A Study on the Local Property of indexed Summability of a factored Fourier Series

B.P.Padhy ${ }^{1}$,S.K.Nayak ${ }^{\mathbf{2}}$, Mahendra Misra ${ }^{3}$, U.K.Misra ${ }^{4}$
${ }^{1}$ Department of Mathematics, Roland Institute of Technology, Golanthara-760008, Odisha, India.
${ }^{2}$ Department of Mathematics, Jeevan Jyoti Mahavidyalaya, Raikia, Khandhamal, Odisha, India ${ }^{3}$ Department of Mathematics, Binayak Science College, Berhampur, Odisha, India
${ }^{3}$ Department of Mathematics, National Institute of Science and Technology, Berhampur, Odisha, India

Article Info

Article history:

Received on $7^{\text {th }}$ March 2015
Accepted on $11^{\text {th }}$ March 2015
Published on $18^{\text {th }}$ March 2015

Keyword:

$\left|\bar{N}, p_{n}\right|_{k}$ - summability ,
$\left|\bar{N}, p_{n}, \alpha_{n}\right|_{k}$ - summability ,
$\left|\bar{N}, p_{n}, \alpha_{n} ; \delta\right|_{k}$ - summability,

Fourier series.

AMS Classification No: 40D25
Copyright © 2015 International Journal of Research in Science \& Technology
All rights reserved.

Corresponding Author:

Prof. U.K.Misra
Department of Mathematics,
National Institute of Science and Technology,
Pallur Hills, Berhampur, India
Email Id: umakanta_msra@yahoo.com

I. INTRODUCTION

Let $\sum a_{n}$ be a given infinite series with sequence of partial sums $\left\{s_{n}\right\}$.Let $\left\{p_{n}\right\}$ be a sequence of positive real constants such that

The sequence-to-sequence transformation

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \text { as } n \rightarrow \infty\left(P_{-i}=p_{-i}=0, i \geq 1\right) \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{1.2}
\end{equation*}
$$

defines the sequence $\left\{t_{n}\right\}$ of the $\left|\bar{N}, p_{n}\right|$-means of the sequence $\left\{s_{n}\right\}$ generated by the sequence of coefficients $\left\{p_{n}\right\}$.The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}$, $k \geq 1$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty . \tag{1.3}
\end{equation*}
$$

For k=1, $\left|\bar{N}, p_{n}\right|_{k}$ - summability is same as $\left|\bar{N}, p_{n}\right|$ -summability.

When $p_{n}=1$ for all n and $k=1,\left|\bar{N}, p_{n}\right|_{k}-$ summability is same as $|C, 1|$-summability.

Also if we take $k=1$ and $p_{n}=\frac{1}{(n+1)},\left|\bar{N}, p_{n}\right|_{k}$. summability is equivalent to the summability $|R, \log n, 1|$. Let $\left\{\alpha_{n}\right\}$ be any sequence of positive numbers. The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}, \alpha_{n}\right|_{k}, \quad k \geq 1$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \alpha_{n}^{k-1}\left|t_{n}-t_{n-1}\right|<\infty, \tag{1.4}
\end{equation*}
$$

where $\left\{t_{n}\right\}$ is as defined in (1.2).The series $\sum a_{n}$ is said to be $\left|\bar{N}, p_{n}, \alpha_{n} ; \delta, \gamma\right|_{k}, k \geq 1, \delta \geq 0$,
summable if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \alpha_{n}^{\delta k+k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty \tag{1.5}
\end{equation*}
$$

For $\delta=0$, the summability metod
$\left|\bar{N}, p_{n}, \alpha_{n} ; \delta\right|_{k}, k \geq 1, \delta \geq 0$, reduces to the summabilty $\operatorname{method}\left|\bar{N}, p_{n}, \alpha_{n}\right|_{k}, k \geq 1$.

For any real number γ, the series $\sum a_{n}$ is said to be summable by the summabilty method

$$
\left|\bar{N}, p_{n}, \alpha_{n} ; \delta, \gamma\right|_{k}, k \geq 1, \delta \geq 0, \text { if }
$$

(1.6) $\quad \sum_{n=1}^{\infty} \alpha_{n}^{\gamma(\delta k+k-1)}\left|t_{n}-t_{n-1}\right|^{k}<\infty$.

For $\gamma=1$, the summability method
$\left|\bar{N}, p_{n}, \alpha_{n} ; \delta, \gamma\right|_{k}, k \geq 1, \delta \geq 0$, any real γ, reduces to the method $\left|\bar{N}, p_{n}, \alpha_{n} ; \delta, \gamma\right|_{k}, k \geq 1, \delta \geq 0$.

For any sequence $\left\{c_{n}\right\}$ we use the following notation:

$$
\Delta c_{n}=c_{n}-c_{n-1}, \Delta^{2} c_{n}=\Delta\left(\Delta c_{n}\right)
$$

A sequence $\left\{\lambda_{n}\right\}$ is said to be convex if $\Delta^{2} \lambda_{n} \geq 0$ for every positive integer ' n '.

Let $f(t)$ be a periodic function with period 2π and integrable in the sense of Lebesgue over $(-\pi, \pi)$.Without loss of generality we may assume that the constant term in the Fourier series of $f(t)$ is zero, so that
$f(t) \sim \sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)=\sum_{n=1}^{\infty} A_{n}(t)$.

II. KNOWN THEOREMS

Dealing with $\left|\bar{N}, p_{n}\right|_{k}$-summability of an infinite series Bor[1] proved the following theorem:
2.1. THEOREM- 1 :

Let $k \geq 1$ and let the sequences $\left\{p_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ be such that

$$
\begin{align*}
& \Delta X_{n}=O\left(\frac{1}{n}\right), \tag{2.1.1}\\
& \sum_{n=1}^{\infty} X_{n}^{k-1} \frac{\left|\lambda_{n}\right|^{k}+\left|\lambda_{n+1}\right|^{k}}{n}<\infty, \tag{2.1.2}\\
& \sum_{n=1}^{\infty}\left(X_{n}^{k}+1\right)\left|\Delta \lambda_{n}\right|<\infty, \tag{2.1.3}
\end{align*}
$$

Where $X_{n}=\frac{P_{n}}{n p_{n}}$. Then the summability $\left|\bar{N}, p_{n}\right|_{k}$ of the series $\sum_{n=1}^{\infty} A_{n}(t) \lambda_{n} X_{n}$ at a point can be ensured by the local property.

Subsequently, extending the result of Bor, Misra

 et al [2] established the following theorem on summabilty $\left|\bar{N}, p_{n}, \alpha_{n}\right|_{k}:$2.2. THEOREM- 2 :

Let $k \geq 1$. Suppose $\left\{\lambda_{n}\right\}$ be a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent. Let $\left\{p_{n}\right\}$ and $\left\{\alpha_{n}\right\}$ be any sequence of positive numbers such that
(2.2.1)
(2.2.2)

$$
\Delta X_{n}=O\left(\frac{1}{n}\right)
$$

$$
\sum_{n=v+1}^{m+1} \alpha_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left(\frac{1}{P_{n-1}}\right)=O\left(\frac{1}{P_{v}}\right)
$$

(2.2.3)
$\sum_{n=1}^{\infty} X_{n}^{k-1} \frac{\left|\lambda_{n}\right|^{k}+\left|\lambda_{n+1}\right|^{k}}{n}<\infty$,
(2.2.4)

$$
\sum_{n=1}^{\infty}\left(X_{n}^{k}+1\right)\left|\Delta \lambda_{n}\right|<\infty
$$

and
(2.2.5)

$$
\sum_{n=2}^{m+1} \alpha_{n}^{k-1} \frac{\left|\lambda_{n}\right|^{k}}{n^{k}}<\infty
$$

where $X_{n}=\frac{P_{n}}{n p_{n}}$. Then the summability $\left|\bar{N}, p_{n}, \alpha_{n}\right|_{k}$ of the series $\sum_{n=1}^{\infty} A_{n}(t) \lambda_{n} X_{n}$ at a point can be ensured by the local property.

Further, extending to $\left|\bar{N}, p_{n}, \alpha_{n} ; \delta\right|_{k}$
-summability, Padhy et al [3] established the following theorem:
2.3. THEOREM- 3 :

Let $k \geq 1$. Suppose $\left\{\lambda_{n}\right\}$ be a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent. Let $\left\{\alpha_{n}\right\}$ and $\left\{p_{n}\right\}$ be a sequence of positive numbers such that
(2.3.1)

$$
\Delta X_{n}=O\left(\frac{1}{n}\right)
$$

$$
\begin{equation*}
\sum_{n=v+1}^{m+1} \alpha_{n}^{(\delta k+k-1)}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left(\frac{1}{P_{n-1}}\right)=O\left(\frac{1}{P_{v}}\right) \tag{2.3.2}
\end{equation*}
$$

(23.3)
$\sum_{n=1}^{\infty} X_{n}^{k-1} \frac{\left|\lambda_{n}\right|^{k}+\left|\lambda_{n+1}\right|^{k}}{n}<\infty$,

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(X_{n}^{k}+1\right)\left|\Delta \lambda_{n}\right|<\infty \tag{2.3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=2}^{\infty} \alpha_{n}^{\delta k+k-1} \frac{\left|\lambda_{n}\right|^{k}}{n^{k}}<\infty \tag{2.3.5}
\end{equation*}
$$

where $\quad X_{n}=\frac{P_{n}}{n p_{n}}$. Then the summability $\left|\bar{N}, p_{n}, \alpha_{n} ; \delta\right|_{k}, k \geq 1, \delta \geq 0$ of the series $\sum_{n=1}^{\infty} A_{n}(t) \lambda_{n} X_{n}$ at a point can be ensured by the local property.

In what follows in the present paper, extending the above theorems to $\left|\bar{N}, p_{n}, \alpha_{n} ; \delta, \gamma\right|_{k}$ summabilty, we establish the following theorem:

III.MAIN THEOREM

Let $k \geq 1$. Suppose $\left\{\lambda_{n}\right\}$ be a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent. Let $\left\{\alpha_{n}\right\}$ and $\left\{p_{n}\right\}$ be a sequence of positive numbers such that

$$
\begin{equation*}
\Delta X_{n}=O\left(\frac{1}{n}\right) \tag{3.1}
\end{equation*}
$$

$\sum_{n=v+1}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left(\frac{1}{P_{n-1}}\right)=O\left(\frac{1}{P_{v}}\right)$,

$$
=\frac{1}{P_{n}} \sum_{v=0}^{n}\left(P_{v}-P_{v-1}\right) a_{v} \lambda_{v} X_{v}, X_{0}=0
$$

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(X_{n}^{k}+1\right)\left|\Delta \lambda_{n}\right|<\infty, \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} X_{n}^{k-1} \frac{\left|\lambda_{n}\right|^{k}}{n}<\infty \tag{3.3}
\end{equation*}
$$

For $n \geq 1$, we have
$T_{n}-T_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v} \lambda_{v} X_{v}$.
So,

$$
\begin{align*}
T_{n}-T_{n-1}=- & \frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} p_{v} s_{v} \lambda_{v} X_{v}+\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} s_{v} X_{v} \Delta \lambda_{v} \tag{3.5}\\
& +\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} s_{v} \lambda_{v+1} \Delta X_{v}+\frac{p_{n} s_{n} \lambda_{n} X_{n}}{P_{n}} .
\end{align*}
$$

(by Abel's transformation)

$$
\left.=T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4} \quad \text { say }\right)
$$

To complete the proof of the Lemma using Minokowski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty} \alpha_{n}^{\gamma(\delta k+k-1)}\left|T_{n, i}\right|^{k}<\infty \quad \text { for } i=1,2,3,4
$$

Now, we have

$$
\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|T_{n, 1}\right|^{k}
$$

$$
\begin{aligned}
=\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} p_{v} s_{v} \lambda_{v} X_{v}\right|^{k} \quad & =O(1) \sum_{v=1}^{m}\left|\Delta \lambda_{v}\right| X_{v}^{k} \text {, by (3.2) } \\
& =O(1) \text { as } m \rightarrow \infty, \text { by (3.4). }
\end{aligned}
$$

$\leq \sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left(\frac{1}{P_{n-1}}\right)\left(\sum_{v=1}^{n-1} p_{v}\left|\lambda_{v}\right|^{k}\left|s_{v}\right|^{k} X_{v}^{k}\right)\left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right)^{k-1} \quad$ Further,
$=O(1) \sum_{v=1}^{m} p_{v}\left|\lambda_{v}\right|^{k}\left|s_{v}\right|^{k} X_{v}^{k} \sum_{n=v+1}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left(\frac{1}{P_{n-1}}\right)=\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} s_{v} \lambda_{v+1} \Delta X_{v}\right|^{k}$

$$
=O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k} X_{v}^{k} \frac{p_{v}}{P_{v}}, \text { by } \quad=O(1) \sum_{n=2}^{m+1} \alpha_{n}^{\delta k+k-1}\left(\frac{p_{n}}{P_{n} P_{n-1}}\right)^{k}\left\{\sum_{v=1}^{n-1} P_{v}\left|\lambda_{v+1}\right|\left|s_{v}\right| \frac{1}{v}\right\}^{k},
$$

(3.2)

$$
\begin{equation*}
=O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k} X_{v}^{k-1} \frac{p_{v}}{P_{v}} \frac{P_{v}}{v p_{v}}, \text { as } \tag{3.1}
\end{equation*}
$$

$X_{n}=\frac{P_{n}}{n p_{n}}$

$$
=O(1) \sum_{n=2}^{m+1} \alpha_{n}^{\delta k+k-1}\left(\frac{p_{n}}{P_{n} P_{n-1}}\right)^{k}\left\{\sum_{v=1}^{n-1} p_{v} X_{v}\left|\lambda_{v+1}\right|\right\}^{k}
$$

$$
=O(1) \sum_{v=1}^{m} X_{v}^{k-1} \frac{\left|\lambda_{v}\right|^{k}}{v}
$$

$$
\begin{aligned}
& =O(1) \quad \text { as } m \rightarrow \infty \text {, by (3.3). } \quad=O(1) \sum_{n=2}^{m+1} \alpha_{n}^{\delta k+k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left(\frac{1}{P_{n-1}}\right)\left\{\sum_{v=1}^{n-1} p_{v} X_{v}^{k}\left|\lambda_{v+1}\right|^{k}\right\}\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}
\end{aligned}
$$

Again,

$$
=O(1) \sum_{v=1}^{m} p_{v}\left|\lambda_{v+1}\right|^{k} X_{v}^{k} \sum_{n=v+1}^{m+1} \alpha_{n}^{\delta k+k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left(\frac{1}{P_{n-1}}\right)
$$

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|T_{n, 2}\right|^{k} \\
& =\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} s_{v} X_{v} \Delta \lambda_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left(\frac{1}{P_{n-1}}\right)\left(\sum_{v=1}^{n-1} P_{v}\left|\Delta \lambda_{v}\right|\left|s_{v}\right|^{k} X_{v}^{k}\right)\left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v}|\Delta \lambda|\right)^{k-1}
\end{aligned}
$$

$$
=O(1) \sum_{v=1}^{m} \frac{p_{v}}{P_{v}}\left|\lambda_{v+1}\right|^{k} X_{v}^{k} \text {, by (3.2) }
$$

$$
=O(1) \sum_{v=1}^{m}\left|\lambda_{v+1}\right|^{k} X_{v}^{k} \frac{p_{v r}}{P_{v}} \frac{P_{v}}{v p_{v}}
$$

$$
\text { as } X_{n}=\frac{P_{n}}{n p_{n}}
$$

Since

$$
\sum_{r=1}^{n-1} P_{v}\left|\Delta \lambda_{r}\right| \leq P_{n-1} \sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right| \Rightarrow \frac{1}{P_{n-1}} \sum_{r=1}^{n-1} P_{v}\left|\Delta \lambda_{r}\right| \leq \sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right|=O(1)
$$

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m} X_{v}^{k-1} \frac{\left|\lambda_{v+1}\right|^{k}}{v} \\
& =O(1) \text { as } m \rightarrow \infty, \text { by (3.3). }
\end{aligned}
$$

$$
=O(1) \sum_{v=1}^{m} P_{v}\left|\Delta \lambda_{v}\right| X_{v}^{k} \sum_{n=v+1}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left(\frac{1}{P_{n-1}}\right)
$$

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \alpha_{n}^{\delta k+k-1}\left|T_{n, 4}\right|^{k}=\sum_{n=2}^{m+1} \alpha_{n}^{\delta k+k-1}\left|\frac{p_{n} s_{n} \lambda_{n} X_{n}}{P_{n}}\right|^{k} \\
&= O(1) \sum_{n=2}^{m+1} \alpha_{n}^{\delta k+k-1} X_{n}^{k}\left|\lambda_{n}\right|^{k}\left(\frac{p_{n}}{P_{n}}\right)^{k} \\
&= O(1) \sum_{n=2}^{m+1} \alpha_{n}^{\delta k+k-1}\left(\frac{P_{n}}{n p_{n}}\right)^{k}\left|\lambda_{n}\right|^{k}\left(\frac{p_{n}}{P_{n}}\right)^{k}, \text { as } \\
& \begin{aligned}
& X_{n}= \frac{P_{n}}{n p_{n}} \\
&=O(1) \sum_{n=2}^{m+1} \alpha_{n}^{\delta k+k-1} \frac{\left|\lambda_{n}\right|^{k}}{n^{k}} \\
&= O(1) \text { as } m \rightarrow \infty, \text { by (3.5). }
\end{aligned}
\end{aligned}
$$

This completes the proof of the Lemma.

VI. PROOF OF THE THEOREM

Since the behavior of the Fourier series, as far as convergence is concerned, for a particular value of x depends on the behavior of the function in the immediate neighborhood of this point only, the truth of the theorem is necessarily the consequence of the Lemma.

REFERENCES

[1]H.Bor., On the Local Property of $\left|\bar{N}, p_{n}\right|_{k}$ Summability of factored Fourier series, Journal of Mathematical analysis and applications163,1992, (220-226).
[2]Misra, M., Padhy, B.P.,Bisoyi, D. and Misra, U.K. On the Local Property of general Indexed Summabilty of factored Fourier series, International Journal for Review and Research in Applied Sciences, Vol. 14(1), 2013, pp. 161 - 165.
[3] Padhy, B.P., Mallik, B. , Misra, U.K. and Misra, M. On the Local Property of $\left|\bar{N}, p_{n}, \alpha_{n}\right|_{k}$ Summabilty of factored Fourier series, International Journal of Advance Mathematics and Mathematical Sciences, Vol. 1 (1), 2012, pp 31-36.

