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1. Introduction and Preliminaries

The Banach contraction mapping principle has been
generalized in several directions. One of these
generalizations, known as the Meir-Keeler fixed point
theorem [11], has been obtained by the following more
general assumption: for all e>0 there exists (¢) > 0 such
that

x,yeX,e<d(xy)<e+d(e)=d(TxTy)<e (1)

Bhaskar and Lakshmikantham [3] introduced the notion
of coupled fixed point, mixed monotone mappings in the
setting of single-valued mappings and established some
coupled fixed point theorems for a mapping with the
mixed monotone property in the setting of partially
ordered metric spaces.

In [3], Bhaskar and Lakshmikantham introduced the
following.

Definition 1. Let (X,<) be a partially ordered set and

endow the product space X x X with the following partial
order:

(uv)=<(xy)e x>-uand y=<v,

(2
V(u,v), (x,y)e X xX.

Definition 2. An element (x,y)e X xX is called a
coupled fixed point of the mapping F: X x X — X if

F(xy)=xand F(y,x)=y. 3)

Definition 3. Let (X,<) be a partially ordered set.
Suppose F: X xX — X be a given mapping. We say

that F has the mixed monotone property if for all x,y e X ,
we have
X1, X € X, X =X = F(x,Y) < F(X,Y) (4)

and

Vi Y2 € X,y 2 Y, = F (X y1) = F(X,¥2). (5)

Lakshmikantham and Ciric [10] extended the notion of
mixed monotone property to mixed g-monotone property
and established coupled coincidence point results using a
pair of commutative mappings, which generalized the
results of Bhaskar and Lakshmikantham [3].

In [10], Lakshmikantham and Ciric introduced the
following:

Definition 4. An element (Xx,y)e X xX is called a
coupled coincidence point of the  mappings
F:XxX—>Xand g: X —» X if

x=F(x y)=g(x)and F(y,x)= g(y). 6

Definition 5. an element (x,y)e X xX is called a

common coupled fixed point of the mappings
F:XxX—>Xand g: X —» X if

x=F(x,y)=g(x)and y=F(y,x)=g(y). (@

Definition 6. An element x 2 X is called a common
fixed point of the mappings F:XxX —» X and
g: X > X if

x=g(x)=F(xXx). (8

Definition 7. The mappings F:XxX — X and
g: X — X are said to be commutative if
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g(F(xy))=F(g(x).g(y)), forall(x,y)e X xX.(9)

Definition 8. Let (X,<) be a partially ordered set.
Suppose F:XxX —>X and g:X — X are given

mappings. We say that F has the mixed g-monotone
property if for all x,y e X ; we have

X1, % € X,9(%) =< 9(X)= F(x,Y) < F(x,y) (10)
and

Y. Yo € X,Q(Y1)ﬁg(Y2):> F(X:yl)i F(X,yz)(ll)

If g is the identity mapping on X; then F satisfies the
mixed monotone property.

These results used to study the existence and
uniqueness of solution for periodic boundary value
problems. Hussain et al. [9] introduced a new concept of
generalized compatibility of a pair of mappings
F,G: X xX — X defined on a product space and proved
some coupled coincidence point results.

In [9], Hussain et al. introduced the following:

Definition 9. An element (x,y)e X xX is called a

coupled coincidence point of mappings
F,.G:XxX =X if
F(x,y)=G(x,y)and F(y,x)=G(y,x). (12)

Example 10. Let F,G:RxR — R be defined by F(x,y)
=xy and G(x,y) = 2/3 (x +y) for all (x,y)e X x X . Note
that (0,0), (1,2) and (2,1) are coupled coincidence points
of Fand G.

Definition 11. Let F,G: X x X — X be two mappings.
We say that the pair {F,G} is commuting if

F(G(xY),G(y.x))=G(F(xy),F(y.x)),

for all x,y e X.

(13)

Definition 12. Let F,G: X x X — X . We say that the
pair {F,G} is generalized compatible if

i F(G(xn,yn yn, X))
( Xns yn Yni Xq ))
i F(G(¥n %) G n,yn)),
n_m ( Y1 Xn ' Xn1 Yn ))
whenever (x,) and (y,) are sequences in X such that
lim G (X, Yn) = lim F(X,,¥,) =X,
nN—oo nN—oo

lim G(yy, %, ) = lim F(y,. %) =Y.
n—oo N—o0

Obviously, a commuting pair is a generalized
compatible but not conversely in general.

Coupled fixed point theory have developed literature,
some of the instances of these works are
[1,2,4,5,6,7,8,11,12,13,15]. Recently Samet et al. [14]
claimed that most of the coupled fixed point theorems in
the setting of single valued mappings on ordered metric
spaces are consequences of well-known fixed point
theorems.

In [13], Samet established the coupled fixed points of
mixed strict monotone generalized Meir-Keeler operators

and also established the existence and uniqueness results
for coupled fixed point. Berinde and Pecurar [2] obtained
more general coupled fixed point theorems for mixed
monotone  operators F:XxX — X  satisfying a
generalized symmetric Meir-Keeler contractive condition.

In this paper, we introduce the concept of generalized
weakly compatibility for the pair {F,G} of mappings
F,G:XxX — X and also introduce the concept of
common fixed point of the mappings F,G: X xX — X .
We establish a common fixed point theorem for
generalized weakly compatible pair of mappings
F,G: X xX — X without mixed monotone property of
any mapping under generalized symmetric Meir-Keeler
contraction on a non complete metric space, which is not
partially ordered. We also give an example to support our
result presented here. We extend and generalize the results
of Berinde and Pecurar [2], Bhaskar and Lakshmikantham
[3], Meir and Keeler [11], Samet [13] and many other
results in the existing literature.

2. Main Results

First, we introduce the following:
Definition 13. An element x € X is called a common
fixed point of the mappings F,G: X x X — X if

x=F(xx)=G(x,x).

Definition 14. Let X be a non-empty set. The mappings
F,G:XxX —> X are called generalized weakly
compatible mappings if F(X, y) = G(X, y), F(y, X) = G(y, X)
implies that G(F(x, y), F(y, X)) = F(G(X, ¥), G(y, X)),
G(F(y, ), F(x, ¥)) = FG(y, x), G(x, y)), for all
(x, y)e X . Obviously, a generalized compatible pair is

generalized weakly compatible but converse is not true in
general.
Example 15. Let (X, d) be a usual metric space where

X = {011 L -,1,---}.Define F.G:XxX —> X by
n

2'3’
1 1 1
(53]
F(xy)= (2n+1)4( ) 2n 2n
0, otherwise
and
1 1
17 l = L
(X y) (2n+1 2n+1j
G(x,y)=4 1 _(1 1)
2n+1,(x,y)_ 2n'2n
0, otherwise
Let x, =Y, :in.Then, we have
1
G(xn,yn)_meo,F(xn,yn):(2n+1)4—>0
as n — oo, but
F(G(x,, 'G(Yn, X)),
lim d (8 0:30). G (s 0)) =d(0,1) > 0.
n—oo

G (F (X0 Y ): F (Yo X))
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So F and G are not generalized compatible. From F(x, y)

= G(x, y), F(y, X) =G(y, X), we can get (X, y) = (0, 0) and
we have G(F(0, 0), F(0, 0)) = F(G(0,0), G(0, 0)), G(F(0, 0),
F(0, 0)) = F(G(0, 0), G(0, 0)), which implies that F and G
are generalized weakly compatible.

Theorem 16. Let (X, d) be a metric space. Assume
F,G: X xX — X be two generalized weakly compatible

mappings and for each &> 0, there exists 3(¢) > 0 such that

_d (G(xY),G(u,v))+d(G(y,x),G(v.u))

. <e+6(¢)
implies
d(F(xy). Fuv)+d(Fy.Few) o
2

for all x,y,u,ve X . Suppose that for any x,y e X , there
exist u,ve X such that

F(x,y)=G(u,v)and F(y,x)=G(v,u)  (15)

Suppose that F(XxX)or G(XxX) is complete.

Then there exists a unique x e X such that x = G(x,x) =
F(x,x).

Proof. Let X,, Yo be two arbitrary points in X. From
(15); we can choose x;,y; € X such that

G (%0, ¥1)=F (%0, o)
and
G(y1, %) =F(Yo:%o)-

Continuing this process, we can construct sequences
{x.} and {y,} in X such that

G(Xml' yn+1) = F(Xn'yn)
and

G(yn+1lxn+l) = F(ynlxn)’
for all n>0.

(16)

The proof is divided into 4 steps.

Step 1. Prove that {G(x,Y.,)} and {G(y..Xx,)} are
Cauchy sequences.

Now, by (14), for each &> 0, there exists 6(¢) > 0 such
that

d(G(xy),G(u,v))+d(G(y,x),G(v,u))

e . <e+6(¢)
implies
d(F (). FV)+d(FX)F ) o
2

Condition (17) implies the strict contractive condition

d(F(xy),F(uv))+d(F(y,x),F(v.u))

2 (18)
<d(G(x,y),G(u,v))+d(G(y,x),G(v,u)) b

5 :
for G(x,y)<G(u,v)and G(y,x)>G(v,u) . Thus, by

(18), we have

d (G(Xn+ln yn+l)’G(Xn’ Yn ))

+d (G(yn+1ixn+1)vG(yann ))
2
d (F (Xn +Yn )v F (Xn—l! yn—l))
_ +d(F (Yn+ % )s F (Yot Xn—l))
2
d (G (Xn7 yn)’G (Xn—17 yn—l))
_#4(C(3n0).6 (Yo 1.%01))
2
which shows that the sequence of nonnegative numbers

{An}._, given by

d(G(Xnvyn)vG(Xn—lxyn—l))
A = +d (G(yn!xn)vG(yn—l!xn—l))
n 2 '
is non-increasing, Therefore, there exists some £>0 such
that

(19)

dGX, ,Gx_’ .
IimAn=|im1 ( (X ¥n) (nlynl))

n—oo n—ow 2 +d(G(yn,xn),G(yn,l,Xn,l)) -

We shall prove that e= 0. Suppose, to the contrary, that
¢> 0. Then there exists a positive integer p such that

£<A, <e+6(¢e),

which, by (17); implies
d (F (% Y0 ). F(*pa. fol))

+d(F(¥p. %) F (V1 %p1))
2
it follows, by (16) and (19); that

d(G (Xps1, Ypia ). G (Xp1Vp))

+d (G(yp+1’xp+l>’G(yp’Xp))
p+l = 2

<&

A

which is a contradiction. Thus € = 0 and hence

lim A = lim i[d (G(Xn'yn)’G(Xn—lvyn—l))
" +d (G(ynvxn)!G(yn—len—l))

n—w n—so 2

Let now &> 0 be arbitrary and 3(¢) the corresponding
value from the hypothesis of our theorem. By (20), there
exists a positive integer k such that

~ 1[d (G (X1 Vst )2 G (% Yk )

]: 0.(20)

k41 =%
T2 +d(G(Yk+1,xk+1)’G(yk’Xk))

For this fixed number k, consider now the set A, =

{(G(x, y), G(y, X)): G(Xi Yi) < G(X, ), G(Y, X) = (Vi X,
Y2 [d(G(Xa Yid: G(X, Y))+d(G(Yi X, Gy X)) < & + 8(e).
By (21), A #0. We claim that

(G(%Y),G(y.x)) e Ac=(F(xy),F(y.x)) < A.(22)

]< 5(¢). (2D
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Let (G(x, y), G(Y. X)) € A . Then

d (G (%% ).G (% y))+d (G (y: % ). G(¥. %))
2

which, by (14), implies
d (F (% ¥i): F (%)) + A (F (%), F (%)
2
Now, by (21) and (24), we have
d (G (% ¥k ): G (% ¥))+d (G (yk. %).G(y.x))
2
< d (G (% ¥ )G (% ¥k )+ d (G (¥ % ). G (¥ %))
2
+d(F(Xk'yk)vF(X' ¥))+d(F (¥ %), F (%))
2
d(G (% Yk )G (Xes1: Vst )
_ (6 (%), G (Vi %)
B 2
+d(F(xk,yk),F(X, y))+d (F (v %), F(¥:%))
2

<¢.(23)

<e.(24)

<e+6(¢).
Thus (F(x, y), F(Y, X)) € A. Again

d(G (X Yk )+ G (Xka1 Yics ) +d (G (Vi Xk )G (Vi Xksn )
2
_ (6% %) 84 ¥)) + (G (Y %) (v, %))
2
d(F(X’y)’F(Xk+1-yk+1))+d(F(YvX)vF(yk+1,xk+1))
2

+

< 2(5+5(£)).

Thus (G (Xs: Yira) G (Vi Xiaa)) € A and by
induction,

(G(Xk+11 yk+l)vG(yk+1l Xk+1)) € Akl
for all n>k.

This implies that for all n, m > k, we have

d(G(Xn'yn)vG(Xm*Ym))+d(G(yn'Xn)vG(ym’Xm))
2
< d(G(Xann)'G(Xkryk))+d(G(ynrxn)'G(ykvXk))
2
+d(G(kayk)'G(erym))+d(G(yklXk)'G(ym:Xm))
2

< 2(8+5(8)):4e.

o0

This shows that {G(xn,yn)}:zo and {G(yn,xn)}n=0

are Cauchy sequences in X.

Step 2. Prove that G and F have a coupled coincidence
point.

Since G(XxX) is complete, then there exist

x,yeG(XxX) and (a,b)e X x X such that

lim G(X,,Y,)=lim F(x,,v,)=G(a,b)=x,
—>0 n—oo

n

lim G (Y, %, )= lim F(y,,x,)=G(b,a) 25

y.

Now, by (18), we have

d(F (X, ¥n).F (a,b))+d (F (yy,%).F (b,a))
2

_ (G (% %) G (@0) + (G (¥ ). G (b.2))

2

Taking limit as n— 1 in the above inequality and using
(25), we have

d(G(a,b),F(a,b))=0and d(G(b,a),F(b,a))=0,

which implies that
F(a,b)=G(ab)=xand F(b,a)=G(b,a)=y.

Since F and G are generalized weakly compatible, we
get that

G(F(a, b), F(b, a))
G(F(b, a), F(a b))= F(G(b, a), G(a, b)),

Il
n
—_
®
—_
o
o
~—
®
—_
o
D
~—

which implies that
G(x,y) = F(x,y)and G(y, x) = F(y, x),

that is, (X, y) is a coupled coincidence point of F and G.
Step 3. Prove that G(X, y) =y and G(y, X) = X.
If, not. Then by (18), we have

d (F (%) F (Y X)) +d (F (¥:%). F (¥ Yn))
2

d(G(%Y):G(¥a: %)) +d (G (¥:%).6 (¥n: ¥n))

< .
2

Letting n—co in the above inequality and using (25), we
have

d(G(xy).y)+d(G(y.x).x)
2
3 d(G(xy),y)+d(G(y.x).x)
2 1
which is a contradiction. Thus we must have G(x, y) = y
and G(y, X) = x.
Step 4. Prove that x = y.
If, not. Then by (18), we have

4 (F (%0 Yn). F (Y X))+ 8 (F (¥ %0) F (0. ¥n)
2

_ (60 Yn): G (¥ %)) +8 (G (¥ %0). G (X Yn))

2

Letting n—<o in the above inequality and using (25), we
get

d(xy)+d(y,x) . d(x,y)+d(y,x)
2 2 ‘

which is a contradiction. Thus x = y.
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Example 17. Suppose that X = R, equipped with the
usual metric d : X x X —[0,+0). Let F,G: XxX — X
be defined as

2 .2
XS -y .
—if x>y,
F(xy)= y
0,if x<vy,
and
6(xy)- X2 —y2 if x>y,
’ 0,if x<vy.

From F(x, y) = G(x, ¥), F(y, X) = G(Y, X), we can get (X,
y) = (0, 0) and we have G(F(0, 0), F(0, 0)) = F(G(0, 0),
G(0, 0)), G(F(0, 0), F(0, 0)) = F(G(0, 0), G(0, 0)), which
implies that F and G are generalized weakly compatible.

Now, we prove that for any x,ye X , there exist

u,ve X such that
F(xy)=G(uv) and F(y,x)=G(v,u).

Let (x,y)(u,v)e XxX be fixed. We consider the

following cases:
Case 1: If x =y, then we have F(x, y) = 0 = G(X, y) and
F(y, x) =0 =G(y, Xx).

Case 2: If x > 'y, then we have
2 2
-y Xy
F(x,y)= =G| —,— and
w9550 5 )
y X
F(y,x)=0=G| —=,—
(¥:%) (@@

< vy, then we have

J and
2 2

F(y,x):u:GLL

%J Now, we shall show

that the mappings F and G satisfy the condition (14): For
each x,y,u,ve X x X , we have

S d(G(,y),G(u,v))+d(G(y.x),G(v,u))
2

S5+5(8).
Then
d(F (%), F(uv))+d(F(y.x),F(vu))

2
u2—v2| |y2—x2 v2—u2|

3|+|3_

N

2

— =
w | |
<

|G(x,y)—G(u,v)|+|G(y,x)—G(v,u)H

d(G(xy),G(u,v))+d(G(y,x),G(v,u))
2

Wik Wk ok, Nk
—_ 1

™
+
(S %)
—_
™
~—
~—
AN
™

Thus the contractive condition (14) is satisfied for all
X, ¥,u,ve X . In addition, all the other conditions of

Theorem 16 are satisfied and 0 is a unique common fixed
point of F and G.

Corollary 18. Let (X, d) be a metric space. Assume
F,G:XxX —>X be two generalized compatible
mappings satisfying (14), (15) and
F(XxX) or G(XxX) is complete. Then there exists a

unique x e X such that x = G(x, x) = F(x, X).
Corollary 19. Let (X, d) be a metric space. Assume
F,G:XxX —>X be two commuting mappings

satisfying (14), (15) and F(XxX)or G(XxX) is

complete. Then there exists a unique x e X such that x =
G(x, X) = F(X, X).
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