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Abstract  The Lucas polynomials are famous for possessing wonderful and amazing properties and identities. In 
this paper, Diagonal function of k-Lucas Polynomials is introduced and defined by 

( ) ( ) ( )n 1 n n-2 ,G  kxG G x ,n 1.x x+ = + ≥  with ( )0G  2.x =  and ( )1G  1.x =  Some Lucas Polynomials, rising & 

descending diagonal function and generating matrix established and derived by standard methods. 
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1. Introduction 
The sequence 1,1,2,3,5..., got its name as name as 

Fibonacci sequence by the Famous Mathematics Francois 
Edouard Lucas in 1876 [7]. 

Lucas also discovered a new Fibonacci like sequence 
with different initial condition call it, Lucas Sequence 

 n n-1 n-2 ,L  L L ,n 2.= + ≥  

with initial condition 0L  2= , 1L  1.=  
In 1965 Hoggatt, V.E. [5] has defined Lucas 

polynomials by recurrence relation. 
( ) ( ) ( )n 1 n n-1 ,L  xL L x ,x x+ = +  where  

 ( ) ( )0 1L  2,L  x,x x= =  (1.1) 

The first few Lucas polynomials are 
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In this paper, we are using the pair of sequence {Gn} 
and {Pn} for which, 

 ( ) ( ) ( )n 1 n n-1 ,G  kxG G x ,n 1.x x+ = + ≥  (1.2) 

 ( )0 1G  2,G  1 x 0= = ≠  

 ( ) ( ) ( )n 1 n n-1 ,P  kxP P x ,n 1x x+ = + ≥  

 ( )0 1, . x 0P k P kx= = ≠  (1.3) 

where k is any positive integer. k= 0, 1, 2, 3...  
Using the equation (1.1) and (1.2) and made a rising 

diagonal function and descending Diagonal Functions. 

2. Sequence {Gn} and {Pn} 
We have the pair of sequence {Gn} and {Pn} for which, 

 ( ) ( ) ( )n 1 n n-1 ,G  kxG G x ,n 1.x x+ = + ≥  

 ( )0 1G  2,G  1 x 0= = ≠ ,  
 ( ) ( ) ( )n 1 n n-1 ,P  kxP P x ,n 1.x x+ = + ≥  

 ( )0 1P  k,P  kx. x 0= = ≠  

The first few terms of the sequence {Gn} are  
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 (2.1) 

The first few terms of the sequence {Pn} are 
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3. Rising Diagonal Function 
Consider the rising diagonal function of x, Un (x), un (x) 

for (2.1) and (2.2) respectively, 
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 (3.2) 

Now, we define 

 ( ) ( )0 0U x 0.u x= =  (3.3) 

from equation (3.1), (3.2) and (3.3) we get the following 
theorem:  
Theorem (1). If Un (x) and un(x) are rising diagonal 
functions of x for sequence {Gn} and {Pn} respectively, 
than for, n 4≥  

 ( ) ( ) ( )n 1 4U x .n nkxU x U x− −= +  (3.4) 

Proof can be obtained by PMI’s method so it is obvious. 

Special Case-I 
If Un (x) and un(x) are rising diagonal functions of x f 

sequence {Gn} and {Pn} respectively, than for n=3, n=4. 

 ( ) ( ) ( )n 1 3u x .n nkxu x u x− −= +  (3.5) 

4. Descending Diagonal Function 

From (2.1) and (2.2), the descending diagonal function 
of x, Qi(x), qi(x) are 
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Now, we define 

 ( ) ( )0 0Q x 0.q x= =  (4.3) 

from (4.1), (4.2) and (4.3) we get for n 2≥ . 

( ) ( ) ( ) 1
n 1Q x 1 1 .n

nkx Q kx −
−= + = +  (4.4) 

 ( ) ( )n 1q x 1 .nkx q −= +  (4.5) 

from (4.4) and (4.5) we get the following theorem: 
Theorem (2). If Qn(x) and qn(x) are descending diagonal 
function of x for Sequence {Gn} and {Pn} respectively, 
than for n 2> . 
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5. Generating Matrix  
For the sequence {Gn} defend in equation (1.1) we 

consider the matrix 
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 (5.1) 

Since, the elements of this matrix are the member of the 
sequence of Fibonacci Polynomials. We call this matrix as 
Fibonacci matrix.  

Theorem (3). For sequence {Gn} we define 
n 1≥ , p 0.≥  
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Proof. For sequence {Gn}, we have 
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Since, determinant of matrix A is -1, therefore, 
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Form equation (3.5.2) and (3.5.3), we get  

 ( ) ( ) ( ) ( )2
n 1 1G 1 n

n nx G x G x+ − − = −  

Since n p n pA A A+ =  
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After multiplying the matrices and equating the 
corresponding elements, we get  
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Theorem (4). For sequence {Gn} we define n 1≥ , p 0≥  
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Proof. For sequence {Gn}, we have 
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If A is any square Matrix, then we know that 

 -1AA I=  (5.4) 
Where I is identity matrix from equation (5.4) we get 
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By Mathematical induction, we have 
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After multiplying the matrices and equating the 
corresponding elements, we get 
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6. Generating Matrix 
For the sequence {Pn} defend in equation (1.1) we 

consider the matrix 
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since, the elements of this matrix are the members of the 
sequence of Fibonacci polynomials. We call this matrix as 
Fibonacci Matrix. 
Theorem (5). For sequence {Pn} we define n 1≥ , r 0≥  
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Proof. For sequence {Pn}, we have 
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Since, determinant of matrix A is -1, there for, 
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Form equation (3.6.2) and (3.6.3), we get  
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Since n r n rA A A+ =  



52 Turkish Journal of Analysis and Number Theory  

 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

1

1

1 1

1 1

n r n r

n r n r

n n r r

n n r r

p x p x
p x p x

p x p x p x p x
p x p x p x p x

+ + +

+ + −

+ +

− −

 
 
 
   

=    
   

 

After multiplying the matrices and equating the 
corresponding elements, we get  
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Theorem (6). For sequence {Pn} we define n 1≥ , r 0.≥  
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Proof. For sequence {Gn}, we have 
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If A is any square Matrix, then we know that  
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Where I is identity matrix from equation (5.4) we get 
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By mathematical indication, we have 
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Since n n rA A A r+ −=  
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After multiplying the matrices and equating the 
corresponding elements, we get  
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7. Conclusions 

In this paper Diagonal function k-Lucas Polynomials. 
Some basic rising diagonal function and descending 
diagonal function and generating matrix derived by 
standard method. 
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