Turkish Journal of Analysis and Number Theory, 2015, Vol. 3, No. 2, 43-48

Available online at http://pubs.sciepub.com/tjant/3/2/2
© Science and Education Publishing
DOI:10.12691/tjant-3-2-2

2 SelEP

e,

Science & Education
Publishing

Some Generalizations of Integral Inequalities of
Hermite-Hadamard Type for n-Time Differentiable
Functions

Tian-Yu Zhang®, Bai-Ni Guo*”

'College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region, China
2School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan Province, China
*Corresponding author: bai.ni.guo@hotmail.com

Abstract In the paper, by establishing two integral identities and Holder integral inequality, the authors generalize
some integral inequalities of Hermite-Hadamard type for n-time differentiable functions on a closed interval.

Keywords: generalization, Hermite-Hadamard integral inequality, differentiable function, Hélder integral

inequality

Cite This Article: Tian-Yu Zhang, and Bai-Ni Guo, “Some Generalizations of Integral Inequalities of
Hermite-Hadamard Type for n-Time Differentiable Functions.” Turkish Journal of Analysis and Number Theory,

vol. 3, no. 2 (2015): 43-48. doi: 10.12691/tjant-3-2-2.

1. Introduction

Let f(x) be a convex function on [a; b], the famous
Hermite-Hadamard integral inequality may be expressed
as

OSJ:f(t)dt—(b—a)f(a—;bj
s(b—a)w—j: f (t)dt.

(1.1
It is well known that Hermite-Hadamard integral
inequality is an important cornerstone in mathematical
analysis and optimization. There has been a growing
literature considering its refinements and interpolations.
For more information, please refer to the monographs
[3,4], the newly published papers [1,7], and plenty of
references therein.
The following theorems are some refinements and
generalizations of inequalities in (1.1).
Theorem 1.1 ([2] and [[5], Theorem A]). Let

f:[a,b]e R >R be a twice differentiable mapping and

suppose that y < f"(t)<T for all te(a,b). Then we
have

7(b-a)® bf(t)dt—f[a+bjﬁr(b_a)2 (1.2)

1
L
24 b—a”a 2 24

and

J’(b—a)zS f(a)+f(b)_ 1 be(t)dtsM. (1.3
12 2 b—a’a 12

This theorem was generalized as follows.

Theorem 1.2 ([6] and [[5], Theorem B]). Let
f:[a,b]e R >R be a twice differentiable mapping and

suppose that y < f"(t)<T forall te(a,b), then

35, - 2T
24

<1 bf(t)dt—f(a—”’]
b—a‘a 2

(b-a)’
(1.4)
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and

where

() (p)— 1Y) ()
b-a

S, = neN. (1.6)

The above two theorems were further generalized by
the following theorems.

Theorem 1.3 ([[5], Theorem 1]). Let f(t) be n-time
differentiable on the closed interval [a,b] such that
y < f(”)(t)sr for te[a,b] and neN. Further, let
uelab] beaparameter. Then
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—a\" (p—uy)" , R (tx) x)
(b-a)s, max{(u n‘?) ,(b n:‘) } R@):= ot RL(t,x)=PR_4(t) (1.9
and P (t,x) =1 for all defined (t,x) and ie N . Further

n+l n+1
(u-a) " -(u-b) let f(t) be n -time differentiable on [a,b] such that

(n+1)!

r y<fP@)<T for te[ab] and ne N . Then, for any
_(b_a)max{(u—a)n (b—U)n} constant « € R, we have

[a+ max |pn (t)+a|}

n! n!
tefa,b
( max |pn (t)+a| Pr+1(D) = Ppy1(d) +ajr
tea.b] b-a

+

< ()" [ f (ot

“*1(u _ a)n+i _(u _b)n+i

2

(_1)i f(nfifl) (u)

= n—i!
=0 (n=) i i <(- 1)”+1L)1 j f (t)dt
<(b-a)S, max (u=a) (b-v) L . (1.10)
oo 13y OO i@ (@)
(u_a)n+l_(u_b)n+1 i=1 b_a
(n+1)! ; {a rr[1ax|pn(t)+a|}
: t
~(b-a)max (u-a)" (b-u)" (1.7) Pn+1(0) — Pnia(d)
nt ' n! 1.7 (max |pn () + | -2 n+l —aJF
tefa,b] b-a
where S, is defined by (1.6). and
Theorem 1.4 ([[5], Theorem 3]). Let u e R and f(t) be n-
time differentiable on the closed interval [a,b] such that {a trT[wlx |pn (t)+a|}
y< £ (t)<T for t[a,b] and neN. Then _
( ) [ ] [tn[]aa)é]|pn(t)+ | pn+1(bt))_§n+l(a)_a]7
; (u-a)" (b-u)’
(b-a)max) == <(- 1)”*1[ ! [ @t
g o (1.11)
LR i G Ly OO @ P |
(n+1)! +Z(_ ) b-a
u—al" |b—ul"
-(b-a)s, max{%,%} {Oﬁt”[‘ax |Pn(t)+0‘|}
Pn+1(0) — Pnya (@)
<(-1)° I:f(t)dt [tn[maﬁ]|pn(t)+a| " b—an+1 +ajy'
(b—u)"" £ (") () where s, is defined by (L.6).
E( N —(a—u)mi f(n_i_l)(a) Theorem 1.6 ([[5], Theorem 7]). Let {P(t)}  and
+y (- - -
i=0 (n_')! {Qi(t)}i0 be two harmonic sequences of polynomials,
|u —a|n |b—u|n a and g be two real constants, and u e [a,b]. Further let
(b—a)max BT f(t) be n -time differentiable on [a,b] such that
< o o r y<f™(t)<T for tefa,b] and ne N. Then
L) ) Qut®)~Prit(@) _ Prsa(W)~Quea W)
(n+1)! [ n+l n+1\%/ , "n+l n+l
b-a b-a
—al b—u (18) b
-(b-a)s, max{| nl' | n!| } G 'B)ubt( p- a0!)+C(u)}/ Cu)S, .
1.12
where s, is defined by (1.6). ( 1) j ()t

Theorem 1.5 ([[5], Theorem 5]). Let {R(t,x)};, be a
harmonic sequence of polynomials, that is,

Ay £ (D) ey (i-1)
Sy a0 LELICIERIO



Turkish Journal of Analysis and Number Theory 45

z( 1)n+| P(U) Q| (u) 1 1)( u)

S 0-at"@ @-pfTPw

b-a b-a (1.12)
|:Qn+l(b) n+1(a)+ Pn+1(u)_Qn+1(u)
b-a b-a
+(Ol_ﬁ)u-k(bﬂ_aw)—C(u)};/JrC(u)Sn
b-a
and
|:Qn+1(b) Pn+1(a)+ n+1(u) Qn+1(u)
b-a b-a
+(“‘ﬁ)“+(bﬂ‘a“)—C(u)}rm(u)sn
b-a
(=" b
Sﬁja f (t)dt
WS oy QOO -R@ @)
i0 b-a
(1.13)

n-1 . _0. .
+Z (D R (ut)) _(a?| (u) £ (D) )
i=0

L0 -af"@ | @-p "D
b-a b-a

< {Qnﬂ(b) —Pa (a) T P (u) _Qn+1(u)
b-a b-a

e ‘ﬁ)“bt(:ﬂ‘a“) +C(u)}1"—C(u)Sn,

Where S, is defined by (1.6) and

C(u) = max{ max_|R, (t) + |, max |Qn(t)+ﬂ|}.
te[a,u] tefu,b]

The aim of this paper is to, by establishing two integral
identities and Holder integral inequality, generalize the
above six theorems recited from [5] to more general cases.

2. Lemmas

For generalizing the above six theorems recited from [5]

to more general cases, we need the following integral
identities.
Lemma 2.1. For ne N,

differentiable

let f:[a,b] > R be a n-time
function on [a,b] , and et

9,:[a,x]>R and g, :[x,b]>R be n -time
differentiable functions for some x < [a, b] , than
j:g(t) £ (rydt
n-1 X
=X [ 00- g o0 D)
i=0 (2.1)

0P 01" 0)-of @1 @)

)" @ @,

where

[mtelan,
g(t)_{gz(t) t e (x,b].

' (2.2)

g@ o @), tela,x),

)=
o (1), te (x.b],

and gV (x7) = gl(i)(x), gD (x*) = gg)(x) for 1<i<n.

Proof. When n =1, it is not difficult to obtain that
2 a0 0t = (01 - 920) f (¥)
+(92(0) f (b) —g1(a) f () —j: 9

Suppose that the inequality (2.1) holds for n=k >2. For
n=k+1, by integration by parts, we obtain

[Jo0 D d=["gm '] at

k-1 . .
- > 0 (60— ey 1<
i=0

() f (t)dt.

M ROLRIOEFRIOTERICN]
+HEDK oM@ ot
k -
=> (1) [(gf')(X) g () &0 (x)
i=0

o O () -gf) (@) F ¢ (a) |
+H(=DkH j: gD (1) f 0y,

By induction, the proof of inequality (2.1) is complete.
Lemma 2.2 For nen, let f:[ab]>R be a n -time

differentiable function on [ab] and, for xe[ab] let
g, :lax]1->® and g,:[x,b] >R be n -time differentiable
functions, then

jab g F ™ ()dt

1 _
= Z (-1’ |:(g1') (x)— g(l) (x) f (n—i-1) (x)

+(g(')(b)f(” D) (b) - g (a) £ "~ '—1)(a))J (2.3)
+(a-A TV + (D () -af (D (a)
+(=D)" jab g™ () f ).
where
g (t)+a,tela,x],
- 2.4)
o {gz(t)Jrﬂ,te(X,b] (

and g®(t) for 1<i<n are same with (2.2).

3. Main results

Now we are in a position to generalize the above six
theorems recited from [5] to more general cases.



46 Turkish Journal of Analysis and Number Theory

Theorem 3.1. For ne N, let f :[a,b]c R —> R be n-
time differentiable such that y < £ (t) <T for t [a,b].
for xe[a,b] let g :[a,x] >R g, :[x,b] > R are n -time
differentiable functions. Then

(b—a)s, maX{tQPgé]Igl(t)l,tg%]lgz(t)l}

t 1
tgg;]lgl( )|

tQES‘,’é]'gZ“)'

+| G(a,b; g)—(b—a) max

n-1 . . ) )
<2 [(91(') () - g8 () f "D (x)
i=0

+(g (o) "D (b) - g (a) (1D (a))] (3.1)

+E)M M@ f ot
<(b-a)s, max{ max_|g; (t)|, max |gz(t)|}
te[a,x] te[x,b]

t ’
tgggﬁ}lgl( )|

t
tggﬁ]lgz( )|

+| G(a,b;g) — (b—a) max

where S is defined by (1.6), g(t) and g (t) are defined
asin (2.2) and

gy =L [P
G(a,b;g) = b_aja g(t)dt. (3.2)
Proof. By Lemma 2.1, we have
[ are™ -t
("7 s @ dt - y(b- )G (a,b; )
(3.3)

n-1 ) . B :
+ 2 ' (0 00— 00) 1 ")
i=0
+o Do)~ g @ "D @) |
and
[ g - ™ @

=T(b-2)G(ab;g)~ ()" [ ¢ ) f )c
e Y . : (3.4)
-2 0@ 00-9L 00 D0

i=0

+09 ®)1 "D ) - oY (a) 1D (@) |.
On the other hand, by the Holder inequality,
b My b Mty —
Ji 9t ™ ©-71at < [l (]| 1™ 0 - 7|

< max [g®)] [ "1t ™ ) - et (3.5)
tefa,b] a

=(b-a)(Sy-») maX{ max | gy (t)], max |92(t)|}
te[a,x] te[x,b]

and

j: g - ™ )t < j:|g(t)|‘r 0 (t)‘dt

< max |g(t)|j:[r— £ ot (3.6)

tefa,b]
=(-a)-S,) max{ max |gy (t)|, max |gz(t)|}.
te[a,x] te[x,b]

Combining (3.3) to (3.6) yields (3.1). Theorem 3.1 is
thus proved.
Remark 1. From taking

(t-a)"
n!

,tela, x],

in (3.1), the double inequality (1.7) followes.
If taking x =b, g, (t) =0 in Theorem 3.1, we can derive

the following corollary.
Corollary 3.1.1. For ne N, let f:[a,b] >R be n-

time differentiable such that y<f™@)<r for
te[a,b]and let g:[a,b] > R ben -time differentiable.
Then

(b—a)S, max |g(t)|
te[a,b]
+(b—-a)[G(a,b; g) - max |g(t)[I
tefa,b]
<" j: g™ @) f (t)dt
n-1 ) ) ) ) ) (3.7
+2 (D[ gV O I 0) - gV (@) 1D ()|
i=0

< (b—a)S, max |g(t)|

tefa,b]

+(b—-a)[G(a,b; ) _ti??éﬂg(t)“y'

Proof. This follow from putting x=b, g(t) =g, (t) , and

g,(t) = 0inTheorem 3.1.

n

t—u)

Remark 2. If letting g(t) = ( for ueR in (3.7), the

n!
double inequality (1.8) may be derived.
Corollary 3.1.2. Under the conditions of Theorem 3.1, if

a+b
x =—— , then
2

(b-a) |:Sn max {tggillgl(t)l ,tgiﬁllgz (t)l}
+(G(a,b; g)—max{ max | g, (t)|, max |gz(t)|}jr}
te[a,x] te[x,b]
n-1 . . . .
<2 ' [ (o) (@) - o) 25y 1 D 2ty
i=0

o ®) 1" D) - g (@) 1 "D (@) |
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"D g™y f @yt

<(b- a){sn max {tgaa%((]|gl(t)| ,tgg%ﬂgg (t)|} (3.8

+(G(a,b;g)—max{ max |gy (t)], max |g2(t)|}]7/}.
te[a,x] te[x,b]

Corollary 3.1.3. Under the conditions of Theorem 3.1,
if n=2, then

b- S t)|, t

( a){ 2 Max {tggﬁ]lgl( )| tggﬁ]lgz( )I}

+[G(a,b;g)—max{ max_|g; (t)|, max |gz(t)|}]r}
tefa,x] te[x,b]

1 )
<> 00 00-90 00 10
i=0
+g )1 0) - @1 (@ | (3.9)
H g0 ot

< (b—a){sz max{ max |gy (t)|, max |gz(t)|}
te[a,x] te[x,b]

+[G(a,b;g)—max{ max_|gy (t)|, max |g2(t)|}}/}
te[a,x] te[x,b]

Theorem 3.2. For ne N, let f :[a,b] > R be a n-time
differentiable function on [a,b] and, for xe[a,b] let
g9,:[x,b] >R be n
Then,

g,:[ax]>R and -time

differentiable functions.
constants,

[G(a,b;g) + H(X)]y —H(X)S,

n
< %j: g™ @) f (0)dt

for «,p being real

a0 P )+t D) —atD(a)
b-a

(3.10)
Zi—[(gf”(x)—gé‘)(x»f(““‘”(x)
00 1"V 0)-of @1V (@)
<[G(a,b;0)~H )Ly + H(9S,
and
[G(a,big) ~ H(OIC+ H (S,
=D" ro_(n)
< — jag (t) f (t)dt

et P )+t D) —atD(a)
b-a

S ED T ey ) ey £ (D)
+§)b_a[(g1 00-92 00 1D )

(3.11)

000 1" 0)-of @1 V@)
<[G(a,b;g)+ H(X)IT - H(x)S,,

where S ,G(a,b;g), g(t) and G"(t) are defined

respectively by (1.6), (3.2), (2.4), (2.2) and
H(x) = max{ max_|g; (t) + |, max |gz(t)+,3|}. (3.12)
tefa,x] te[x,b]
Proof. Applying Lemma 2.2 results in
[ICIEARICR !

= (-9"[ o™ @)dt— (b-a)7G(a,b; )
Ha-A OV + (81D o) —af D (a)

n1 ) ) _
=3 ([ (0?00 - 9P 00) "D
i=0

g )1 "D ) -gf) (@) 1D (@) |
and

[ - £ @t

=)™ 7 g™ v f ()t + (b-2)TG(a,big)

~(a=-A "D~V b) -af "D ()

S e [@f 00-ef ) D 00

=

OB -of @ V@),

It is easy to show, by the Holder inequality, that

‘ [ aort ™ -

sj”|g(t)|‘f(”)(t)—y‘dt

< max |g@)] [71f ™ ) - 7ot
tefa,b]

=(b-a)(Sy —»)H(X)

and

‘j: g@ir- 1™ (t)]dt‘

£fb|g(t)|‘r— f(”)(t)‘dt

< max [g(0)] [21f ™ ) - /1ot
tefa,b]

= (b—a)(T' =S, )H (X).

Combining the above identitie and inequalities yields

Theorem 3.2.
Remark 3.3. For «, f € R, setting

P,)+a,tela,x],
g(t)={
Q)+ B, te(x,b]

in Theorem 3.2, where R}, and {Qm}, are two

harmonic sequences of polynomials, reveals the double
inequalities (1.12) and (1.13).

Corollary 3.1.1. Let f:[a,b]cR—>R be N -time
differentiable on the closed interval [a,b] such that
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y<f7(t)<T for te[ab], xe[abland g:[ab] >R
be N -time differentiable function for ne N, let o, 8 be a
real constant. Then

[G(a,b; g)+H )]y - H (XS,
a(f ") - V()
b-a
(i) (n=i-1) (hy _ (D (n—i-1)
+Zl< NERIOK (bi, _i (a)f (@)

i=0
<[G(a,b;g)-H(X)]y +H(X)S,

n
< ﬂj: g™ @) f (t)dt +
- (3.13)

and
[G(a,b;g) —H(X)IC + H(x)S,

a(f " D) - 1" D)
b—a

( ) j g™ () f @)dt + &

(3.14)
2 g " () - g0 @) f 1 (@)
+ Z( i
— b-a
<[G(a,b; g) + HO)IT —H(X)S,.
Proof. This follows from taking x=b,
g(t)=g,(t), g,(t)=0and « = gin Theorem 3.2.

Remark 3.4. Taking g(t)=P(t)+« in (3.13) and

(3.14), {P(t)} . be a harmonic of polynomials may derive

the double inequalities (1.10) and (1.11).
Corollary 3.2.2. Under the conditions of Theorem 3.2,
we have

[G(a,b;g)+HED)ly —H(ED)s,

(a—p) 1" (2sb)
b-a

D" o _(m
sjjag (1) f (t)dt +

LBt 0)-af "D (@)

b-a (3.15)
;fo—[(gf”(%b)—gé"(%b»f(”‘i‘”(x)
+gf ) D) -gf) (@) 1@ |
<[G(a,b;9)— H(ER)y + H(@D)s,
and
[G(a,b;g) - H (&) +H (3D)s,
n _ (n-1) ca+b
D" b _(n) (a-p) 7 (%57)
sb_ajag () f (t)dt + —
L0 -af ")
b-a (3.16)

zé—[(gf"(%b)— of) (252 1 (D (asd)
g ®) 1" D) - g (a) 1 "D (@) |
<[G(a,b;g) + H(EDIM - H(D)s,.

a+b
Proof. This follows from putting x = ar? in Theorem 3.2.
2

Corollary 3.2.3. Under the conditions of Theorem 3.2,
if n=2, then
[G(a,b;g)+H(X)ly —H(X)S;
1 ¢
<——| g"(t)f (t)dt
e EAONC!
MR OMANOREANC)
b-a b-a

1 (i . . .
2 @ 0- 9P ) 0D
i=0

(3.17)

+g )1 0) -9 @1 (@]
<[6(a.b;9)~ H()ly + HXS,
and
[G(a,b; )~ H (T + H (0,
1 ¢,
< Eja g"(t) f (t)dt

La-pEx)  pID)-af'(a)
b-a b-a

+z( D (6 00-0 000 00

(3.18)

+g§'>(b>f“*”(b)—gl“’(a)f“*”(a)}
<[G(a,b;g)+HX)IT -H(X)S,.
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