
Revista Română de Interacţiune Om-Calculator 7 (2) 2014, 117-138 © MatrixRom

A model-based approach to generate connection-
aware applications for the mobile web

Javier R. Escolar1, Cristina G.Cachón1, Ignacio Marín1 , Jean
Vanderdonckt2, Vivian Motti2,
1 Fundación CTIC Centro Tecnológico.
Parque Científico y Tecnológico de Gijón.
C/ Ada Byron, 39 Edificio Centros Tecnológicos. 33203 Gijón, Asturias (España)
E-mail: {javier.rodriguez, cristina.cachon, ignacio.marin}@fundacionctic.org
2 Université Catholique de Louvain.
Place de l'Université 1, bte L0.01.09 B-1348
Louvain-la-Neuve (Belgique)
E-mail: {jean.vanderdonckt, vivian.genaromotti}@uclouvain.be

Abstract: The development of context-sensitive applications for the mobile web implies
significant challenges for developers, mainly due to device diversity and the variability of
the Delivery Context. One specific challenge is to create applications able to work not only
when connection is available but also when disconnected. The effort required to create such
applications is excessively high in spite of the facilities provided by emerging technologies.
A model-based approach for the development of this type of applications is presented in
this article. We present a navigation model described by means of an extended version of
the State Charts eXtensible Markup Language (SCXML) proposed by W3C.

Key words: mobile, web, offline applications, model-based, SCXML, navigation model

1. Introduction
The development of mobile applications has been one of the major
challenges for application programmers over the last decade. In addition to
resource restrictions inherent to mobile devices, both hardware and
software, developers must consider Delivery Context (DC) information in
order to optimize the user experience. The DC was introduced by W3C
(Finkelstein et al, 2003). It considers the variety in interaction mechanisms,
user agent capabilities, connection features, location information, locale
settings, environment description, user preferences and even level of
discourse and trust aspects. The set of DC characteristics susceptible to
influence the application behaviour and aspect ranges from static

118 Javier R. Escolar, Cristina G.Cachón, Ignacio Marín , Jean Vanderdonckt,
Vivian Motti

capabilities (e.g. screen size of the device) to dynamic properties (e.g.
battery level). In terms of application development, context-awareness
refers to the creation of applications that are able to handle DC information
and to react accordingly in a continuous manner. Context adaptation
represents great difficulties mainly imposed by all the combinations of the
possible DC properties. These difficulties lead to the increase of
development costs and the time-to-market of the applications, which bear
witness to the importance of methods and tools that facilitate the creation of
context-aware applications. In spite of the fact that the development of
context-aware applications may apply to desktop applications, it is
particularly relevant in the mobile development field, since “mobile device
contexts are more varied, and more difficult to predict and discover”
(Ballard, 2007). Traditionally, the development of context-aware software
was associated to native development rather than web development. It was
mainly due to the existing differences in what regards to the availability of
mechanisms to retrieve information about dynamic properties coming from
internal sensors of the devices: device orientation, battery level, location,
etc. However, some emerging standards1 and its corresponding
implementations are making important efforts to solve this problem, thus
facilitating the creation of context-aware Web applications.

One of the dynamic properties of the DC that directly impacts on the
Web contents to be delivered is the status of the network connection. From
now on, we will refer to connection-aware Web applications as those
applications created to be consumed from a Web browser and which are
able to provide an optimized user experience regardless of the network
status. In this article we will consider two different status: online and
offline. An online status indicates a state of connectivity between the client
and the server, while an offline status reflects that there is no connection
between them. The assumption of a constant online status is not always
admissible and users are increasingly demanding rich applications, which
can provide a minimum functionality even when a wireless connection is
not available. The web development community usually refer to this kind of
software as offline applications. This article is focused on mobile Web

1 W3C Device APIs (DAP) Working Group: http://www.w3.org/2009/dap/

A model-based approach to generate connection-aware applications for the
mobile web

 119

development, although most of the contents exposed might be also
applicable for the creation of desktop interfaces.

Model-based application generation is a promising research and
development field to create context-aware User Interfaces (UIs). They are
based in the use of representations (models) of the aspects that are supposed
to be relevant in the UI development lifecycle. It allows developers to
represent the information required at each development stage in an abstract
manner, without worrying about low-level implementation details. Models
are then automatically transformed into a final application by code
generators or model interpreters. Models can cover a great range of aspects:
user, task, data, domain, presentation, navigation, etc. In order to promote
the use of model-based approaches in the Web development field, W3C has
recently created the Model-Based User Interfaces (MBUI) Working Group2
to develop standards as a basis for interoperability across authoring tools for
context-aware Web UIs. An important factor when using model-based
approaches is to clearly define each layer of the application independently
from the rest. It requires establishing a clear separation of concerns during
the development process. One well-known approach to carry out this
separation is the Model View Controller (MVC) UI paradigm (Glenn et al,
1988). The Model represents the application data, the View defines the
screen presentations, and the Controller indicates how the UI reacts to user
input and also to possible external events. The Controller layer is intended
to manage the user-device interaction by clearly defining the application
flow. This implies to define the possible transitions among the different UIs
available in the View layer, deciding when to access the Model layer and
guaranteeing the synchronization between the two layers while they are
decoupled. In model-based development these aspects are expressed in the
navigation model (also known as dialog, conversation or behaviour model).
We claim that, in order to guide the automatic creation of connection-aware
applications, the navigation model should be able to express specific
concepts rarely considered at this layer: define fall-back views for offline
access, manage client/server store processes, establish synchronization
policies, etc. Up to date, web navigation models have assumed a continuous
connectivity between user and server and have not provided mechanisms to

2 W3C Model-Based User Interfaces (MBUI) Working Group: http://www.w3.org/2011/mbui.

120 Javier R. Escolar, Cristina G.Cachón, Ignacio Marín , Jean Vanderdonckt,
Vivian Motti

facilitate the development of applications able to work both in online and
offline modes.

Our work aims at reducing both the development time required for
creating connection-aware mobile Web applications and the maintainability
costs required to update them. Consequently, it also implies the reduction of
the time-to-market of this kind of software. This improvement may benefit a
great number of developers and users all around the world.

Our proposal has been internally validated by providing a reference
implementation of the solution as an extension to the MyMobileWeb project
(MMW)3, a model-based software framework that allows developers to
create context-aware mobile web applications. Although only working at
the concrete and final abstraction layers, MMW is evolving towards its
integration in an abstract-to-final approach within the Serenoa4 FP7-funded
research project. Furthermore, MMW is improving the support of the most
widely spread web technology, HTML5 (Hickson, 2012). The
implementation carried out as part of this article aims at facilitating the
creation of connection-aware applications in HTML5 (“offline applications”
in the terminology of the HTML5 specification).

This document is divided into the following sections. After this
introductory section, Section 2 comments previous works carried out in the
domain of model-based approaches for application generation and focuses
on the existing navigation models. Section 3 provides an executive
summary of the MMW framework. Section 4 introduces the underlying
concepts in offline web applications at the final level, to be considered prior
to modelling at a more abstract level. Section 5 defines the proposed
extensions to the SCXML-based model used in MMW, which are required
to support the generation of offline web applications, and points to an
external example that illustrate how to use such extensions. Section 6
describes implementation details about the inclusion of the new SCXML-
based model in the MMW framework. Section 7 includes the conclusions
drawn by the authors and the future work after the completion of this
research.

3 MyMobileWeb Project web site: http://mymobileweb.morfeo-project.org
4 Serenoa Project web site: http://www.serenoa-fp7.eu

A model-based approach to generate connection-aware applications for the
mobile web

 121

2. Related work
As noted in (Mbaki et al, 2008), “As web UIs become more sophisticated
both in functionalities and reactivity, the dialog of such UIs is highly
interactive and therefore raises the need for abstracting these capabilities
into an advanced navigation model that enables modelling such dialogs”.
Although many Web Engineering research works have exploited the use of
Model-Based approaches to automatically generate Web UIs (Ceri et al,
2000) (Koch et al, 2008), some deficiencies have been detected when
defining and using navigation models to guide the automatic generation of
context-aware UIs: (a) Navigation models are sometimes embedded within
presentation models (Zhang et al, 2012); (b) Great efforts have been made
in the definition of task and domain models. However the creation of
context-aware applications requires deeper research into the creation of
models at low levels of abstraction (Montero and Lopez, 2007); (c)
Navigation models should be considered at different levels of abstraction.
Moreover, the development process may be started from the navigation
models rather than from the task models (Winckler et al, 2008); (d) The
creation of context-sensitive Service Front Ends (SFEs) requires navigation
models to handle context information (Vanacken, 2009).

In (Vosloo and Kourie, 2008), the most popular approaches commonly
used to specify navigation aspects in Web frameworks are reviewed. They
propose a taxonomy for navigation concerns (i.e the facilities of the
framework to enable the developer to control the flow of events between the
browser and the server) based on the information gleaned from surveying 80
Web frameworks. The state-machine approaches are significant because
they allow immediate mapping between the visual representation of the
application flow and the final language chosen to model it. This is an
important step towards the development of complex Web applications by
using Model Driven Engineering (MDE), thus making development easier
for non-technical staff improving application maintainability. In addition,
state charts can represent different levels of abstraction by nesting sub-states
within states. In general terms, it is an appropriate way to represent
navigation behaviours in those applications which must deal with different
delivery contexts, as it the case of the mobile Web development.

StateWebCharts (Winckler and Palanque, 2003) blazed a trail in the
definition of Web navigation models by means of state charts. It proposes a

122 Javier R. Escolar, Cristina G.Cachón, Ignacio Marín , Jean Vanderdonckt,
Vivian Motti

formal notation to model the navigation of desktop Web applications by
extending Harel’s Statecharts and considering not only events coming from
the user interaction (e.g. a mouse click), but also system events (e.g. a
method invocation that affects the activity in a state) or completion events
(e.g. execute the next activity). Spring Web Flow (Mak, 2010) follows a
similar approach. It provides a declarative mechanism to define navigation
flows using a proprietary XML-based language which models a state-
machine. This declarative nature makes it easy to describe what the flow
looks like rather than how to build it.

Some frameworks, such as Apache Shale5, and research works
(Feuerstack et al, 2011) have used SCXML (Barnett et al, 2012), a W3C
language that provides a generic state-machine model in order to represent
navigation aspects. It has been also used to implement the Interaction
Manager within the W3C Multimodal Architecture (Kliche, 2008) and
VoiceXML 3.0 (McGlashan et al, 2010) considers the possibility to embed
VoiceXML in SCXML. However, none of these works have used SCXML
to represent the dialog model in connection-aware applications. In this
article, we argue that it is necessary to extend the SCXML syntax to support
the definition of dialog models for the creation of connection-aware mobile
Web applications.

In what regards to the creation of Web applications able to work without
connectivity, several research works (Kao et al, 2011), (Kao, Chow et al,
2011), (Ananthanarayanan et al, 2006) and projects6,7, have proposed
frameworks and libraries intended to reduce the complexity of the
development of connection-aware Web applications. None of these works
proposes a formal model for application definition including connection-
aware application usage.

5 Apache Shale web site: http://shale.apache.org
6 SessionStorage JavaScript library: http://code.google.com/p/sessionstorage
7 jQuery offline plug-in: https://github.com/wycats/jquery-offline

A model-based approach to generate connection-aware applications for the
mobile web

 123

3. Background
MMW is an open-source standards-based platform that simplifies the agile
development of mobile web applications in an effort to optimize the user
experience. MMW provides an implementation of the MVC design pattern:
(a) Model: the data model managed by applications is separated as follows.
Application Data (bound to the specific application scenario) and DC
information. In order to extract DC information, the platform is able to
interoperate with any Device Description Repository (DDR) implementing
the W3C DDR Simple API (Cantera et al, 2008). In addition, MMW
provides custom JavaScript libraries to extract dynamic capabilities from
the mobile browser. (b) View: the platform uses IDEAL2 (Cantera et al,
2010), an XML-based authoring language to describe UIs in an abstract
manner targeted to multiple DCs. IDEAL2 is intended to provide a
description of the views of the web applications. (c) Controller: MMW
manages the application navigation flow as a state chart by means of an
SCXML model. The flow engine decides what actions to execute according
to the user events.

In order to model the controller layer, the platform maintains one
machine state per user as part of the session information. Each time the user
interacts with the application, an HTTP request is sent to the server. This
request includes both the UI component which the user has interacted with
and the event generated as a consequence of the interaction. Using this
information, the platform automatically creates a new event containing both
the type of interaction (onclick, onsubmit, etc.) and the control which has
raised it. This event is propagated to the state machine, which acts
accordingly. In the Controller layer, it is possible to express conditions
which make reference to the application Model.

There are different elements defined in SCXML: states, transitions,
events, conditions and actions. In order to indicate the type of state that the
navigation flow is visiting, a new category attribute has been added to the
existing state element. We differentiate four types of states. An
“application” state is intended to represent the overall application flow. This
state may contain a set of sub-states and their corresponding transitions.
“usecase” states represent a specific use case within the application flow.
They are composed of a set of “view” states and the navigation flow among
them. “view” states represent UI presentations. Each time a view state is

124 Javier R. Escolar, Cristina G.Cachón, Ignacio Marín , Jean Vanderdonckt,
Vivian Motti

entered, a specific action intended to render its associated presentation will
be executed. Finally, “generic” states are general-purpose states. As
opposed to view states, no special action is necessarily executed when they
are entered. The category attribute enables the categorization of states, so
code generators can include custom actions to be executed whenever the
navigation flow reaches a specific type of state. This feature allows
developers to annotate states with a specific semantics associated, and code
generators to automate the inclusion of custom actions to be executed when
entering or exiting them. For instance, whenever the navigation flow
reaches a “view” state, a rendering action is supposed to occur, but maybe
other custom actions need to be executed by depending on the
implementation. In the case of “usecase” states, they allow to group “view”
states that are somehow related in order to carry out a use case within the
application. For instance, “usecase” states might be used to establish
variable scopes, i.e. each “usecase” might delimit a specific context in
which a variable is valid and can be used. The “application” state is
intended to be the root state within the application, thus there will be just
one “application” state per application. Code generation tools might trigger
initialization actions whenever the navigation flow reaches the
“application” state (just once per application lifecycle).

Transitions are used to drive the flow from one state to another according
to user events. There are two types of transitions: global transitions (shared
by a set of states) and local transitions (local to the current state).

Finally, events trigger transitions. There are different types of events.
Control-generated events are triggered when the user interacts with UI
controls. They are expressed by means of the following syntax:
“controlID.generatedEvent”. For instance, a link control throws the
“linkID.onclick” event whenever a user clicks on it or on the submit button,
triggering the “button.onsubmit” event. Platform events are a set of events
which can be triggered by the platform to indicate specific moments as
being susceptible to activating a transition. A good example is the
“login.ok” event, which is raised to indicate that the user has successfully
logged into the application. Internal platform events are reserved so they
cannot be captured by developers. They start with a configurable specific
character sequence and are managed by platform ad-hoc transitions. For
instance, MMW uses the “mmw.error” event to manage possible errors
during the application life cycle. Finally, the proposal is open to the

A model-based approach to generate connection-aware applications for the
mobile web

 125

incorporation of new events in order to manage new kinds of user-device
interactions. MMW provides Java and JavaScript APIs to trigger custom
events, but developers may also capture their own events.

4. Modelling offline mobile Web applications
From the developer point of view, the creation of connection-aware mobile
Web applications implies significant differences in comparison to
traditional mobile Web applications, most of them related to the
specification of the navigation model. Developers need mechanisms in the
navigation model to: define different execution flows by depending on the
connection mode, categorize resources according to their cacheability,
separate the data model according to the storage side (client or server), and
manage the synchronization between server and client data storages.

Prior to the definition of a navigation model for offline web applications,
it is interesting to define the different components of a mobile web
application which are candidate to be made available at the client side, in
order to be used in offline execution. The various resources of a web
application are: web documents (mainly composed by markup code),
stylesheets, client-side scripts and other types of resources to be embedded
in the presentation (such as images, video, audio, etc.).

Resources can be categorized, in terms of cacheability for a later offline
usage. Four types of resources are differentiated. Cacheable static resources
are those associated with a well-known URI and whose contents are not
changing during the application life cycle, thus susceptible to be cached
forever. Cacheable dynamic resources are those whose content may vary
over time but we still want to keep a previously cached version of them -for
instance, the results of a search process in case you want them to be
available in offline mode. Online resources are those that only make sense
to be accessed online -for instance, a server-side script. Finally, alternatives
to online resources are used when a specific online resource is not available.

In addition, emerging technologies are adding the chance to cache
application data besides the previously mentioned web application
resources. From this approach, we may add the data set used in the
application as an additional application resource. Therefore, data storage

126 Javier R. Escolar, Cristina G.Cachón, Ignacio Marín , Jean Vanderdonckt,
Vivian Motti

may be categorized, according to its location, as client-side only, server-side
only or both sides.

Figure 1- Class diagram for the navigation model

Data synchronization may be performed in different manners, which may
be modelled by means of different synchronization policies. Three basic
policies are considered: (a) Periodic synchronization: either the client or the
server side triggers the process to synchronize application data at regular
time intervals. (b) Event-driven synchronization: when a specific event
takes place –for instance, when the application regains connectivity to the

A model-based approach to generate connection-aware applications for the
mobile web

 127

network. One example is dataset-driven synchronization that may take place
when the data set changes either at the server side or at the client side
occurs. (c) Manual synchronization: when the synchronization process is
triggered after user interaction with the UI.

Our proposal is to extend the navigation model previously used by
MMW, described in section 4, in order to incorporate new features to define
connection-aware mobile Web applications. Figure 1 represents a simplified
version of the proposed model.

Each StateChart has its own DataModel. A DataModel is composed of
DataElements. Each DataElement indicates its storage (the place where the
data element should be stored) and its scope (the context in which the data
element is valid). If a DataElement is stored in more than one place, it
might define how the synchronization should be accomplished by means of
the following attributes: syncType, syncPolicy and syncPeriod. A
StateChart is composed of various States. A State is an abstraction that
represents a specific status within the application lifecycle. For instance, an
ApplicationState represents the whole application and is composed of
UseCaseStates. In the same manner, each UseCaseState is composed of
ViewStates. A ViewState represents a specific UI (e.g. a web page), thus it
might have a URL associated and it is susceptible to be cacheable and to
have an offline fallback as an alternative for those cases in which there is no
connection available. A transition represents a change from one state to
another. It might be triggered by a given event and evaluated against a
condition. A transition might trigger actions. One important Action in the
model is the SynchronizationProcess, intended to force the synchronization
of a DataElement.

Note that the scientific community has previously covered most of the
concepts considered in our proposal in an isolated manner: declarative state
charts representation (Winckler and Palanque, 2003) (Mak et al, 2010), data
modelling (Silverstone and Agnew, 2011), synchronization policies
(Hansmann et al, 2003), etc. However, it seems that no other work have
covered all the concepts simultaneously in order to create a dialog model for
the representation connection-aware applications. In section 5 we propose a
specific representation for these concepts by extending the SCXML
notation.

128 Javier R. Escolar, Cristina G.Cachón, Ignacio Marín , Jean Vanderdonckt,
Vivian Motti

5. Extending SCXML to model offline Web applications
The SCXML specification considers the possibility of including new
attributes and elements in non-scxml namespaces. In order to indicate the
SCXML processor how to handle those elements and attributes out of the
SCXML namespace, the specification proposes the use of the exmode
attribute inside the scxml element. If the value of the exmode attribute is
“lax”, then the SCXML processor must silently ignore any markup that it
does not support, including markup in non-scxml namespaces. If the value
of the exmode attribute is “strict”, the SCXML processor must treat such
markup as syntactically invalid and reject the document at initialization
time. Taking advantage of the extensibility of SCXML, we propose to add a
new set of elements and attributes for being able to model offline mobile
Web applications. All the proposed additions will be placed under MMW’s
namespace.

To facilitate readability, this section is organized as a set of tables which
follow, as far as possible, the structure of the SCXML specification.

Each table describes an SCXML element, whether an existing element in
the last SCXML specification or a new element proposed as part of this
work. Each row of the table represents an attribute that characterizes the
element described in the table by defining five fields: the attribute name,
whether it is required or not, the type of the attribute, its default value and
all the valid values. Besides, each attribute includes a Description field and,
optionally, a Motivation field. The Description field indicates the purpose of
the attribute and its relationship with the rest of the SCXML specification.
The Motivation field aims to explain the rationale of the proposal and, in
some cases, the advantage of the proposed extension with respect to the
existing SCXML mechanisms.

Table 1. Additions to the existing data element

 Element: data

Attribute Name Required Type Default Value Valid Values

Storage False Enum “server”
“client”
“server”
“both”

Description: Indicates where the data object should be stored: client-side, server-side or both.
clientScope False Enum “application” “application”

A model-based approach to generate connection-aware applications for the
mobile web

 129

“session”

Description: Indicates the scope of the data object stored at client side. "application" scope means
that the object data should persist until it is specifically removed. "session" means that the object data
should be stored until the user session ends.

Sync False Enum “none”

“auto”
“manual”
“both”
“none”

Description: Defines the kind of synchronization (automatic, manual, both or none) that should be
applied to data objects stored at both client and server sides. It only applies if the value of the storage
attribute is "both".

syncPolicy False Enum
“periodic”
“continuous”
“toOnline”

Description: Defines the policy to carry out synchronization. If it is equal to "periodic", the
synchronization will occur each period of time as specified by the "period" attribute. If it is equal to
"continuous" the synchronization will occur in real time. If it is equal to "toOnline", the
synchronization will occur each time the connection mode goes from offline to online.
Period False Decimal

Description: Indicates the interval of time between two consecutive synchronization actions when the
attribute syncPolicy takes the value “periodic”.

Table 1 shows the proposed additions to the existing data element, which

is used to declare and populate portions of the datamodel, which offers the
capability of storing, reading, and modifying a set of data that is internal to
the state machine.

Table 2. Specification of the proposed sync element

 Element: sync

Attribute Name Required Type Default Value Valid Values

dataID True NMTOKEN
Any valid
NMTOKEN

Description: Specifies the data object to be synchronized. If the referenced data object includes the
storage attribute set to “both” and the sync attribute set to “manual” or “both”, it immediately forces
the data synchronization in both storages (client and server sides).

130 Javier R. Escolar, Cristina G.Cachón, Ignacio Marín , Jean Vanderdonckt,
Vivian Motti

Table 2 exposes the creation of a new sync element as part of the

SCXML executable content. Executable content consists of actions that are
performed as part of taking transitions. In particular, executable content
occurs inside onentry and onexit elements (placed within state elements) as
well as inside transitions. When the state machine takes a transition, it
executes the onexit executable content in the states it is leaving, followed by
the content in the transition, and finally by the onentry content in the states
it is entering. The proposed sync element is intended to trigger the
synchronization process for the specified data object. How the
synchronization process takes place is up to the code generator.

Table 3 details the attributes added to the existing state element, which
holds the representation of a state within the state machine.

Table 3. Specification of the proposed state element

 Element: state

Attribute Name Required Type Default Value Valid Values

category False Enum “generic”

“view”
“use case”
“application”
“generic”

Description: Indicates the type of state. A “view” state represents a specific UI screen (window, web
page, etc.) in the application. A “use case” state is a parent state containing a set of “view” states. An
“application” state represents a parent state containing a set of “use case” states.
Uri false URI

Description: Indicates the URI associated to a "view" state. It only applies to those states with the
category attribute set to "view".

Cache false Boolean false

Description: Indicates whether the resources associated to the view must be cached or not. It only
applies to those states with the category attribute set to "view".

cacheType false NMTOKEN “static”
“static”
“dynamic”

Description: "static" indicates that the view contents are static so they will not change during the
application life cycle. Thus, resources must be cached just once. "dynamic" means that the contents
of the view may change during the application life cycle, so resources must be cached in each online
access. It only applies to those states with the category attribute set to "true".

offlineFallback false NMTOKEN

Description: The ID of a fall-back state which must be entered when the connection mode is offline.

A model-based approach to generate connection-aware applications for the
mobile web

 131

To better understand the proposed method for the creation of connection-
aware mobile Web applications and how to use the SCXML notation, an
example prototype (car rental system) is provided8.

6. Implementation details
This section aims to explain technical details about the solution that we
have implemented to validate the proposed method for the creation of
connection-aware applications. The solution has been implemented by
extending the MMW platform. Some specific details about the functionality
of MMW are explained. However, we will highlight those contributions
added to the platform exclusively as part of this research work.

Over the last years, different techniques have been used in order to store
data at client side. HTTP cookies were designed to store small pieces of
information within the browser, and they have been mostly used to keep
authentication credentials in the client. More recently, some browser plug-
ins as Gears9 have been providing offline capabilities until they have been
standardized by W3C as part of the HTML5 specification. Our on-going
work in the automatic generation of offline mobile Web applications is
based on the available HTML5 capabilities at the time of writing this
article: Application Cache, Web Storage, Web SQL Database, IndexedDB
(Mehta et al, 2012) and File API (Ranganathan and Sicking, 2011). Note
that both SCXML and HTML5 are still under development as working draft
documents, so possible future changes in both specifications might affect
the current implementation.

The first issue to be faced when delivering offline applications is to
guarantee that the client device supports offline features. Our
implementation uses two different approaches to know whether a specific
mobile browser supports offline capabilities. On the one hand, it is possible
to query any DDR compliant with the DDR Simple API. It allows
determining which offline capabilities are supported by the browser. On the
other hand, we provide a custom JavaScript library based on Modernizr in
order to find out if a given capability is supported. The first option is

8 Authoring an example application, http://tinyurl.com/RRIOC13
9 Gears offline plug-in, http://code.google.com/p/gears/

132 Javier R. Escolar, Cristina G.Cachón, Ignacio Marín , Jean Vanderdonckt,
Vivian Motti

preferred in order to save client-side resources –in this case, processor load.
The second option is used when the DDR fails to respond to the query.

As explained in section 4, MMW uses IDEAL2 to declaratively describe
device-independent UIs. In order to transform from IDEAL2 to the most
appropriate markup language for each device, the framework provides
specific Extensible Stylesheet Language Transformations (XSLT) able to
build Java Server Pages (JSPs) at generation time, which are then used to
create dynamic web pages at runtime. To carry out the runtime generation
process, the server-side platform provides a Rendering Engine architecture
based on the concept of RenderKit. A RenderKit is a group of renderers and
each device family (group of devices with common features) is associated to
a set of RenderKits by means of a configuration file. In this way, the
platform can easily detect, at runtime, the best appropriate renderer for each
client browser. This approach allows us to create customized renderers for
existing IDEAL2 UI components and tailored to concrete device families.
Following this approach, we have developed a new HTML5 RenderKit
based on jQuery Mobile (Firtman, 2012), a framework for developing
multiplatform HTML5 mobile UIs. The current state of the implementation
supports the following subset of IDEAL2 elements: ui, body, section, div,
menu, a, input, inputDate, secret, submit, select, select1, item, label, value,
submit, footer image, media, map, placemark. In order to generate offline
applications following this approach, all the URLs pointing to jQuery
Mobile dependencies (Javascript, stylesheeet and image files) needs to be
added to the CACHE section of the application cache, so they are cached
for its latter offline usage. Otherwise, the UI would offer a poor aspect and
functionality when being accessed in offline mode.

The Flow Engine is the MMW software component in charge of
managing the navigation flow. This section explains how it was modified in
order to offer the possibility of generating and managing offline mobile
Web applications. This is achieved by means of an extended version of
SCXML, as detailed in section 5.

The first step to be taken is the validation of the SCXML document
defined by the developer (SCXMLD) in order to guarantee a valid definition
(SCXMLV). This validation process is performed against the appropriate
XML Schemas (XSD). These XSD files are based on those included in the
W3C specification and have been modified to support the proposed

A model-based approach to generate connection-aware applications for the
mobile web

 133

additions introduced in section 5. Once a valid SCXML is available, some
XSLT are applied to extract different outcomes.

First of all, a completed version of the SCXML document is generated by
adding platform specific elements, actions and transitions (SCXMLC). One
example is the automatic addition of error states or synchronization actions.
Moreover, an application cache manifest is created in order to define the
URLs to be statically cached. Note that the URLs associated to view states
marked as statically cacheable should be included in the application cache
manifest. Finally, a set of JavaScript libraries intended to manage the offline
storage within the mobile browser are generated. Figure 2 illustrates the
generation process.

Figure 2. Flow management

Our implementation uses the Commons SCXML library10, an open-
source Java SCXML engine. This library provides its own implementation
of the Java object model for SCXML and a custom parser. At deployment
time, the SCXMLC document is parsed into the Commons SCXML Java
object model and the SCXML engine is instantiated. At runtime, each
request coming from the client to the server includes the name of the control

10 Apache Commons SCXML Web Site: http://commons.apache.org/scxml

134 Javier R. Escolar, Cristina G.Cachón, Ignacio Marín , Jean Vanderdonckt,
Vivian Motti

that the user has interacted with and the kind of interaction that has
occurred. This piece of information is intercepted by the server-side and
transformed into an SCXML event triggered to the SCXML engine. Each
view state includes a custom action in charge of invoking the Rendering
Engine to proceed with the rendering process.

The Rendering Engine is responsible for delivering the most appropriate
code for each mobile browser. In our case, the HTML5 generated markup
includes references to both the application cache manifest and the offline
JavaScript files. These files cover several functionalities. Firstly, they
manage the storage of contents to be cached (both markup content and pure
data) according to the assign actions and the data element attributes by
using the most appropriate available techniques: LocalStorage,
SessionStorage, IndexedDB, WebSQL Databases, etc.

Furthermore, they are intended to synchronize browser and server
storages according to the synchronization policies expressed in the data
attributes by using WebSockets (Hickson, 2012). Finally, they modify the
browser URL according to the uri attribute in each view state by using the
History API.

7. Conclusions and future work
This article introduces a model-based method for the development of
connection-aware mobile Web applications. It proposes a state-chart-based
navigation model and a specific notation to represent it. This notation has
been defined by extending SCXML in order to incorporate custom elements
and attributes intended to manage common challenges in online/offline
development.

The proposal has been implemented as part of the MMW platform, a
standards-based open-source framework for the development of mobile
Web applications. It allows developers to define applications in a
declarative manner. Furthermore, it automatically generates the most
appropriate code for each device and mobile browser taking into account the
online-offline features specified in the navigation model.

The main advantage of the proposed approach is the reduction of
complexity in the creation of online-offline web applications. In this way,
developers can concentrate on what the application must do, rather than

A model-based approach to generate connection-aware applications for the
mobile web

 135

how to implement it. For instance, they can clearly differentiate the
functionalities offered in online and offline modes, rather than
implementing the synchronization logic. Consequently, this reduction in
complexity minimizes the time-to-market of the resulting applications and
improves their maintainability.

This article serves as a starting point for future research and development
work in the same field. Firstly, we will analyse the management of the
problem from higher abstraction layers, such as the Abstract User Interface
level proposed by the CAMELEON framework (Limbourg, 2003). In
addition, we will improve the proposed notation by incorporating on-going
and emerging standards, considering new markup languages and APIs for
Model Based User Interfaces coming from the W3C, new features in the
SCXML specification or even considering standard events taxonomies11.
The work achieved for HTML5 browsers does not only enable the
development of offline applications but also permits resource caching to
increase performance. Future work must focus in resource caching for older
web and WAP browsers. This will be carried out by generating the
appropriate cache meta tags and HTTP headers. Furthermore, we will also
perform an external validation of the proposed method by measuring
development time costs in comparison with other approaches. Finally, we
will create an authoring tool to speed up the development of MMW
applications, based on Eclipse Modelling Framework.

Acknowledgments
The authors would like to acknowledge the support of the Serenoa European
Project, funded by the European Community’s Seventh Framework
Program under grant agreement number 258030 (FP7-ICT-2009-5).

References
Ananthanarayanan, G., Blagsvedt, S., Toyama, K. OWeB: a framework for offline web

browsing. LA-Web’06 Proceedings of the Fourth Latin American Web Congress. 15-24,
2006.

11 W3C Web Events Working Group: http://www.w3.org/2010/webevents

136 Javier R. Escolar, Cristina G.Cachón, Ignacio Marín , Jean Vanderdonckt,
Vivian Motti

Ballard, B. Designing the mobile user experience. Barbara Ballard, Little Springs Design,

Inc., USA. John Wiley & Sons, Ltd, 2007.
Barnett, J. et al. State Chart XML (SCXML): State Machine Notation for Control

Abstraction. W3C Working Draft 16 February 2012, http://www.w3.org/TR/2012/WD-
scxml-20120216/, 2012.

Cantera, J.M, Díaz, J.L, Rodríguez, C. IDEAL2 Core language. MyMobileWeb Working
Draft, 31 December 2010, http://files.morfeo-
project.org/mymobileweb/public/specs/ideal2/ideal2-20101231, 2010.

Cantera, J.M, Rabin, J., Hanrahan, R., Marín, I. Device Description Repository Simple API.
W3C Recommendation, 5 December 2008, http://www.w3.org/TR/2008/REC-DDR-
Simple-API-20081205 , 2008.

Ceri, S. and Fraternali, P. and Bongio, A. Web Modeling Language (WebML): a modeling
language for designing Web sites. Computer Networks and ISN Systems, 33(1-6), pp.
137-157 , 2000.

Feuerstack, S., Colnago, J.H., de Souza, C.R., Pizzolato, E.B. Designing and Executing
Multimodal Interfaces for the Web based on State Chart XML. Proceedings of third
W3C Web Conference Brasil 2011, Rio de Janeiro, 2011.

Finkelstein, S. R., Stéphane, M., Suryanarayana, L. Device Independence Principles. W3C
Working Group Note 01 September 2003, http://www.w3.org/TR/2003/NOTE-di-princ-
20030901 , 2003. Last version available at: http://www.w3.org/TR/di-princ/.

Firtman, M. jQuery Mobile: Up and Running. O'Reilly Media, 2012. Project web site:
http://jquerymobile.com.

Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view controller
user interface paradigm in Smalltalk-80. Journal of Object-Oriented Programming,
1(3):26–49, August/September 1988.

Hansmann, U., Mettala, R.M.,Purakayastha, A. and Thompson, P. SyncML: Synchronizing
and managing your mobile data. Prentice Hall, 2003.

Hickson, I. The WebSocket API. W3C Working Draft 24 May 2012,
http://www.w3.org/TR/2012/WD-websockets-20120524 , 2012.

Hickson, I. HTML5: A vocabulary and associated APIs for HTML and XHTML. W3C
Working Draft 29 March 2012, http://www.w3.org/TR/2012/WD-html5-20120329/ ,
2012. Last version available at: http://www.w3.org/TR/html5/.

Kao, Y. W., Chow, T. H., Yuan, S. M. Offline web browsing for mobile devices. Journal of
Web Engineering. 10, 21-47 , 2011.

Kao, Y., Lin, C., Yang, K. A., Yuan, S. M. A Web-based, Offline-able, and Personalized
Runtime Environment for executing applications on mobile devices. Computer Standards
and Interfaces. 34, 212-224, 2011.

Kliche, I. Authoring Applications for the Multimodal Architecture. W3C Working Group
Note 2 July 2008, http://www.w3.org/TR/2008/NOTE-mmi-auth-20080702/ , 2008. Last
version available at: http://www.w3.org/TR/mmi-auth/.

A model-based approach to generate connection-aware applications for the
mobile web

 137

Koch, N. and Knapp, A. and Zhang, G. and Baumeister, H. UML-based Web Engineering.

Web Engineering: Modelling and Implementing Web Applications. Springer London.
157-191, 2008.

Limbourg, Q., Vanderdonckt, J., Bouillon, L., Calvary, G., Coutaz, J., Thevenin, D. A
unifying reference framework for multi-target user interfaces. Interacting with
Computers. 15, 289-308, 2003.

Mak, G., Long, J., Rubio, D., Mak, G., Long, J., Rubio, D. Spring Web Flow. Spring
Recipes. pp. 249-295. Apress, 2010. Project web site:
http://www.springsource.org/spring-web-flow

Melchior, J., Tesoriero R. (Eds) W3C Working Group Submission, 1 Fenruary 2012.
UsiXML website - http://www.usixml.eu/ USer Interface eXtensible Mark-ip Language
Mbaki, E., Vanderdonckt, J., Guerrero, J., Winckler, M. Multi-level Dialog Modeling in

Highly Interactive Web Interfaces. 8th International Conference on Web Engineering.
445, 38-43, 2008.

McGlashan, S. et al. Voice Extensible Markup Language (VoiceXML) 3.0. W3C Working
Draft 16 December 2010, http://www.w3.org/TR/2010/WD-voicexml30-20101216/ ,
2010. Last version available at: http://www.w3.org/TR/voicexml30/.

Mehta, N. R., Sicking, J., Graff, E., Popescu, A., Orlow, J. IndexedDB Database API, W3C
Working Draft 24 May 2012, http://www.w3.org/TR/2012/WD-IndexedDB-20120524/ ,
2012.

Montero, F., López-Jaquero, V. Comprehensive Task and Dialog Modelling. Lecture Notes
In Computer Science. 4550, 1149, 2007.

Ranganathan, A., Sicking, J. File API. W3C Working Draft 20 October 2011,
http://www.w3.org/TR/2011/WD-FileAPI-20111020/ , 2011.

Silverston, L. and Agnew, P. The Data Model Resource Book: Volume 3:
Universal Patterns for Data Modeling. Wiley, 2011.

Vanacken, L. Multimodal selection in virtual environments: Enhancing the user
experience and facilitating development. PhD Thesis. UHasselt Diepenbeek ,
2009.

Vosloo, I., Kourie, D.G. Server-centric Web frameworks. ACM Computing
Surveys. 40, 1-33, 2008.

Winckler, M., Palanque, P. StateWebCharts: a formal description technique
dedicated to navigation modelling of web applications. Proceedings of DSV-IS
2003: Design, Specification, and Verification of Interactive Systems, LNCS
2844. Springer, Berlin. , 2003.

Winckler, M., Trindade, F., Stanciulescu, A., Vanderdonckt, J. Cascading Dialog Modeling
with UsiXML. Proc. of 15th Int. Workshop on Design, Specification, and Verification of
Interactive Systems DSV-IS’2008 (Kingston, July 16-18, 2008). pp. 121-135. Springer,
Berlin, 2008.

Zhang, Gefei and Hölz, M. Aspect-Oriented Modeling of Web Applications with HiLA.

138 Javier R. Escolar, Cristina G.Cachón, Ignacio Marín , Jean Vanderdonckt,
Vivian Motti

Current Trends in Web Engineering. Lecture Notes in Computer Science. 211-222,
2012.

USer Interface eXtensible Markup Language (UsiXML) Vanderdonckt, J., Beuvens, F.,

