COST EFFECTIVE ANALYSIS OF COMMONLY USED TOPICAL DRUGS IN OPHTHALMOLOGY

Corresponding Author:

Anil Kumar. P H.No: 2548, E-Block, 13th Main, 9thCross, Sahakar Nagar, Bangalore-560092, India. E-mail: anilkumarpothuru@gmail.com

ABSTRACT

Objective: The objective of this study was to compare the cost-effectiveness of commonly used topical drugs in ophthalmic conditions like conjunctivitis, keratitis, blepharitis, uveitis, etc.

Materials and Methods:*Data was collected from the Ophthalmology department at Dr. B.R Ambedkar Medical College for conditions like conjunctivitis, keratitis, blepharitis, uveitis, etc. Cost effective analysis was done for anti infectives, anti-inflammatory and corticosteroids used in the treatment of above mentioned conditions.*

Results and Conclusions: Toram was cost effective among antimicrobials. Ketolas - NSAID as analgesic and Predmet for ocular postoperative conditions as a steroidal anti-inflammatory agent was most economical. Toram (tobramycin –Rs26/- per bottle), Ketolas (ketorlac-Rs 29/- per bottle), Predmet (prednisolone-Rs 13/- per bottle).

Key Words: Pharmacoeconomics, NSAIDs, antimicrobials, Prednisolone, Fluoromethaolone.

INTRODUCTION

Pharmacoeconomics is a subdivision of health economics. It is analysis of the cost of drug therapy to health care system and society. This has now expanded in incorporating pharmacoeconomic research in to the process of drug development.^[1] Pharmacoeconomic analysis increases the efficiency of allocation of health care resources. Globally, purulent bacterial conjunctivitis is mainly caused by Grampositive organisms. The most common causative agents Staphylococcus are epidermidis (39% of cases), Staphylococcus aureus (22% of cases), and Streptococcus pneumonia (6% of cases). The most common Gram-negative microorganism found in conjunctivitis acute is Haemophilus influenza (9% of cases).^[2] In addition to development of new antibacterial agents, the strategies control further to development of resistant ocular pathogens should always include judicious use of antibiotics in the treatment of human, animal or plant disease.^[3] Recent changes empirical practice in suggest that treatment with monotherapy а fluoroquinolone antibiotic be may appropriate for certain cases of bacterial keratitis.^[4]

ophthalmic steroids were the mainstay treatment of post-operative, surgically induced ocular inflammation. Although considered very effective, the use of topical corticosteroids is limited by well-known side effects which in some serious cases can precipitate vision loss, hence short and intermittent use is advisable.

Topical non-steroidal antiinflammatory drugs (NSAIDs) are notable for a definitive lack of corticosteroid-defined toxicity and have secured an important role. InNSAIDS, Nepafenac is the first prodrug ophthalmic NSAID formulation approved for use in the US for the treatment of post-operative pain and inflammation after cataract surgery.^[5] Prophylactic postoperative ketorlac 0.4% may have a role in reducing the frequency and severity of CME (cystoid macular edema) in diabetic eyes post-cataract surgery. NSAIDs are also indicated for treating post-operative pain and inflammation after cataract surgery.

The main objective of Pharmacoeconomics is to assist in making informed clinical decision by providing information about costs and consequence of alternative methods of treatment. Hence this study was undertaken.

Prior to use of ophthalmic nonsteroidal anti-inflammatory drugs, topical

MATERIALS AND METHODS

collected from Data was the Department of Ophthalmology at Dr. B.R Medical Ambedkar College. Both outpatients and inpatients prescription data were collected for conditions like conjunctivitis, keratitis, blepharitis, uveitis, cataract etc. Cost effective analysis was done for anti infectives, anti-inflammatory and corticosteroids used in the treatment of above mentioned conditions.For this analysis, the frequency and duration of the topical drugs were considered after review of the prescriptions. Only the direct costs of drug therapy were considered in the

economic analysis. The drug costs were obtained from a standard reference (CIMS) source.

RESULTS

Antimicrobial agents were prescribed bacterial in conjunctivitis, infectious keratitis, and pre and postoperative period. NSAIDs in allergic conjunctivitis, pre and post-operative period and corticosteroids in allergic keratoconjunctivitis, uveitis. scleritis. episcleritis and pre and post-operative period. (Table -1)

 Table 1: Common Indications for Topical Antibiotics&Anti-inflammatory

 Drugs in Ophthalmology.

Diugs in Opicialinology.					
DRUG	INDICATIONS				
ANTIBIOTICS	Bacterial conjunctivitis and infectious keratitis.				
	Pre-operative and Post-operative period.				
Moxifloxacin					
Gatifloxacin					
Tobramycin					
NSAIDS	Allergic conjunctivitis.				
Napefenac	Following ophthalmic surgeries (after cataract				
Ketorlac	&corneal refractive surgeries), pre and post-				
	operative period.				
CORTICOSTEROIDS	Allergic keratoconjunctivitis,adenoviral				
Prednisolone	keratoconjunctivitis, uveitis, episcleritis, scleritis,				
Fluoromethaolone	corneal graft rejection, immunogenic keratitis,				
	Pre and post-operative period.				

The most cost effective brands were Moxiblu (moxifloxacin), Toram (tobramycin) (Table-2). Neypace (napefenac), Ketolas(ketorlac) (Table -3). Predmet (prednisolone) and Flone in fluoromethaolone (Table -4 and Table -5).

Table 2: Cost of Varie	ous Antibiotics
------------------------	-----------------

DRUG	VOLUME (ml)	COST/BOTTLE	DOSE DROPS/DAY (BOTH EYES)	COST/ML (INDIAN RUPEES)
MOXIFLOXACIN 5% (MOXIBLU, LUPIN)	5 ml	RS 54	2 (TID)	RS 10
MOXIFLOXACIN 0.5%(MOXICIP, CIPLA)	5 ml	RS 99	2 (TID)	RS 19
GATIFLOXACIN 3% (GATIBLU, LUPIN)	5 ml	RS 28	2 (TID)	RS 5
GATIFLOXACIN 0.3%(GATIQUIN, CIPLA)	5 ml	RS 39	2 (TID)	RS 7
TOBRAMYCIN 0.3% (TORAM, OYSTER LAB)	5 ml	RS 26	2 (TID)	RS 5

DRUG	VOLUME (ml)	COST /BOTLE	DOSE (DROP/DAY) FOR ONE EYE	COST/ML
NAPEFENAC 0.1%(NEPALACT, SUNPHARMA)	5 ml	Rs 107	1 (TID)	Rs 21
NAPEFENAC 0.1%(NEYPACE,INTAS LAB)	5 ml	RS 95	I (TID)	RS 19
KETORLAC (0.50%,KETLUR ,SUNPHARMA)	5 ml	RS 44	1 (QID)	RS 8
KETORLAC (0.50%KETOLAS EYE DROPS)	5 ml	RS 29	1 (QID)	RS 3

Table 3: Cost of NSAIDs (Non-SteroidalAntiinflammatory Drugs) (After Cataract and Corrective Laser Surgery).

Table 4: Cost of AntiinflammatoryDrugs for 6-wks Course in Post-Operative Cases(After cataract and corrective laser surgeries).

Post-Operative Cases (After cataract and corrective laser surgeries).					
DRUG	VOLUME (ml)	COST/ BOTTLE	DOSE(DROPS/DAY) FOR ONE EYE	COST/ML	COST/6 WEEKS(REQUIRE 4 BOTTLES FOR ONE EYE)
PREDNISOLONE 10mg, (PREDMET,SUNPHARMA)	5 ml	RS 13	2DROPS FOR SIX TIMES(with gradual tapering in frequency in the following weeks)	Rs 2	Rs 52
PREDNISOLONE 10mg,(PREDNI,BIOMEDICAL LAB)	5 ml	RS 28	-DO-	RS 5	RS 112
FLUOROMETHALONE 5 ml(FLURISONE, MICROLAB)	5 ml	RS 70	-DO-	RS 14	RS 280
FLUOROMETHALONE 5ml(FLONE,SYNTHOPHARM A)	5 ml	RS 46	-DO-	RS 9	RS 184

Table 5: Cost of Antiinflammatory Drug for 4 weeks Course in Inflammatory Conditions (Uveitis, Iritis, Cyclitis and Allergic Keratitis)

DRUG	VOLUME (ml)	COST/ BOTTLE	DOSE (DROPS/DAY), BOTH EYES	COST/ML	COST/4 WEEKS(require 4 bottles for both eyes)
PREDNISOLONE 10mg,(PREDMET, SUNPHARMA)	5 ml	RS 13	2 DROPS FOR 4 TIMES(with gradual tapering in frequency in following weeks)	Rs 2	RS 52
PREDNISOLONE 10mg,(PREDNI, BIOMEDICAL LAB)	5 ml	RS 28	-DO-	RS 5	RS 112
FLUOROMETHALONE 5 ml (FLURISONE, MICROLAB)	5 ml	RS 70	-DO-	RS 14	RS 280
FLUOROMETHALONE 5 ml (FLONE,SYNTHO PHARMA)	5 ml	RS 46	-DO-	RS 9	RS 184

DISCUSSION

In this study, commonly prescribed antibiotics were Moxifloxacin, Gatifloxacin and Tobramycin. Most cost effective drug was Tobramycin (Toram-Rs 26/- per bottle).-TABLE 2. Ocular infections can be vision threatening, and hence generally broad spectrum antibiotics are prescribed for bacterial conjunctivitis on empirical basis. Fluoroquinolones act against broad spectrum of bacteria and attain high concentrations in conjunctiva. Hence they are commonly being prescribed, but should be better prescribed for resistant cases. FQs penetrate into the anterior chamber at more effective levels than many of the common non-FQ antibacterial agents.^[6]

Gatifloxacin has not onlv antibacterial activity but also an antiinflammatory action caused by inhibiting TNF-alpha production at the doses used in topical ophthalmic therapy.^[7]Most commonly prescribed NSAIDS were napefenac and ketorlac. Most cost effective drug was ketorlac (ketolas eye drops -Rs 29/- per vial).TABLE-3. Nonsteroidal antiinflammatory drugs (NSAIDs) act bv inhibiting cyclooxygenase enzymes (COX-1 andCOX-2) thereby limiting prostaglandin production and providing both analgesic and anti-inflammatory activity. Ophthalmic NSAIDs are used to limit pain, discomfort, inflammation and edema associated with ocular conditions (e.g. non-infectious ocular inflammation or allergic conjunctivitis) or following ophthalmic surgeries (e.g. cataract and corneal refractive surgeries) or trauma. Napefenac is a prodrug. After instillation, nepafenac penetrates the cornea and is converted by ocular tissue hydrolases to its active form. amfenac. Ketorlac is administered four daily times and nepafenac three times daily.^[8] Hence napefenac is more patient compliant. It has an ability to inhibit PG synthesis in the retina/choroid following topical administration indicates the drug also targets suppression of PG synthesis in the posterior segment. Nepafenac may therefore have a clinical role in conditions that are caused by PG-mediated vascular leakage, such as anterior chamber inflammation and cystoid macular edema (CME) following cataract surgery.^[9]

Nepafenac was more effective than fluoromethaolone in preventing angiographic CME and BAB (blood aqueous barrier) disruption, and results indicate nepafenac leads to more rapid visual recovery.^[10] Though ketorolac is cost additional effective, these beneficial properties of nepafenac can be considered and hence preferred to be prescribed.

Most commonly prescribed topical steroids prednisolone were and fluoromethaolone.Most cost effective drug was prednisolone (predmet R 13/- per bottle).TABLE-4 & 5.The most important anti-inflammatory effect of topical ocular corticosteroids may be due to inhibition of arachidonic acid release, preventing the liberation of prostaglandins and other potent inflammatory mediators. Prednisolone acetate 1% (i.e. Pred Forte) exhibits the greatest anti-inflammatory activity of all the corticosteroids on the anterior segment of the eve. It therefore has a high risk of steroid-related complications. Gemifloxacin, pazufloxacin may be as effective moxifloxacin as for topical prophylaxis and for the treatment of staphylococcus aureusinduced endophthalmitis. Gemifloxacin similar to gatifloxacin can significantly lower the clinical severity in staphylococcus aureus keratitis.^[11, 12]Advantages of using other routes of moxifloxacin apart from topical routes are - iv moxifloxacin may be a useful prophylactic medication against post-operativeendophthalmitis.[13]A significant advantage in using moxifloxacin relative to gatifloxacin was observed in prophylaxis of keratitis.^[14]Intravitrealmoxifloxacin injection is effective in experimental Bacillus endophthalmitis.^[15] cereus preoperative

intracameralmoxifloxacininjection for endophthalmitis prophylaxis is a safe and effective method in uncomplicated phacoemulsification surgery.^[16]

CONCLUSION

Toram (tobramycin) as antimicrobial, ketolas as NSAID, predmet as steroidal anti-inflammatory for pre and post-operative and allergic conditions were most economical. Understanding the natural progression of the disease co morbidities and treatment enables us to estimate the variables that may have pharmacoeconomic implications with regard to cost of illness and quality of life. Pharmacoeconomic studies may be planned and conducted at the clinical development and during post marketing surveillance. Cost-effective analysis is the tool for weighing different costs and health outcomes when policy makers have to make

resource allocation decisions. Clinicians should include a clinical pharmacologist for bedside discussions as this will help in improving adherence to drug treatment and hence contribute for a positive health outcome. More studies are required to provide good policy guidelines .These studies can be used as an educational and communicational tool which may have high impact on the society.

REFERENCES

- 1. Clemens.K, garrison Jr LP, Jones A, Mac Donald F. strategic use of pharmacoeconomic research in early drug development and global pricing. Pharmacoeconomics 1993;4:315-22.
- 2. Bremond-gignac D, Chiambaretta F, Millazo S. A European perspective on topical ophthalmic antibiotics: current and evolving options. Ophthalmol Eye Dis 2011;3:29-43.
- 3. Sharma S. Antibiotic resistance in ocular bacterial pathogens. Indian J Med Microbiol 2011; 29:218-22.
- 4. Benson WH, Lanier JD. Current diagnosis and treatment of corneal ulcer. Curr.opin.opthalmol.1998;9:45-9.
- 5. Gaynes B, onyekwuluje A. Topical ophthalmic NSAIDS a discussion with focus on napefenac ophthalmic suspension. Clin.Ophthalmol 2008;2:355-68.
- 6. Kowalski RP, Romanowski EG, Shanks RM, Mah FS.The comparison of fluoroquinolone to non fluoroquinolone antibacterial agents for the prevention of endophthalmitis in rabbit model. J OculPharmacolTher 2012;28:604:8.
- 7. Wada T, Kida T, Inoue T, Tokushiqe H, Naka H, Sakaki H. Immunomodulatory effect of gatifloxacin on mouse peritoneal macrophages invitro and in models of endotoxin induced rat conjunctivitis and rabbit bacterial keratitis. Ophthalmic.Res 2008;40:54-60.
- 8. Gaynes BI, Fiscella R. Topical Nonsteroidal anti-inflammatory drugs for ophthalmic use. Drug Saf 2002;25:233-50.
- 9. Lindstrom R, Kim T. Ocular permeation and inhibition of retinal inflammation: an examination of data and expert opinion on the clinical utility of nepafenac. Curr Med Res Opin2006;22:397-404.
- 10. Miyake K, Ota I, Miyake G, Numaqa J.Nepafenac 0.1% versus fluoromethaolone 0.1% for preventing cystoid macular edema after cataract surgery. J Cataract Refract Surg2011;37:1581-8.
- 11. Wu X, chen H. Prophylactic effect of topical fluoroquinolones in a rabbit model of staphylococcus aureusendophthalmitis. J oculPharmacolTher 2012;28:186-93.
- 12. WuX, jiang H. Efficacy of Gemifloxacin for the treatment of experimental staphylococcus aureus keratitis. J OculPharmacolTher 2012;28:420-7.
- 13. Kim JU, kim SU. Prophylactic effect of ivmoxifloxacin a rabbit model of staphylococcal epidermidisendophthalmitis. Invest Ophthalmol Vis Sci 2011;52:1742-7.
- 14. Balzli CL, McCormick CC. Fluoroquinolones therapy in a rabbit model of post lasik MRSA keratitis. J Cataract ReractSurg 2008;34:295-301.
- 15. Sakalar YB, ozelinci S. Treatment of experimental B. Cereus endophthalmitis using Intravitrealmoxifloxacin with or without dexamethasone. J OculPharmacolTher 2011;27:593-8.
- 16. Asena L, akovay A. Ocular pharmacokinetics safety and efficacy of intracameral moxifloxacin0.5% solution in a rabbit model. Curr Eye Res 2013;38:472-9.