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Abstract The Lucas polynomials are famous for possessing wonderful and amazing properties and identities. In

this  paper, Diagonal function of

k-Lucas  Polynomials s

introduced and defined by

Gp(X)= kxGp (x)+G , (x),n>1. with Gg(x)= 2. and G;(x)= 1. Some Lucas Polynomials, rising &
descending diagonal function and generating matrix established and derived by standard methods.
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1. Introduction

The sequence 1,1,2,3,5..., got its name as name as
Fibonacci sequence by the Famous Mathematics Francois
Edouard Lucas in 1876 [7].

Lucas also discovered a new Fibonacci like sequence
with different initial condition call it, Lucas Sequence

Ln = Ln_1+|_n_2',n22.

with initial condition Lo = 2,L; = 1.
In 1965 Hoggatt, V.E. [5] has defined Lucas

polynomials by recurrence relation.
Losa(X)= XL (x)+L 5 (x), where
Lo(X)= 2,Ly(x)= x, (1.1

The first few Lucas polynomials are

Ly (x)= 1.,

Ly(x)=1 x?+2.x°,

Lg(x)=1 x3 +3.x,

Ly(x)= 1.x4 +4x2% +2.x9,
Ls(x)= 1x° +5.x% +5.x,
Lg(x)= 1.x% +6.x* +9.x% +2.x°,
Ly (X)= 1x7 +7X° +4° + 73,

In this paper, we are using the pair of sequence {G,}
and {P,} for which,

Gpaa(X)= kxGp (x)+G ., (x)n=1.  (1.2)

Go=2Gi=1 (x=#0)

Poia (X) = kxP, (x)+P n_1’(x),n >1

Ph=k,R=kx.  (x=0) (1.3)

where k is any positive integer. k=0, 1, 2, 3...
Using the equation (1.1) and (1.2) and made a rising
diagonal function and descending Diagonal Functions.

2. Sequence {G.} and {P,,}

We have the pair of sequence {G,} and {P,,} for which,
Gpia(X)= kxGy (x)+G , (x)n=1.
Go=2G; =1 (x#0),

Posa(X)= kxPy (x)+P , (x)n=1.

Py = kP = kx. (x=0)

The first few terms of the sequence {G,} are
2
1
kx+2

k2x? + 2kx +1
k3x3 + 2k2x2 + 2kx + 2
k¥4 + 2k3x3 + 3k2x2 + 4kx +1
Kox® + 2k x* + 4k3x3 + 6k 2x? + 3kx + 2
kOx® + 2k®x°® +5k* x4 +8Kk3x> + 6k X2 + 6kx +1
kX" +2Kk®x® +6k°x® +10k*x*
+10k3x3 +12k?x% + 4kx + 2
KEXB + 2k x” +7Kk®x® +12Kk5x° +15k*x*

+20k3x3 +10k2x? +8kx +1.

(2.1

The first few terms of the sequence {P,} are
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k
kx

k2x? +k
K3x3 + k%X +kx
k*x* +k3x2 +2k2x% +k
KOX® 4+ k*x3 +3k3x3 + 2k%x + kx,
KOx® +kOx* +4k*x* +3k3x2 +3k%x? +k
k'x” +Kk8x® +5Kk5x° + 4k*x®
+6k3x +3k%x +kx
K8x® + k8 +6KkOx® +5KkOx*

+10Kk*x* +6k3x? + 4k%x? + k.

(2.2

3. Rising Diagonal Function

Consider the rising diagonal function of x, U, (x), u, (X)
for (2.1) and (2.2) respectively,

Up(x)=1
Uy (x)=k
Uz (x)= kzx2
Uy (x) = k3x3+2kx
Us (x) = k*x* +2k2x% +1 (3.1)
Ug (x) = k2P + 2k3x3 + 2kx
U7 (x)= kOx® +2k*x* +3Kk?x2 + 2
Ug (x) = k"7 +2k°x® + 4k3x® + 4kx
Ug (x) = kB3 +2k®x® +5k*x* + 6k 2x? +1.
up(x)=k
U, () =kx
us(x) = k?x?
u4(x)=k x4k
us (x) = k*x* +kx (3.2)
ug (%) = k>x% + k3% +kx
u7 (x) = k®x® +k*x3 + 2k?x?
ug (x) =k x" +k>x* +3k33 +k
Ug(x)= k8x8 +kOx® + 4k x* + 2k %x?
Now, we define
Ug (X) =g (x)=0. (3.3)

from equation (3.1), (3.2) and (3.3) we get the following
theorem:

Theorem (1). If U, (x) and uy(x) are rising diagonal
functions of x for sequence {G,} and {P,} respectively,
than for, n>4

Un (X) =kxUp_1 (X)+Up_4(x). (3.4)

Proof can be obtained by PMI’s method so it is obvious.

Special Case-I
If U, (X) and u,(x) are rising diagonal functions of x f
sequence {G,} and {P,} respectively, than for n=3, n=4.

Up (X) = kxup_1 (X)+Up_3 (). (3.5)

4. Descending Diagonal Function

From (2.1) and (2.2), the descending diagonal function
of x, Qi(x), gi(x) are

4 (4.1)

3 (4.2)

Now, we define
Qo (x)=do(x)=0.
from (4.1), (4.2) and (4.3) we getforn>2.
Qn (x) = (koc+1) Qg = (koc+1)"™

On (X) = (kx+1)qp4.

from (4.4) and (4.5) we get the following theorem:
Theorem (2). If Q,(X) and g,(x) are descending diagonal
function of x for Sequence {G,} and {P,} respectively,
than forn > 2.

4.3

(4.9

(4.5)

Qn On
a) ——=—"=(kx+1).
) Qn1  Ona ( )
Qn _ (kx+1)
b) dn _(kx+k)'

5. Generating Matrix

For the sequence {G,} defend in equation (1.1) we
consider the matrix
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kx 1
A= . (5.1)
Since, the elements of this matrix are the member of the

sequence of Fibonacci Polynomials. We call this matrix as
Fibonacci matrix.

Theorem (3). For sequence {G,} we define
nx=1,p=>0.
Gn+p (X) = Gn+1(X)G p (X)+Gn (X)Gp—l(x)
Gnip(X)= Gn(X)G p+1(x)+Gn—1(X)Gp (%)-
Proof. For sequence {G,}, we have
{kx 1}
A= .
10
Since, determinant of matrix A is -1, therefore,
detA" = (det A)" (5.2)
detA" = (-1)"
ool S0 Gy
Gn (X) Gn—l(x)

Form equation (3.5.2) and (3.5.3), we get

G2 (X)Gn1 (¥)=Gf (%) = ()"

Since A"P = A"AP
Gn+ p+1(X) n+p (X)
Gn+p( ) n+p—1 X

_ {Gnﬂ X) Gn(x) j{ pra (X (8)}

After multiplying the matrices and equating the
corresponding elements, we get

Gn+p(x): Gn+1(X)G p(x)+Gn(X)Gp—1(x)
Gnip(X)= Gn(X)G p+1(x)+Gn—1(X)Gp (%).

Theorem (4). For sequence {G,} we definen>1,p>0
Gp (x) = Gn+p+1(X)G -n (X)+Gn+p (X)G—( p+1) (%)
Gp(X)= Gpyp(X)G _erl(x)+Gn+p_1(x)G_p (x).

Proof. For sequence {G,}, we have
kx 1
A= .
T
If A is any square Matrix, then we know that

AAT | (5.4)
Where 1 is identity matrix from equation (5.4) we get

i 01
10 —kx

oo ol

By Mathematical induction, we have

A_p:[G—(p—l)(X) G_p(x) ]

G—p (X) G_( p+l) (X)
Since A" = A"PATP
{Gmp (X) Gn (X) }
Gn (X) Gn—l(x)
:{GMH(X) Gnep (X) HG( o) (X)  Gp(x) }
Gnip (x)  Gpy -1 (x) G_p (x) G—(p+1) (x)

After multiplying the matrices and equating the
corresponding elements, we get

G ()= Gnyps1(X)G  (X)+Cnsp (X)G—( p+1) (%)
Gp (x)= Gn+p(x)G -p+1(x)+Gn+p—1(X)G—p (%)-

6. Generating Matrix

For the sequence {P,} defend in equation (1.1) we

consider the matrix
kx 1
A=
1 0

since, the elements of this matrix are the members of the
sequence of Fibonacci polynomials. We call this matrix as
Fibonacci Matrix.

Theorem (5). For sequence {P,} we definen>1,r>0

Prsr (X) = Poyg (X)P (%) +Pr (X) Py ()
Posr (X)= Py (X)P . (X)+Po_g (X) Py (X)-
Proof. For sequence {P,}, we have
{kx 1}
A= :
1 0

Since, determinant of matrix A is -1, there for,

(6.1)

detA" = (det A)" (6.2)
detA" = (-1)".
By mathematical induction
A" {P”*l(x) P () } 6.3
I:)n (X) Pn—l(x)

Form equation (3.6.2) and (3.6.3), we get
Pn+1(x) Pn—l(x)_ I:)nz (X) = (_1)n

Since A" = ANAT
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pn+r+1(x) pn+r(X) After n_1u|t|ply|ng the matrices and equating the
corresponding elements, we get
Pn+r (X) Pnir-1 (X)

{m(x) p”(x)}{m pr(”} 092 Frerst COP. () Boar ()P (1)
Pn(X)  Pna(X) [ Pr(X)  Pra(x) Po (X) = Prir (X)P g (%) + Poproa (X) Py (%)

After multiplying the matrices and equating the
corresponding elements, we get 7. Conclusions

P = Py (X)P P (X)P._y ().
ner (X)= P (X)P () B (¥) Pra (%) In this paper Diagonal function k-Lucas Polynomials.

Poar (X)= Pn (X)P 1 (X)+ P (X) P (%). Some basic rising diagonal function and descending
. diagonal function and generating matrix derived by
Theorem (6). For sequence {P,} we definen >1,r >0. standard method.
Pn (X) = n+r+1(X)P - (X)+ Pasr (X) P—(r+1) (X)
Py (X) = Popr (X)P 1 (X)+ Prer_g (X) Py (X)- Acknowledgement
Proof. For sequence {G,}, we have We would like to thank the anonymous referees for
numerous helpful suggestions.
kx 1
A= .
Hy
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