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1. Introduction and Preliminaries

In 1994, in [8] Matthews introduced the notion of a
partial metric space and proved the contraction principle
of Banach in this new framework. The Existence of a
fixed point for the contraction type mappings in partially
metric spaces and its applications have been considered
recently by many authors [1,2,3,6,7,9,12,13,15]. Consistent
with [4,8], the following de_nitions and results will be
needed in the sequel.

Definition 1.1. [8] A partial metric on a nonempty set X

is a function p:XxX —>R" such that for all

X, y,ze X:

(P) x=y < p(x, x) = p(x, y) = p(Y, y),

(PZ) p(X1 X) < p(X1 Y),

(P3) p(x, y) = p(y. X),

(P4) p(X1 y) < p(X, Z) + p(21 y) - p(Z, Z)'

A partial metric space is a pair (X, p) such that X is a
nonempty set and p is a partial metric on X.

It is clear that, if p(x, y) = 0, then, we get x =y from (P,)
and (P,). But if x =y, p(x, y) may be a positive number
other than 0.

Example 1.2. [8] Let a function p : R"xR™ — R™ be
defined by p(x, y) = max{x, y} for any x, y € R". Then,
(R™, p) is a partial metric space.

Example 1.3. [8] If X ={[a,b] : a,b €R,a<b}, thenp:
X x X — R" de_ned by p([a, b], [c, d]) =max{b, d} —
min{a, c} is a partial metric on X.

If p is a partial metric on X, then the function p®: X x X
— R* given by

p*(x,¥)=2p(xy)-p(xx)-p(y.y) (1D

is a metric on X.
Definition 1.4. [8,10,11] Let (X, p) be a partial metric
space. Then

(i) A sequence {xn} in a partial metric space (X, p)
converges to a point x & X if and only if

p(x,x):nli_r)nwp(x,xn).

(ii) A sequence {xn} in a partial metric space (X, p) is
called a Cauchy sequence if there exists (and is finite

lim  p(Xm. Xy )-
n,m—oo
(iii) A partial metric space (X, p) is said to be complete if
every Cauchy sequence {xn} in X converges to a point x
E X, thatis p(x,x)=lim p(Xy.,%,)-

n,m—oo

It is easy to see that, every closed subset of a complete
partial metric space is complete.
Lemma 1.5. [8,9,10] Let (X, p) be a partial metric space.
Then

(a) {x} is a Cauchy sequence in (X, p) if and only if it is
a Cauchy sequence in the metric space (X, p°).

(b) A partial metric space (X, p) is complete if and only
if the metric space (X, p®) is complete. Further-more,

lim p*(x,,x)=0
N—o0
if and only if
p(x,x)=lim p(x,X,)=lim p(Xy. X, ).
n—oo n,m—oo

Lemma 1.6. [2] A mapping f : X —— X is said to be
continuous at a € X, if for every € > 0, there existsé > 0
such that f(B(a, 9)) < B(f(a), €).

The following result is easy to check.

Lemma 1.7. Let (X, p) be a partial metric space. T : X
— X is continuous if and only if given a sequence {x,} < X
and x € X such that p(x,x)= lim p(x,,x), then

N—oo

p(Tx,Tx) = r]Ii_r)noQ P(TXy, TX).

Definition 1.8. Let X be a set, T and g are selfmaps of
X. A point x in X is called a coincidence point of T and g
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if Tx = gx. We shall call w = Tx = gx a point of
coincidence of T and g.

Definition 1.9. [14] Let (X, p) be a partial metric space
and T, g : X — X are mappings of X into itself. We say
that the pair {T, g} is partial compatible if the following
conditions is held:

(by) if p(x, x) = 0 then p(gx, gx) =0,

(b2) lim p(T (g%, ),9(Tx,))=0 whenever {x.} is a

sequence in X such that Txn — t and gxn — t for some t
e X.
Example 1.10. Let X = [0,00) endowed with the usual
partial metric p de_ned by p : X x X — X with p(x, y) =
max{x, y}. Suppose T, g : X — X such that Tx = 5x* and
gx = 2x* for all x € X. It is easy to check that the pair {T,
g} is partial compatible.

Matthews [8] obtained the following Banach fixed-
point theorem on complete partial metric spaces.
Theorem 1.11. (Matthews[8]) Let f be a mapping of a
complete dualistic partial metric space (X, p) into itself
such that there is a real number ¢ with 0 < ¢ < 1,
satisfying

p(f(x). f(y))<cp(xy), (1.2)
for all x,y € X, then f has a unique fixed point.

Recently, 1. Altun and A. Erduran [5] obtained the
following nice result, which generalizes Theorem 1.11 of
Matthews.

Theorem 1.12. [5] Let (X, p) be a complete partial metric
space and let f : X — X be a map such that

p(f(x), f(y))<op(xy),

for all x,y € X, where ¢ : [0,:0) — [0,%0) is a continuous,
non-decreasing function such that ¢(t) <t for each t > 0.
Then f has a unique fixed point.

Theorem 1.13. [3] Let (X, p) be a complete partial metric
space and let F : X — X be a map such that

P(xY), p(xFx), p(Yy,Fy), »
p(Fx, Fy) < ¢| max 1[p % Fy) +p(y,Fx)] 14

for all x,y € X, where ¢ : [0,00) —— [0,0) is continuous,
nondecreasing function such that ¢(t) <t for each t > 0,
then F has a unique fixed point.

(1.3)

2. Main Results

In this section, we fixed the set of functions by v, ¢ :
[0,+00) — [0,+0) such that

(a) w is increasing;

(b) o(t) < w(t) for each t > 0, p(0) = w(0) =0;

(c) o(t) and w(t) are continuous functions.
Define ¥ = {(y, ¢) : v and ¢ satisfy (a),(b) and (c)}.

Now, we establish an existence of common fixed point
of a family mappings satisfying contractive condition
involving w — ¢ functions in the setup of partial metric
spaces. Our results generalize Theorems 1.11,1.12 and
1.13.
Theorem 2.1. Let (X, p) be a complete partial metric
space. Suppose {T,; X —— X : a € I} be a family of
mappings and g : X — X be a self map. Also there exists iy

€ | such that Tio c g(X), gX is closed in (X, p) and
assume that there exists (y, ¢) € ¥ such that

w(p(Tiox,Tiy))Sgo(M (xy)), 2.1
forall x,y € X, where
p(oxay). p(9x T x). p(ay. Tiy),
M(X,y):max p(gxyTiy).F p(gy,Tiox) (22)

2

Then, there exists a unique x & X such that gx = Tix
forall i €1, thatis, g and {T;: i € I} have a unique
coincidence point in X. Moreover, any coincidence point
of g and Tio is a coincidence point of g and {T;: i € I}.

Also, we have p(gx, gx) = 0.
Proof. Let xo be an arbitrary point in X. Construct the
sequence {x,} such that Tio (%) = g(x,+1) for eachn =0, 1,

2, .... which is possible since Tio X < gX. Now by (2.1),
we have

'//( p(TiO (Xn)'Tio (Xn+1))) < (”(M (Xn!xn+1))’ (2.3)
where

M (Xnvxn+1)

p(g (%), 9 (Xn+l))’ p(g(xn)’Tao (%n ))'

p(g (Xn+1)’Ti0 (Xn+l))'

p(g(xn)vTio (Xn+1))+ p(Q(Xn+1)7Ti0 (Xn ))
2

= max

p (T|0 Xn—l Xn ))v p(Tio (Xn—l) ’Tio (Xn ))’
=maxs p (TIO |0 Xn+1>)
p(T|0 Xn—1 T Xn+1)) p<Ti0 (%n )'Tio (%n ))

P(Ty (* >) P T ( !

= max (Tu

By (ps), we have

p(Tio (%n-1):Tig (Xn+1))+ p(TiO (X ). Tig (%n ))
- p(TiO (Xn—l)vTiO (Xn)3+ p(TiO (Xn>’Ti0 (Xn+1))

h 2
<max{ p(Tig (%1-1):Tig (n)). (T (¥n ), Tig (X))}
Therefore,

% %) = max p(TI (X1-2).Ti (Xn)),
M (X 1) - {p(T.Z( o EXM»}

If we suppose that

M (Xq, Xns1) = D(Tio (%n ). Tig (Xn+1))
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and Tio (Xn) =
9(Xns1), Tiy (Xns1) = 9(Xnsea), that is, Tjy and g have a

coincidence at X = Xn+1, and so the proof is completed,
otherwise if p(Ti0 (Xn), Tio (Xn+1)) > 0, then

l/l( p(Tio (Xn)'TiO (Xn+1))) < (0( p(TiO (Xn)'Tio (Xn+1)))

< ‘//( p(Tio (Xn)’Tio (Xn+l))

Tio (Xn+1) for some n, then by Tio (X)) =

It is impossible.
If M (Xn!xn+1) = p<Ti0 (Xn—l)vTiO (Xn )), we get

V/( p(TiO (Xn)’Tio (Xn+l))) < 60( p(Tio (Xn1)s To (% ))) (2.4)
< l//(p( i (Xn1), Tig (%n )))

If Tig (¥1-1) =Ty (x,) for some n, then by

Tio (%) =9 (%), Tig (Xn)=9(xy), that is, T;; and g

have a coincidence at x = x,,, and so the proof is completed.

Since we suppose that p(Ti0 (%n-1):Tig (xn)) >0 and by
the monotone property of  function, we have
p(Ty (%) Ty (tnen)) < P(Tig (42) Ty (3,)) - Therefore,
the sequence p(TiO(xn),TiO(xml)) of real numbers is

monotone decreasing. Hence there exists a real number r >0
such that,

lim p(Ty (%), Tig (Xns1)) =T-

n—o0

We claim that = 0. On the contrary, assume that
nlmo p(Ti0 (%) Tig (Xn+1)) =r>0.

Since w and ¢ are continuous then from (2.4) and (2.5),
we have

v (r)= tim y (p(Ty (). Ty (xn.0)))
= r}'i”{ﬂ(”( p<Ti0 (Xn—l)vTiO (%n ))) =o(r),
and so r =0, a contradiction. Thus
nleoo p(Tio (% ):Tio (Xn+1)) =0.

From p( TiO (Xﬂ)’ TIO (Xn))! p( Tio (Xn+1)y TiO (Xn+1)) S
P(Tig (%n), Tiy (Xnsa)) and (2.6), we have

n|i_r)nw p(Tio (Xn)’Tio (% ))

(2.5)

(2.6)

(2.7)
= nlf)noo p(Tio (Xn+1)’Ti0 (Xn+1)) =0.
From (2.6), (2.7) and (1.1), we have
(2.8)

nli_r)rcl)0 p° (Ti0 (*1):Tig (xn+1)) =0.

Next, we claim that {Ti0 Xn } is a Cauchy sequence in

the metric space (X, p%). Assume the contrary. Then there
exists an e > 0 and subsequences {Xni} and {Xmw } of {X.}

with n(k) > m(k) > k such that p(TiO (Xng) Tio (Xm)) = €

and p(Tiy (Xngo-1): Tip (Kme)) < €
Then we have

(

ig { Xn(k)-1 ’Tio(xm(k) ) (2.9)
(o)
(

Taking k — o in (2.9) and using (2.6) and (2.7) we get

1im (T (xa)) Tio (%))
= Jm p(T' (i) T () )) =

k—o0

(2.10)

Thus from the definition of p we have

(2.11)

(2.12)

:p(Ti; (0 i (06 ))-

Taking k — o0 in (2.11) and (2.12) and using (2.6), (2.7)
and (2.10) we get

Jim p(T- (X (k))’Tio(Xm(k)))

(2.13)
= im 0T (i) To () =
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Taking k — oo in (2.14) and using (2.6), (2.7) and (2.13)
we get

kli”r;o p( ( n(k)),Tio(xm(k)_l)):f. (2.15)
Now using inequality (2.1), we have
'//(E)S‘//p(Tio(Xn(k))’Tio(Xm(k))) (2.16)

ggo(M (Xn(k)'xm(k)))'

X
= max %

= max

Letting k — o in the above inequality and using
(2.6),(2.10), (2.13) and (2.15), we obtain

€+e€
kII—r)nOOM ( ( ),Xm(k)): ax{fioaO,T}zg_
As k — o0, inequality (2.16) becomes,

v(e)<o(e)
which is a contradiction by virtue of a property of ¢.
Then, we deduce that {Ti0 (xn)} is a cauchy sequence in
(X, p°). Hence, we have

lim p( (xm)T,O(xn))zo.

m,n—oo

Now, from the definition of p* and from (2.7), we have

lim p( (Xm):Tig (%)) =0.

m,n—

2.17)

Since X is a complete partial metric space, then, from
lemma 1.5, the sequence { T, (x,) } converges in the

metric space (X, p°), so there exist z in X such that
I|m p ( (X1 ), ): lim p°(9%y,1,2)=0.
n—oo
Again, from Lemma 1.5, we get

p(z, z)_nllm p( (Xn), z)

= lim p(gxpy,2)= lim p(Ta
n—oo n,m—oo

0 (Xn)'Tig (Xm )) 218

But, from (2.17) and (2.18) we have
p(2,2) = lim p(Ty, (%,),2) = lim p(gxy.1,2)=0.(2.19)
n—o0 n—a0

Since {Tio (Xn )}g gX and gX is closed, there exists

XE X such that z = gx. Now, we claim that x is a
coincidence point of Ti0 and g. We have

p(gx,TiO (x))
< p(gx, an+1)+ p(gxn+1!Tio (X))_ p(gxn+1’ gxn+l)
= p(2,9%ns1) + p(Tio (Xn)*Tio (X))_ P(9Xn41: OXny1 )-

On taking limit as n — oo in the above inequality, we
have

p(gx,TiO (x)) < nliﬂo p(Ti0 (%), Ty (x)) (2.20)
By property of y and using (2.20), we have

l//( p(ox T, (X))) < rjilnww( p(Tig (%n):Tig (X)))

(2.21)
Snlﬂﬂoq’(M(Xn’x)):¢(p(gx'Tio(X)))- 2.21
Indeed,
p(9x.Tiy (X)) <M (%9 %)

p(gxn,QX) p( 9% Tip (%)), P(9%.Tig (X)),
=maxy p( g%y, Ty (¥))+ p(9%Tig (¥0))
2
p( 9%, 9%). P( %0 Tig (%n)). P( 9% Tig (%)),
< max {p(gxn,QXF p(9x.Tig (x))
p(9% %)+ p( 9% Ty (x0))
2

we deduce, taking limit as n — oo, that

I|m M(xn, )= p(gX,TiO(X))-

By monotone non-decreasing property of y and (2.21) we
have p(gx,Ti0 (x)) = 0, which implies that T;, (x) =gx,
that is, x is a coincidence point of Tio and g.

Now suppose that x € X is a coincidence point of Tio
and g. Then for any i € I, from (2.1), we have

wp(90T; (X)) =v (T (X).Ti (X)) < (M (x,%))
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where

g g
M (x,x) =max3 p(g(x),T;(x))

wp(gxTi (X)) <ep(g(x).Ti (x),

therefore p(gx, Ti(x)) = 0, which implies that T;(x) = gx,
that is, x is a coincidence point of {T;: i € I} and g.

Assume that z, y are coincidence points of {T; : i € I}
and g in X such that y # z. Then there exist t;, t, in X such
that, for all i € 1, Ti(t) = g(t) =z and Ti(t,) = g(t,) = y.
Using (2.1), we have

w(p(gt.aty))= '//( P(Tio (b),Ti (tz))) <p(M(t.tp))
where
M (t,t)
p(gk,9t), p(gtl’Tio (tl)): p(gt.Ti (1))
=max) p(gty, T (tp)) + p(th’Tio (tl))
2

= p(gty, otp).
So

w(p(gt, at))<e(p(gt, aty)) <w(p(ah.aty)),

which is a contradiction which proves the uniqueness of
point of coincidence.

Example 2.2. Let X = [0, 1] and p(x, y) = max{x, y}, then
it is clear that (X, p) is a complete partial metric space.
Let1 ={1,2,3,..},i0=1and foreveryi €1, Ti,g: X —
X, and vy, q) [0,0) — [0,0) be given by
(- =)L

: (2|+1)(x+3)' =6 4

Clearly (w, ) € ¥ . We show that condition (2.1) is
satisfied.

Ifx,y € X, then we have

wp (T ()T (v)) =¥ (P(TL(%).Ti ()
X3 y
:V/[m {3x+9 (2|+1)(3y+9)H

§2maxmax{ X y3 }
3x+9 (2|+1)(3y+9)
y3
23" %53 (y+3)
p(g% 9x), p(9%. Ty (X)), P9y Ti ().

<3 max p(9xTi(v)). p(9y.Ta(x)

2
=p(M(xy))-

Note that, {T;} and g satisfy all the conditions given in
Theorem 2.1. Moreover, 0 is a unique common fixed point
of {T;} and g.

=3 p(gx,g><)

As immediate consequences of Theorem 2.1 are the
following fixed point results.
Corollary 2.3. Let (X, p) be a complete partial metric
space. Suppose Tq, Ty, g : X — X be three self mappings
such that Ty (x) = g(X ), gX is closed in (X, p) and for all

X,y €X
w(p(TxTpy)) <

P(M(xY)),

where

p(9x 9y), p(9x,Tyx), p(ay. oY),
p(9x,Toy), p(gy, Tix) :
2

and (y, ¢) €Y. Then, there exists a unique x € X such
that gx = T;x = T,x. Moreover, we have p(gx, gx) = 0.
Proof. Considering {T, : | € 1} = {Ty, T,} in Theorem
2.1, we have the required proof.
Remark 2.4. Corollary 2.3 extends and generalizes many
existing fixed point theorems.
If we take w(t) =tand T; = T in Theorem 2.1, we have
the following corollary.
Corollary 2.5. Let (X, p) be a complete partial metric
space. Suppose T: X — X be a self mapping such that
T(X) c g(X), gXis closed in (X, p) and for all x,y € X

p(Tx,Ty)<p(M(xY)),

where ¢: [0,00) — [0,00) is continuous, nondecreasing
function such that ¢(t) <t for eacht> 0 and

p(gx gy), p(9x.Tx), p(ay.Ty),
(xw=mw{ % }

M (x,y)=

p(9x,Ty), p(gy. Tx)
2

Then, there exists a unique x & X such that gx = Tx.
Moreover, we have p(gx, gx) =

If we take g =l and ¢(t) = 2 ¢ for A € [0, 1) in Corollary
2.5, we have the following corollary.
Corollary 2.6. Let (X, p) be a complete partial metric
space. Suppose T : X — X be a self mapping and g: X —X.
Also T(X) < 9(X), gXis closed in (X, p) and for all X,y &€
X

?y Tx)

(xTy)

{(,%p( X), p w:w}
p(Tx,Ty) < Amax P )
2

Then, there exists a unique x € X such that x = Tx.
Moreover, we have p(x, X) =

Now, we will prove the following result.
Theorem 2.7. Let (X, p) be a complete partial metric
space. Suppose {T;: X— X : i &€ I} be a family of
mappings and g : X — X be a self map. Also there exists
ip € I such that Tio X) < g(X) and

v(p(TxTiv)) <o (M (x.), (2.22)
where
p(9xay). p(9x T x). p(ay. Tiy),
M (X, y) = max p(ox.Tyy), p(gy,TiOx) ,(2.23)

2
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and (y, 9) € W . Also suppose Tio , g are partial

compatible and continuous in (X, p). Then, there exists a
unique x € X such that gx = Tix for all i € 1. Moreover,
we have p(gx, gx) =

Proof. Using the same arguments in the proof of Theorem
2.1, we deduce that {TiO (xn)} is a Cauchy sequence in the

complete metric space (X, p®), and therefore, there exists
z € X such that

p(z,z)= lim p( ( n),z): lim p(gXn,1.2)

n— N—o0

= 1lim p(Ty (%) Tig (X)) =0.

n,m—oo

(2.24)

Now we show that z is a coincidence point of Tio and g.

Since Tio and g are continuous, from (2.24) and using
Lemma 1.7, we get

P(To2Tg2) = fim (s (T (x0)) Tig2).

p(9z,9z)= nIl_r)noo p(g(TiO (xn+1)), gz), (2.25)

Since Tio and g are partial compatible mappings, this
implies that

p(9z,9z)=
and lim p(9(Tig (1)), (Tig (Xn2))) = -

The condition (pg4), we obtain
p(Tioz,gz)s p(T 2,T; (T ( n)))
+p(Ty (T, (xn>)g(T-o<xn+1>))

+pP{g

(2 26)

(9 (1)) 92
p(TI (Xn) ,T,O(
(o

—p(9(Tip (¥ns2)) 9(Tig
bl 1 <xn>>)
p(Tip (9¥ne). (Tuo(xn+1)))
p{ (T (). 2
p( Tio (Tig (¥ )))
-p(g (Tio (Xn+1))! 9(Tip (%ne1)))

Letting n — oo in the above inequality and using (2.24),
(2.25) and (2.26), we have

+

p(Ti0 Z, gz) < p(TiO 2,Ti, z)+ p(9z,92)

(2.27)
= p(TiOz,Tioz).

Now, we will prove that p(Tioz,TiOz) = 0. Suppose that

this is not the case. Then, from (2.22) with i =g, y = x =2,
we get

z//( p(TiOz,Tioz)) <p(M(z,2)),
where
(Tt
)' p(gz,Tioz
2

p(9z.92), p(02.T,
M (z,z) = max p(gz,Tioz

= p(gz,Taoz).

Therefore, from (2.27) and the above inequality, we

have
)< p(02Ty2)

a contradiction. Hence p(gz, Tioz) = 0 which implies that

p(gz,TiOz

Tioz = gz, that is, z is a coincidence point of Tio and g. If
w is a coincidence point of Tio and g other then z, then

putting i =iy, X =2,y =w in (2.22) we have

1,//( p(TiOz,TiOW)) <p(M(z,w)),
where

p(gz.9w), p(92.Tigz). p(gw, iy w),

M (z,w) = max p(gz, T, w), p(ng

p(T- Z,T W), p(T- z,TiOz), p(TaOW,TaoW),
= max p(T 2,T; w)+ p(Tiow,TiOZ)

2

=p (Tio Z,TiOW).
Therefore,
'//( p(Ti Z’Tiow)) < ¢( P (T Z’Tiow))’

which is possible only when z = w. Hence z is the unique
coincidence point of Tio and g. Similar Theorem 2.1 can

be shown that z is a coincidence point of {T;} and g for
anyi €1.

We give in the following a sufficient condition for the
uniqueness of the common fixed point of the mappings {T;}
and g.

Theorem 2.8. Adding to the hypotheses of Theorem 2.1
(resp Theorem 2.7) the condition:
'o and g commute at their coincidence points, we obtain

the uniqueness of common fixed point of {T;} and g.
Proof. Suppose that Tio and g commute at x. Sety =

Tiy X=9x. Then
TiO y :Tio (gx) =g (Tiox) =gy, (2.28)
from (2.1) we get
v(p(y.Toy))=v(p(ToxTipy)) 2.29)
<y (M(xy)),

where
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p(9x.ay), (9% Tigx). P9y, Tiy ¥ ).
p(9x.Tigy), p(9y.TigX)
2
IO(Tio X Ti Y), IO(TiO X Ti X), D(Tio ¥, Tig y),
P(Tig % Tig )+ P(Tig - ¥)
2
= p(Tgx T ¥) = p(¥. T y)-

M (X, y) = max

= max

Suppose that p(y, T; y) > 0, from (2.29), we get
v(p(v.Tipy)) <o (M (xy))

=o(p(y.Toy))<w(P(v.Toy))

which is a contradiction. Hence p(y, Tw0 y) = 0. Therefore,

Tigy =0y =Y. (2.30)

Thus we proved that Tio and g have a common fixed

point.

Uniqueness: Let v and w be two common fixed points
ofTi and g. (|e)V—T v-gvandW—TiOW:gw.
Using inequality (2.1), we have

y/(Tiow,Tiov) <p(M(w,v)),
where

o). plov ).

p(gw, gv), p(gw.Ty,

M (w,v) = max p(gW,Tiov)+ p(gv,TiOW>
2
=p(w,v).
Therefore,

w(p(wv))= z//( p(TiOW,Tiov)) <p(p(w.v))

which is possible only when w = v. Hence Tio and g have

an unique common fixed point. Now suppose that x € X
is a common fixed point of Tio and g. Thenx =gx = T; X

Foranyi e I, from inequality (2.1), we have
w(p(xTix))= y/( p(TiO x,Tix)) <p(M(xx))(2.31)
where

p(9%,9x), p(9%.Tix), p(9x.Tiy ),
P(gxTix)+ P(x,X)
2
P(xx), p(X,Tix), p(x,X),
=maxs p(x,T;x)+ p(x, x)
2

M (X, x) = max

=p(%Tix)
Suppose that p(x, Tix) > 0, from (2.31), we get

v (p(x.Tix)) < @(M (x,x))
=p(P(xTix)) <y (P(x.Tix)),
which is a contradiction. Hence p(x, Tix) = 0. So, we have
Tix=x
that is, x is a common fixed pointof g and {T;: i € I}.
Example 2.9. Let X = [0, 1] and p(x, y) = max{x, y}, then
it is clear that (X, p) is a complete partial metric space.
Letl ={1,2,3,..},ip=1andforeveryi €I, T;, g: X— X,

10 4

and w, ¢ : [0,0) — [0,00) be given by T; (x)=7x ,
i+

gx =4,y (t)=4t, o(t)=

We show that condition (2.1) is satisfied.
If x,y € X, then we have

v(p(Ty (). Ti(9)) = (P(T(x).Ti (¥)))

[ {10 3 10 j
=y | max{—Xx°,——

10 3 10 yg}
37 Ni+2

%t, Clearly (v, ¢) € ¥.

—4max{

s%max{10x3,10y3} _10 p(ox, gy)
p(gxygy),p(gx T(x)), P9y, Ti (¥)).

g%max p(ox.T; (y)) p(ay.T1(x))

=p(M(x.y)).

Note that, {T;} and g satisfy all the conditions given in
Theorem 2.7 and 2.8. Moreover, 0 is a unique common
fixed point of {T;} and g.
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