, for a particular value of x depends on the behavior of the function in the immediate neighborhood of this point only, the truth of the theorem is necessarily the consequence of the Lemma.

REFERENCES

[1]H.Bor., On the Local Property of $\left|\overline{N}, p_n\right|_k$ Summability of factored

Fourier series, Journal of Mathematical analysis and applications-163,1992, (220-226).

[2]Misra, M., Padhy, B.P.,Bisoyi, D. and Misra, U.K. On the Local Property of general Indexed Summability of factored Fourier series, International Journal for Review and Research in Applied Sciences, Vol. 14(1), 2013, pp. 161–165.

[3] Padhy, B.P., Mallik, B., Misra, U.K. and Misra, M. On the Local Property of $\left|\overline{N}, p_n, \alpha_n\right|_k$ Summability of factored Fourier series,

International Journal of Advance Mathematics and Mathematical Sciences, Vol.1 (1), 2012, pp 31 -36 .