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1. Introduction

Let ¢:_/P’1—>P1 be a rational map of degree > 2
defined over a number field K, and write ¢" for the
nth iterate of ¢. For a PeP!, let
¢+(P):{P,¢(P),¢2(P),...} be the forward orbit of P
under ¢, and let

4 (P)=U¢™"(P)

n>0

point

be the backward orbit of P under ¢. We say P is
¢ —preperiodic if and only if ¢ (P) is finite.

Viewing the projective line P! as Allu{oo} and
taking PeAll(K), a theorem of Silverman [4] states

that if oo is not a fixed point for @2, then ¢ (P)
contains at most finitely many points in ¢, the ring of
algebraic integers in K. If S is the set of all
archimedean places for K, then () is the set of points
in Pl(K) which are S-integral relative to o« (see section

2). Replacing oo with any point Q e/Pl(K) and S with

any finite set of places containing all the archimedean
places, Silverman's Theorem can be stated as: If Q is not

a fixed point for ¢2, then ¢ (P) contains at most

finitely many points which are S-integral relative to Q.

A conjecture for finiteness of integral points in
backward orbits was stated in [[6], Conj. 1.2].

Conjecture 1.1. If Q e]Pl(K) is not S-preperiodic, then

¢~ (P) contains at most finitely many points in PY(K)
which are S-integral relative to Q.

In [6], Conjecture 1.1 was shown true for the powering
map ¢(z)= 29 with degree d>2, and consequently

for Chebyschev polynomials. A gener-alized version of
this conjecture, which is stated over a dynamical family of

maps |g|, is given in [[1], Sec. 4]. Along those lines, our
goal is to prove a general form of Conjecture 1.1 where
|| is the family of Lattés maps associate to a fixed

elliptic curve E defined over K (see Section 3).

2. The Chordal Metric and Integrality

2.1. The Chordal Metric on PN. Let My be the set
of places on K normalized so that the product formula
holds: for all aeK”,

H |a|v =1

veMk
For points P=[xg:% %y ] and
Q=[yo:yi::yy] in PN(K,), define the v-adic
chordal metric as
maxi,j(|xiyj_XjYi|v)

ma; (x|, ).-max (], )

AV(P'Q):

Note that A, is independent of choice of projective
coordinates for P and Q, and 0< A, () <1 (see [2]).
2.2. Integrality on Projective Curves. Let C be an

irreducible curve in PN defined over K and S a finite
subset of My which includes all the archimedean places.

A divisor on C defined over K is a finite formal sum
>nQ with njeZ and Q eC(K). The divisor is
effective if n; >0 for each i, and its support is the set

Supp(D) = {Q;,---,Q, }.
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Let oy (P)=-logA, (P.Q) and
Apy(P)=2ndq ,(P) when D=3 nQ. This makes
Ap,y an arithmetic distance function on C (see [3]) and

as with any arithmetic distance function, we may use it to
classify the integral points on C.

For an effective divisor D = ZniQi on C defined over

K, we say P eC(K) is S-integral relative to D, or P is a
(D, S)-integral point, if and only if ﬂQUV(PT)zo for
i 3

all embeddings o,7:K — K and for all places v¢S.
Furthermore, we say the set 2 < C(K) is S-integral

relative to D if and only if each point in 2 is S-integral
relative to D.

As an example, let C be the projective line Allu{oo},

S be the Archimedean place of K=Q, and D=c.
For P=x/y, with x and y are relatively prime in Z,

we have Ap, (P)=-logl|y|, foreach prime v. Therefore,
P is S-integral relative to D if and only if y=+1; thatis,

P is S-integral relative to D is and only if P e Z.
From the definition we find that if S; S, are finite

subsets of My which contains all the archimedean
places, then P isa (D, S, ) -integral point implies that P is
a (D,S;) -integral point. Similarly, if Supp (D;) <
Supp(D,), then P isa (D,,S) -integral point implies that
P is also a (D2,S) -integral point. Therefore enlarging S
or Supp(D) only enlarges the set of (D, S) -integrals points
on C(K).

For ¢:C; —» C, a finite morphism between projective
curvesand P eC,, write

FP= 3

Qe (P)

e;(Q)Q

where €,(Q)>1 is the ramification index of ¢ at Q.

Furthermore, if D =ZniQi is a divisor on C, then we
define ¢’ D= g Q.
Theorem 2.1 (Distribution Relation). Let ¢:C; — C, be
a finite mor-phism between irreducibly smooth curves in
pN (K). Then for Q e Cy, there is a finite set of places S,
depending only on ¢ and containing all the archimedean
places, such that Ap , o = ’1¢*P,v forall veS.

Proof. See [[3], Prop. 6.2b] and note that for projective
varieties the Agy s term is not required, and that the
big-O constant

depending on P and Q.
Corollary 2.2. Let ¢:C; —>C, be a finite morphism

is an Mg -bounded constant not

between irreducibly smooth curves in PN (K), let
P e C,(K), and let D be an effective divisor on C, defined

over K. Then there is a finite set of places S, depending
only on ¢ and containing all the archimedean places,

such that ¢(P) is S-integral relative to D if and only P is
S-integral relative to qﬁ*D.

Proof. Extend S so that the conclusion of Theorem 2.1
holds. Then for D=) nQ; with each n;>0 and

Q; €C,(K), we have that.
l¢*D,V(P):leV (¢(P)):ZniﬂQi,v (¢(P))

So /1¢*D’V(P):O ifand only if A, (#(P))=0.

3. Main Result

Let E be an elliptic curve, v : E — E a morphism, and

7:E— P' be a finite covering. A Latteés map is a

rational map ¢: P - pt making the following diagram
commute:

E Y3 E

|~ |~
Pt — P!

For instance, if E is defined by the Weierstrass
3 w=[2] is the
endomorphism on E, and

equation y2 =x3+ax® +bx+c,
multiplication-by-2

z(x,y)=x, then

x* —2bx? +8cx +b® —4ac
#(x)= 3 2 :
4x° +4ax” +4bx +4c

Fix an elliptic curve E defined over a number field X,
and for P e P(K) define:

there exist K —morphosmy : E — E

[¢]={¢: P" — P'|and finite covering 7 : E — P* such
that oy =gorx

To= U ¢"(P)

¢elo]

= [ U ¢ (To )J U Pl(K)[(p]— preper
¢elo]

A point Q is [¢]-preperiodic if and only if Q is ¢ -

preperiodic for some ¢ €[p]. We write Pl(IZ)[(p]_preper

for the set of [¢]-preperiodic points in PYK).
Theorem 3.1. If Q e 2*(K) is not [¢] -periodic, then T

contains at most finitely many points in Pl(K) which are
S-integral relative to Q.
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Proof. Let T'y be the End(E)-submodule of E(K) that
is finitely generated by the points in ;r‘l(P), and let

I'={£ e E(K)|1(£) e Ty for some non-zero 4 e End (E)}.

Then ﬂ’l(r)cr’. Indeed, if z(&)eT is not [] -
preperiodic, then & is non torsion and (¢ o7)(£) el
for some Lattés map ¢ . So (¢ ox)(<) el for some
morphism y; : E — E, and this gives (zoy;)(&) e 4, (P)
for some Lattés map ¢, . Therefore z//l(g)e(;z‘logbz)(P)

Z(l/lzoﬂ_l)(P) for some morphism y, :E — E. Since
any morphism w:E—E is of the form
w(X)=a(X)+T where acEnd(E) and T eEy
(see [[5], 6.19]), we find that there is a 4 € End (E) such
that A(&) is in Ty, the End(E)-submodule generated by

ﬂ’l(P). Otherwise, if 7(&)eT is [¢]-preperiodic, then
ﬂ(E(K)m): P(K)[ 1 preper ([[5], Prop. 6.44]) gives
that £ may be a torsion point; again £eTI'' since
E(IZ)torS c T Hence z (I cT".

Let D be an effective divisor whose support lies entirely

in n’l(Q), let 7% be the set of points in I" which are
S-integral relative to Q, and let 735 be the set of points in
I'" which are S-integral relative to D. Extending S so that
Theorem 2.1 holds for the map =:E — P, and since

Supp(D) < Supp(ﬂ*D), we have: if y eT" is S-integral
relative to Q, then 72'_1(}/) is S-integral relative to D.
Therefore ﬁ’1(7€Q)c72,5. Now 7 is a finite map and

ﬂ(E(K))zzﬁ’l(K); so to complete the proof, it suffices

to show that D can be chosen so that A is finite.
From [[5], Prop. 6.37], we find that if A is a nontrivial
subgroup of Aut(E), then E/A= P' and the map

7:E— P can be determine explicitly. The four
possibilities for =, which are 7(x,y)=x, x2,x3, or y

correspond respectively to the four possibilities for A,
which are A = i, ta, 115, O g, Which in turn depends

only on the j-invariant of E. (Here, uy denotes the Nth
roots of unity in C.)
First assume that z(x,y)#y . Since Q is not []-

preperiodic, take §e;z’l(Q) to be non torsion. Then
—fe;r_l(Q) A= pp, 1y, 0 lg, and
E—(=&)=2¢ is non-torsion. Taking D =(&)+(-¢),
[[1], Thm. 3.9(i)] gives that Z&% is finite.

Suppose that z(x,y)=y. Then z(xy)={&¢& &
where £+&'+&"=0 and & is non-torsion since Q is

since

not [¢] -preperiodic. Assuming that both &-¢&' and

£—¢&" are torsion give that 3¢ is torsion, and this
contradicts the fact that & is torsion. Therefore, we may
assume that £&-¢& is non-torsion. Now taking
D =(&)+(&'), [[1], Thm. 3.9(i)] again gives that 7 is

finite. Hence RQ, the set of points in ' which are S-
integral relative to Q, is finite.
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