
© 2015| All right reserved 84

Int. Res. J. of Science & Engineering, 2015; Vol. 3 (3): 84-92 ISSN: 2322-0015

Data Transmission By Using Light Fidelity

Tirmanwar SL1 , Bhalerao MV2 and Nemmaniwar BG*

1Department of Electronics and Telecommunication, SGGSIE&T, Nanded (MS), India.

2Department of Electronics and Telecommunication, SGGSIE&T, Nanded (MS), India.

3Department of Physics, D.B. College, Bhokar, Nanded (MS), India.

*Corresponding author : Dr. Nemmaniwar BG. Assistant Professor & Head, Department of Physics, D.B.

College, Bhokar, Nanded (MS), India Email : shubhamtirmanwar@gmail.com

Manuscript Details ABSTRACT

Received : 06.04.2015

Revised : 01.05.2015

Re- Revised: 15.05.2015

Accepted: 14.06.2015

Published: 28.06.2015

ISSN: 2322-0015

Editor: Dr. Arvind Chavhan

Cite this article as:

Tirmanwar SL, Bhalerao MV and

Nemmaniwar BG. Data

Transmission By Using Light

Fidelity Int. Res. J. of Science &

Engineering, 2015; Vol. 3 (3):84-

92.

Copyright: © Author(s), This is

an open access article under the

terms of the Creative Commons

Attribution Non-Commercial No

Derivs License, which permits use

and distribution in any medium,

provided the original work is

properly cited, the use is non-

commercial and no modifications

or adaptations are made.

Light Fidelity means the wireless data transfer using LED. The

main concept behind this Li-Fi is “Data through Illumination”. It

transmits data with the help of an LED bulb having variation in its

intensity which has a speed of actually faster than which human

eye can follow. It is also known as optical wireless technology or

visible light communication. The paper discusses about an

apparatus consisting of a transmitter which includes a light source

and the receiver circuit which receives the data transmitted via

light waves. To convert data to be transmitted in the form of light

waves we used a processor MSP430G2553.

Keywords: LCD, IAR, IDE, CCS, DIP, ADC, Li-Fi, Wi-Fi, UART

Abbrevation:

LCD : Liquefied Crystal Display.

IAR :Ingenjorsfirman Anders Rundgren

IDE : Integrated Development Environment.

CCS : Code Composer Studio.

DIP : Dual In-Line Package.

ADC : Analog to Digital Converter.

Li-Fi : Light Fidelity.

Wi-Fi : Wireless Fidelity.

UART : Universal Asynchronous Receiver and Transmitter.

INTRODUCTION

The transmission by using Light Fidelity is mainly based on

blinking of LED. If the LED is ON, you are transmitting the data

 OPEN ACCESS

RESEARCH ARTICLE

mailto:shubhamtirmanwar@gmail.com

Data Transmission By Using Light Fidelity

Int. Res. J. of Science & Engineering, 2015; Volume 3, No. 3, May-June, 2015. 85

means you transmit a digital 1; and if the LED is

OFF you transmit a digital 0 or null or simply no

data transfer happens (Ekta and Kaur, 2014). As

one can switch them on and off very frequently

one can transmit data easily because the LEDs

intensity is modulated so rapidly that human eye

cannot notice, so the output in form of light

appears constant and hence offering permanent

connectivity. More sophistication in the

transmission techniques can further increase the

data rates through VLC (Jadhav, 2014; Condliffe,

2011).

To convert data in the form of digital signals 1 and

0 we used a processor MSP430G2553. The MSP-

EXP430G2553 Launch Pad is an inexpensive and

simple evaluation kit for the MSP430G2xx Value

Line series of microcontrollers. It is an easy way to

start developing on the MSP430 with on-board

emulation for programming and debugging as well

as buttons and LEDs for a simple user interface.

Rapid prototyping is simplified by the 20-pin

Booster Pack headers which support a wide range

of available Booster Pack plug-in modules. You can

quickly add features like wireless connectivity,

graphical displays, environmental sensing, and

much more. You can either design your own

Booster Pack or choose among many already

available from TI. The Launch Pad features an

integrated DIP target socket that supports up to

20 pins, allowing MSP430 Value Line devices to be

plugged into the Launch Pad board. The MSP-

EXP430G2553 Launch Pad comes with an

MSP430G2553 device by default.

The MSP430G2553 has the most memory

available of the compatible Value Line devices. The

MSP430G2553 16-bit MCU has 16KB flash, 512

bytes RAM, up to 16-MHz CPU speed, 10-bit ADC,

capacitive touch enabled I/Os, universal serial

communication interface, and more – plenty to get

you started in your development. Free software

development tools are also available: TI's Eclipse-

based Code Composer Studio IDE (CCS), IAR

Embedded Workbench IDE (IAR), and the

community-driven Energia open source code

editor (http://ti.com/product/msp430g2553).

MATERIALS AND METHODS

Hardware:

MSP430G2553 launch pad kit, LPC2148 Arm

processor kit, LED, Photo Diode (BPW34), Current

Amplifier (current gain >50), Transistor BC547,

Wires.

Software:

CCS (code composer studio 4thversion), Side Arm,

Flash Magic.

The Li-Fi technology basically is a process of data

transmission through led that is wireless data

transfer through led. It consists of two stages;

transmitter and receiver (http://en.wikipedia.org-

/wiki/Li-Fi). In the transmitter circuit, the input is

given from the laptop with the help of USB cable

connected to MSP430 via the UART transmission

process coded using Code Compose Studio

software. Initially, in MSP430 processor the

output is set at TxD pin. The text sent using UART

to MSP430 is processed as MSP430 is a digital

signal processor it gives output in the form of

digital signal means in the form of 1 and 0 which

are called as digital signals. The output of MSP430

from TxD pin is given as input to the transmitter

part. The interesting part of this whole project is

that the some part of transmitter and receiver

circuit is almost same for both music and data

transfer. After getting input from MSP430

transmitter part start transmitting in the coded

text in the form of LED blinking. As the time delay

is very negligible LED blinks very rapidly. The

Photo diode in the same circuit receives the signal

transmitted in the form of LED blinking and

output of diode sent as input to the receiver circuit

(Goyal et al., 2013). The distance through which

the blinking can be detected depends on the photo

diode, the higher the quality of photo diode the

larger will be the distance through which the

blinking will be detected.

This wireless transmission using LED blinking

consist 802.11 wireless protocol as same as Wi-Fi.

The receiver circuit consists of simple ARM

processor kit, here we used LPC2148 kit. The

LPC2148 uses UART for serial communication

http://ti.com/product/msp430g2553

Tirmanwar et al., 2015

86 www.irjse.in

with other devices. RXD0 pin is configured as

input to LPC2148 which serially receives coded

text from diode. The receiver code for LPC2148

and transmitter code for MSP430 both are

mentioned below. After receiving coded text the

processor using UART automatically decodes the

data and then finally the output of the controller

IC is given to the 7-segment LCD display which is

inbuilt in the processor kit of LPC2148 and LCD

displays the given text transferred from laptop

(http://www.ocfreaks.com/lpc2148-uart-

programming-tutorial).

The digital wireless communication occurs in this

whole process. In the receiver part to display the

recovered or decoded text we can use another

laptop instead of LCD. But this procedure will

require one more MSP430 kit at receiver.

RESULT AND DISCUSSION

In this way the data in the form of text sent by

laptop is transferred using wireless

communication technique which is Li-Fi and the

text is displayed on LCD display. But the sent data

is transferred at what rate we can’t find it because

the intensity and speed of light is very fast means

it is difficult to measure.

Transmitter Program for MSP430G2553:

#include "msp430g2553.h"

 // Hardware-related definitions

#define UART_TXD 0x02 // TXD on P1.1 (Timer0_A.OUT0)

#define UART_RXD 0x04 // RXD on P1.2 (Timer0_A.CCI1A)

#define UART_TBIT_DIV_2(1000000/(9600 * 2))// Conditions for 9600Baud SW UART, SMCLK= 1MHz

#define UART_TBIT (1000000 / 9600) // Globals for full-duplex UART communication

unsignedinttxData; // UART internal variable for TX

unsigned char rxBuffer; // Received UART character

voidTimerA_UART_tx(unsigned char byte); // Function prototypes

voidTimerA_UART_print(char *string);

void main(void)

{

 WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

 DCOCTL = 0x00; // Set DCOCLK to 1MHz

 BCSCTL1 = CALBC1_1MHZ;

DCOCTL = CALDCO_1MHZ;

 P1OUT = 0x00; // Initialize all GPIO

 P1SEL = UART_TXD + UART_RXD; // Timer function for TXD/RXD pins

 P1DIR = 0xFF & ~UART_RXD; // Set all pins but RXD to output

 // ConfiguresTimer_A for full-duplex UART operation

 TA0CCTL0 = OUT; // Set TXD Idle as Mark = '1'

 TA0CCTL1 = SCS + CM1 + CAP + CCIE; // Sync, Neg Edge, Capture, Int

 TA0CTL = TASSEL_2 + MC_2; // SMCLK, start in continuous mode

 _BIS_SR(GIE); // Enable CPU interrupts

http://www.ocfreaks.com/lpc2148-uart-programming-tutorial
http://www.ocfreaks.com/lpc2148-uart-programming-tutorial

Data Transmission By Using Light Fidelity

Int. Res. J. of Science & Engineering, 2015; Volume 3, No. 3, May-June, 2015. 87

TimerA_UART_print("HELLO WORLD\r\n"); // Send text message

TimerA_UART_print("READY.\r\n");

while(1)

{ // Wait for incoming character

 _BIS_SR(LPM0_bits); // Enter low poser mode

TimerA_UART_tx(rxBuffer); // Transmit the received data

 }

}

voidTimerA_UART_tx(unsigned char byte)

{

// Outputs one byte using the Timer_A UART

while (TACCTL0 & CCIE); // Ensure last char got TX'd

 TA0CCR0 = TAR; // Current state of TA counter

 TA0CCR0 += UART_TBIT; // One bit time till first bit

 TA0CCTL0 = OUTMOD0 + CCIE; // Set TXD on EQU0, Int

txData = byte; // Load global variable

txData |= 0x100; // Add mark stop bit to TXData

txData<<= 1; // Add space start bit

}

voidTimerA_UART_print(char *string)

{

// Prints a string using the Timer_A UART

while (*string)

TimerA_UART_tx(*string++);

}

#pragma vector = TIMER0_A0_VECTOR // Timer_A UART - Transmit Interrupt Handler

 __interrupt void Timer_A0_ISR(void)

{

static unsigned char txBitCnt = 10;

 TA0CCR0 += UART_TBIT; // Add Offset to CCRx

if (txBitCnt == 0)

{ // All bits TXed?

 TA0CCTL0 &= ~CCIE; // All bits TXed, disable interrupt

txBitCnt = 10; // Re-load bit counter

 }

else

{

if (txData& 0x01)

 TA0CCTL0 &= ~OUTMOD2; // TX Mark '1'

else

 TA0CCTL0 |= OUTMOD2; // TX Space '0'

 }

txData>>= 1; // Shift right 1 bit

txBitCnt--;

Tirmanwar et al., 2015

88 www.irjse.in

}

#pragma vector = TIMER0_A1_VECTOR // Timer_A UART - Receive Interrupt Handler

__interrupt void Timer_A1_ISR(void)

{

static unsigned char rxBitCnt = 8;

static unsigned char rxData = 0;

switch (__even_in_range(TA0IV, TA0IV_TAIFG))

{ // Use calculated branching

case TA0IV_TACCR1: // TACCR1 CCIFG - UART RX

 TA0CCR1 += UART_TBIT; // Add Offset to CCRx

if (TA0CCTL1 & CAP)

{ // Capture mode = start bit edge

 TA0CCTL1 &= ~CAP; // Switch capture to compare mode

 TA0CCR1 += UART_TBIT_DIV_2; // Point CCRx to middle of D0

 }

else

{

rxData>>= 1;

if (TA0CCTL1 & SCCI) // Get bit waiting in receive latch

rxData |= 0x80;

rxBitCnt--;

if (rxBitCnt == 0)

 { // All bits RXed?

rxBuffer = rxData; // Store in global variable

rxBitCnt = 8; // Re-load bit counter

 TA0CCTL1 |= CAP; // Switch compare to capture mode

 _BIC_SR(LPM0_EXIT); // wake up from low power mode.

 }

 }

break;

 }

}

Receiver Program for LPC2148:

#include <Philips\LPC2148.h>

// Connections from LPC2148 to LCD Module:

// P0.0 to P0.7 used as Data bits.

// P1.16 connected to pin4 i.e. RS - Command / Data

// P1.17 connected to pin6 i.e. E - Enable

// Pin5 of LCD Module i.e. 'R/W' connected to ground

#define VPBDIV (*((volatile WORD32 *) 0xE01FC100))

#define U0RBR (*((volatile WORD32 *) 0xE000C000))

#define DESIRED_BAUDRATE 19200

#define CRYSTAL_FREQUENCY_IN_HZ 12000000

#define PCLK CRYSTAL_FREQUENCY_IN_HZ /* since VPBDIV=0x01 */

#define DIVISOR (PCLK/(16*DESIRED_BAUDRATE))

Data Transmission By Using Light Fidelity

Int. Res. J. of Science & Engineering, 2015; Volume 3, No. 3, May-June, 2015. 89

void init_LCD(void);

void enable(void);

void LCD_WriteChar(char c);

void LCD_WriteString(char *string);

void LCD_Cmd(unsigned intcmd);

void delay(void);

void init_LCD(void)

 {

 IO0DIR = 0xFF; //P0.0 to P0.7 configured as Output - Using 8 Bit mode

 IO1DIR |= (1<<16) | (1<<17); //P1.16 and P1.17 configured as Output - Control Pins

 IO0PIN = 0x0; //Reset Port0 to 0.

 IO1PIN = 0x0; //Reset Port1 to 0 - Which also makes RS and Enable LOW.

 //LCD Initialization Sequence Now starts

 delay(); //Initial Delay

 LCD_Cmd(0x3C); //Function Set Command : 8 Bit Mode , 2 Rows , 5x10 Font Style

 LCD_Cmd(0x0F); //Display Switch Command : Display on , Cursor on , Blink on

 LCD_Cmd(0x06); //Input Set : Increment Mode

 LCD_Cmd(0x01); //Screen Clear Command , Cursor at Home

 LCD_Cmd(0x80); //Not required the 1st time but needed to reposition the cursor at

home after Clearing Screen

 }

void enable(void)

{

 delay();

 IO1PIN |= (1<<17); //Enable=High

 delay();

 IO1PIN &= ~(1<<17); //Enable=Low

 delay();

}

void LCD_WriteChar(char c)

{

 IO1PIN |= (1<<16); //Switch to Data Mode

 IO0PIN = (int) c; //Supply Character Code

 enable(); //Pulse Enable to process it

}

void LCD_WriteString(char *string)

{

 int c=0;

 while (string[c]!='\0')

 {

 LCD_WriteChar(string[c]);

 c++;

 }

}

void LCD_Cmd(unsigned intcmd)

{

 IO1PIN = 0x0; //Enter Instruction Mode

 IO0PIN = cmd; //Supply Instruction/Command Code

 enable(); //Pulse Enable to process it

Tirmanwar et al., 2015

90 www.irjse.in

}

void delay(void)

{

 int i=0,x=0;

 for(i=0; i<19999; i++)

 x++;

}

void init_eint2()

{

 EXTMODE |=0x04 ;

 EXTPOLAR |= 0x04;

 PINSEL0 = 0x0000c000;

 VICVECTCNTL0 =0x20|16;

 VICVECTADDR0=0x20|16;

 VICINTENABLE |= (1<<16);

 EXTINT |= 0x04;

}

void InitUart0(void)

{

 PINSEL0 = 0x00000005 ;

/* U0LCR: UART0 Line Control Register

 0x83: enable Divisor Latch access, set 8-bit word length,

 1 stop bit, no parity, disable break transmission */

 U0LCR=0x83;

/* VPBDIV: VPB bus clock divider

 0x01: PCLK = processor clock */

 VPBDIV=0x01;

/* U0DLL: UART0 Divisor Latch (LSB) */

 U0DLL=DIVISOR&0xFF;

/* U0DLM: UART0 Divisor Latch (MSB) */

 U0DLM=DIVISOR>>8;

/* U0LCR: UART0 Line Control Register

 0x03: same as above, but disable Divisor Latch access */

 U0LCR=0x03 ;

/* U0FCR: UART0 FIFO Control Register

 0x05: Clear Tx FIFO and enable Rx and Tx FIFOs */

 U0FCR=0x05 ;

}

char putchar(char ch)

{

 if (ch=='\n')

 {

 //wait until Transmit Holding Register is empty

Data Transmission By Using Light Fidelity

Int. Res. J. of Science & Engineering, 2015; Volume 3, No. 3, May-June, 2015. 91

 while (!(U0LSR&0x20)) {

 //then store to Transmit Holding Register

 U0THR='\r';

 }

 //wait until Transmit Holding Register is empty

 while (!(U0LSR&0x20)) {}

 //then store to Transmit Holding Register

 U0THR=ch;

 return ch;

}

char eint2(void)__attribute__(interrupt ("IRQ"))

//Task after the interrupt generation

{

 charch;

 //wait until there's a character to be read

 while (!(U0LSR & 0x01))

 {

 }

 //then read from the Receiver Buffer Register

 ch=U0RBR;

 return ch;

}

 int main(void)

 {

 char ch;

 init_eint2();

 init_LCD(); //LCD Now intialized and ready to Print!

 LCD_WriteString(&ch);

 LCD_Cmd(0x80 + 0x40); //Come to 2nd Row

 while(1); // Loop forever

 return 0; //This won't execute :P

 }

CONCLUSION

This experiment is done at very small level but he

possibilities are numerous and can be explored

further. If his technology can be put into practical

use, every bulb can be used something like a Wi-Fi

hotspot to transmit wireless data and we will

proceed toward the cleaner, greener, safer and

brighter future.The concept of Li-Fi is currently

attracting a great deal of interest, not least

because it may offer a genuine and very efficient

alternative to radio-based wireless. As a growing

number of people and their many devices access

wireless internet, the airwaves are becoming

increasingly clogged, making it more and more

difficult to get a reliable, high-speed signal. This

may solve issues such as the shortage of radio-

frequency bandwidth and also allow internet

where traditional radio based wireless isn’t

allowed such as aircraft or hospitals. One of the

shortcomings however is that it only work in

direct line of sight(Rani et al, 2012).

Tirmanwar et al., 2015

92 www.irjse.in

REFERENCES

1. Ekta and Ranjeet Kaur. Light Fidelity(Li-Fi)-A

Comprehensive Study. Inter. J. Comp. Sci. &

Mob. Computing., April 2014; 3(4): 2-3.

2. Jadhav VA. study on Li-Fi-Light Fidelity. Inter.

J. Sci. & Engg. Res., June 2014; 5(6): 1.

3. Condliffe J Will .Li-Fi be the new Wi-Fi?. New

Scientist. 28 July 2011.

4. http://ti.com/product/msp430g2553.

5. http://en.wikipedia.org/wiki/Li-Fi.

6. Goyal M, Saproo D, Bhagashra A. New Epoch of

Wireless Communication: Light Fidelity. Inter.

J. Inno. Res. Comp. & Comm. Engg., April 2013;

1(2): 3.

7. http://www.ocfreaks.com/lpc2148-uart-

programming-tutorial/.

8. Rani J, Chauhan P, Tripathi R. Li-Fi(Light

Fidelity)-The future technology In Wireless

communication. Inter. J. Appl. Engg. Res., 2012;

7(11): 1-4.

© 2015| Published by IRJSE

http://ti.com/product/msp430g2553
http://en.wikipedia.org/wiki/Li-Fi
http://www.ocfreaks.com/lpc2148-uart-programming-tutorial/
http://www.ocfreaks.com/lpc2148-uart-programming-tutorial/

